Проектирование оси турбины низкого давления авиадвигателя. Система охлаждения последней ступени осевой турбины низкого давления турбореактивного двухконтурного двигателя. Окружная составляющая абсолютной скорости потока за РК

Изобретение относится к области авиационных газотурбинных двигателей, в частности к узлу, расположенному между турбиной высокого давления и турбиной низкого давления внутреннего контура двухконтурного авиационного двигателя. Безотрывный кольцевой переходный канал между турбиной высокого давления и турбиной низкого давления со степенью расширения более 1,6 и эквивалентным углом раскрытия плоского диффузора более 12° содержит перфорированные внешнюю и внутреннюю стенки. Закрутка потока, имеющаяся за рабочим колесом турбины высокого давления, преобразована в направлении ее усиления у стенок и ослабления в центре. Закрутка преобразована за счет профилирования ступени турбины высокого давления и за счет закручивающего устройства, расположенного за рабочим колесом турбины высокого давления высотой 10% от высоты канала по 5% высоты на внутренней и внешней стенках канала, или за счет подкручивающе-раскручиваюшего устройства полной высоты. Изобретение позволяет снизить потери в переходном канале между турбинами высокого и низкого давления. 2 з.п. ф-лы, 6 ил.

Область техники, к которой относится изобретение

Изобретение относится к области авиационных газотурбинных двигателей, в частности к узлу, расположенному между турбиной высокого давления и турбиной низкого давления внутреннего контура двухконтурного авиационного двигателя.

Уровень техники

Авиационные газовые турбины двухконтурных двигателей предназначены для привода компрессоров. Турбина высокого давления предназначена для привода компрессора высокого давления, а турбина низкого давления предназначена для привода компрессора низкого давления и вентилятора. В авиационных двигателях пятого поколения массовый расход рабочего тела через внутренний контур в несколько раз меньше расхода через внешний контур. Поэтому турбина низкого давления по своей мощности и радиальным размерам в несколько раз превышает турбину высокого давления, а частота ее вращения в несколько раз меньше частоты вращения турбины высокого давления.

Такая особенность современных авиационных двигателей конструктивно воплощается в необходимости выполнения переходного канала между турбиной высокого давления и турбиной низкого давления, который является кольцевым диффузором.

Жесткие ограничения по габаритным и массовым характеристикам авиационного двигателя применительно к переходному каналу выражаются в необходимости выполнять канал относительно короткой длины, с высокой степенью диффузорности и явно отрывным эквивалентным углом раскрытия плоского диффузора. Под степенью диффузорности понимается отношение выходной площади поперечного сечения ко входной. Для современных и перспективных двигателей степень диффузорности имеет значение, близкое к 2. Под эквивалентным углом раскрытия плоского диффузора понимается угол раскрытия плоского диффузора, имеющего такую же длину, как и кольцевой конический диффузор, и такую же степень диффузорности. В современных авиационных ГТД эквивалентный угол раскрытия плоского диффузора превышает 10°, в то время как безотрывное течение в плоском диффузоре наблюдается только при угле раскрытия не более 6°.

Поэтому все выполненные конструкции переходных каналов характеризуются высоким коэффициентом потерь, из-за отрыва пограничного слоя от стенки диффузора. На фигуре 1 приведена эволюция основных параметров переходного канала фирмы Дженерал Электрик. На фигуре 1 по горизонтальной оси отложена степень диффузорности переходного канала, по вертикальной оси эквивалентный угол раскрытия плоского диффузора. Из фигуры 1 видно, что первоначально высокие значения эффективного угла раскрытия (≈12°) эволюционируют к значительно более низким значениям, что связано только лишь с высоким уровнем потерь. По результатам исследований кольцевого диффузора со степенью раскрытия 1,6 и эффективным углом раскрытия плоского диффузора 13,5° коэффициент потерь менялся в пределах от 15% до 24% в зависимости от закона распределения закрутки по высоте канала .

Аналоги изобретения

Отдаленными аналогами изобретения являются диффузоры, описанные в патентах US 2007/0089422 A1, DAS 1054791. В этих конструкциях для предотвращения отрыва потока от стенки диффузора используется отсос пограничного слоя из сечения, расположенного посередине канала с выбросом отсасываемого газа в сопло. Однако указанные диффузоры не являются переходными каналами между турбиной высокого давления и турбиной низкого давления.

Краткое описание чертежей

Не являющиеся ограничивающими примеры осуществления настоящего изобретения, его дополнительные особенности и преимущества будут подробнее описаны ниже со ссылками на прилагаемые чертежи, на которых:

фиг.1 изображает эволюцию проточной части межтурбинного переходного канала у ТРДД фирмы General Electric,

фиг.2 изображает зависимость потерь кинетической энергии потока в канале от интегрального параметра закрутки потока Ф ¯ С Т в виде линейной аппроксимации, где ν=0 - равномерная по высоте закрутка потока; ν=-1 - увеличивающаяся по высоте закрутка потока; ν=1 - уменьшающаяся по высоте закрутка потока; у=-1,36Ф ст +0,38 - аппроксимационная зависимость, соответствующая коэффициенту достоверности R=0,76,

фиг.3 изображает экстраполяцию потерь отрыва в кольцевом диффузоре от величины пристеночной закрутки,

фиг.4 изображает схему переходного канала,

фиг.5 изображает схему перфорации,

фиг.6 изображает схему устройства силовой стойки с подводящим каналом.

Раскрытие изобретения

Задача, на решение которой направлено настоящее изобретение, заключается в создании переходного канала со степенью раскрытия более чем 1,6 и с эквивалентным углом раскрытия плоского диффузора, превышающего 12°, течение в котором было бы безотрывным, а уровень потерь соответственно минимально возможным. Предлагается возможным снизить коэффициент потерь с 20-30% до 5-6%.

Поставленная задача решается:

1. На основе трансформации имеющейся закрутки за турбиной высокого давления на входе в кольцевой диффузор в направлении ее усиления на внутренней и внешней стенке канала и ослабления в середине канала.

2. На основе переменной по длине перфорации внутренних и внешних стенок кольцевого диффузора, адаптированной к местной структуре турбулентности.

3. На основе отсоса пограничного слоя из зоны возможного отрыва потока от стенок диффузора.

В связи с чем предлагается безотрывный кольцевой переходный канал между турбиной высокого давления (ТВД) и турбиной низкого давления (ТНД) со степенью расширения более 1,6 и эквивалентным углом раскрытия плоского диффузора более 12°, содержащий внешнюю стенку и внутреннюю стенку. Внешняя и внутренняя стенка перфорированы, а имеющаяся за рабочим колесом турбины высокого давления (ТВД) закрутка преобразована в направлении ее усиления у стенок и ослабления в центре. Закрутка преобразована за счет профилирования ступени турбины высокого давления (ТВД) и за счет закручивающего устройства, расположенного за рабочим колесом турбины высокого давления (ТВД) высотой 10% от высоты канала по 5% высоты на внутренней и внешней стенках канала, или за счет подкручивающе-раскручивающего устройства полной высоты.

Преобразованная закрутка ограничена достижением интегрального параметра закрутки до уровня Ф ст =0,3-0,35. Секция перфорации, расположенная на расстоянии 0,6-0,7 длины переходного канала от входного сечения, соединена с полостью в силовых стойках, имеющих щели на 80% высоты стоек симметрично геометрической середины канала, а щели расположены вблизи входной кромки.

Как известно, газ движется в диффузоре по инерции в сторону роста давления, а отрыв (отслоение) потока от стенок физически обусловлен недостаточной инерционностью внутренних пристеночных слоев пограничного слоя. Пункты 1, 2 призваны увеличить инерционность движения пристеночного потока газа за счет увеличения скорости движения, а соответственно его кинетической энергии.

Наличие закрутки в пристеночном потоке газа увеличивает скорость движения, а значит и его кинетическую энергию. В результате увеличивается устойчивость потока к отрыву (отслоению от стенок), а потери снижаются. На фигуре 2 приведены результаты опытного исследования кольцевого диффузора со степенью раскрытия 1,6 и эквивалентным углом раскрытия плоского диффузора 13,5°. По вертикальной оси представлен коэффициент потерь, определяемый традиционным образом: отношение потерь механической энергии в диффузоре к кинетической энергии газового потока на входе в диффузор. По горизонтальной оси представлен интегральный параметр закрутки, определяемый следующим образом:

Ф с т = Ф в т + Ф п е р Ф. ,

где Ф. = 2 π ∫ R R + H ρ w u r 2 d r 2 π ∫ R R + H ρ w 2 r d r (R + H 2)

Интегральный параметр закрутки на входе в канал, ρ - плотность, w - осевая скорость, u - окружная скорость, r - текущий радиус, R - радиус с внутренней образующей диффузора, Н - высота канала, Ф вт - интегральный параметр закрутки, рассмотренный в диапазоне высот от 0% до 5% от втулочного сечения, т.е.

Ф в т = 2 π ∫ R R + 0,05 H ρ w u r 2 d r 2 π ∫ R R + H ρ w 2 r d r (R + H 2) ;

Ф пер - тот же параметр, но в диапазоне высот от 95% до 100% от втулочного сечения, т.е.

Ф п е р = 2 π ∫ R + 0,95 H R + H ρ w u r 2 d r 2 π ∫ R R + H ρ w 2 r d r (R + H 2) .

Как видно из фигуры 2, потери в переходном канале снижаются по мере увеличения доли пристеночной закрутки.

На фигуре 3 представлена линейная экстраполяция зависимости ξ (Ф ст) до уровня потерь трения в эквивалентном канале постоянного сечения. В этом случае на долю пристеночной закрутки (10% от высоты канала) должно приходиться примерно 30% закрутки потока.

Как известно, при турбулентном режиме течения в каналах, непосредственно вблизи стенки имеет место ламинарный режим течения из-за невозможности поперечного пульсационного движения. Толщина ламинарного подслоя составляет примерно 10 μ ρ τ с т. В последнем выражении µ - динамическая вязкость, τ ст - напряжение трения на стенке. Как известно, напряжение трения быстро убывает вдоль диффузора, а в точке отрыва оно вообще равно нулю. Поэтому толщина ламинарного подслоя в переходном канале со сплошной стенкой стремительно нарастает по ходу потока. Соответственно увеличивается толщина пристеночного слоя течения с малым уровнем кинетической энергии.

Перфорация внутренней и внешней стенок переходного канала делает возможным поперечное пульсационное движение на любом расстоянии от перфорированной стенки. Поскольку в турбулентном течении продольное пульсационное течение статистически связано с поперечным, то перфорация позволяет увеличить зону собственно турбулентного течения. Чем выше степень перфорации стенки, тем тоньше ламинарный подслой, тем выше скорость движения газа в пристеночном слое, тем выше кинетическая энергия пристенного потока и его стойкость к отрыву (отслоению от стенки).

Описание конструкции переходного канала между турбиной высокого давления и турбиной низкого давления

Переходный канал между турбиной высокого давления (ТВД) и турбиной низкого давления (ТНД) внутреннего контура двухконтурного турбореактивного двигателя (Фиг.4) является кольцевым диффузором, имеющим внутреннюю стенку 1 и внешнюю стенку 2. Внутренняя и внешняя стенки на стыке с ТВД и ТНД имеют определенные радиусы сопряжения.

Через переходный канал проходят силовые стойки 3, которые обеспечивают смазку, суфлирование и охлаждение опор роторов ТВД и ТНД. Стойки 3 имеют в поперечном сечении несимметричный аэродинамический профиль, обеспечивающий раскрутку потока в центре канала и подкрутку потока у стенок канала до уровня Ф ст =0,3-0,35.

Стенки 1 и 2 перфорированы (Фиг.5). Во избежание перетекания рабочего тела в перфорациях, части перфорации 4 изолированы друг от друга поперечными стенками 5.

Из секции перфорации 9, расположенной на расстоянии 0,6-0,7 от входа в диффузор, организован отсос и удаление через подводящий канал 6 в щели 7 стоек 3. Удаление отсосанной части пограничного слоя производится через щели, расположенные вблизи кромки профиля стоек в зоне минимума местного статического давления. В канале, соединяющем полость 9 с полостью стоек 3, установлены мерные шайбы 8, регулирующие расход газа.

За рабочим колесом ТВД 11 установлен подкручивающий аппарат 12, увеличивающий закрутку потока у стенок. Высота лопаток аппарата 12 составляет 10% от высоты канала на входе. При необходимости подкручивающий аппарат 12 может быть преобразован в раскручивающе-подкручивающий аппарат, расположенный по всей высоте канала. Центральная часть аппарата раскручивает поток, а пристеночная подкручивает, так что в результате закрутки потока на входе в диффузор составляет Ф ст =0,3-0,35.

В том случае, если безотрывное течение в диффузоре достигается только лишь за счет профилирования соплового аппарата 10 и рабочего колеса 11 ТВД и закручивающе-раскручивающего воздействия силовых стоек 3, закручивающее устройство 12 и щели 7 с каналом 6 отсутствуют.

Осуществление изобретения

Безотрывный режим течения в переходном канале достигается закруткой потока в пристеночных зонах течения, раскруткой потока в центре, перфорацией меридиональных образующих переходного канала, отсосом пограничного слоя.

Особенности организации рабочего процесса в современных ГТД таковы, что за турбиной высокого давления имеет место закрутка потока порядка 30-40°. Высокий уровень закрутки у внутренней и наружной стенки (на расстоянии 5% от высоты канала) следует сохранить, а если это необходимо - усилить за счет профилирования ступени и если необходимо - за счет установки закручивающего лопаточного аппарата на входе в переходный канал. Закрутку потока на высотах от 5% от втулочного сечения до 95% от того же сечения следует уменьшить как за счет профилирования ступени, так и за счет раскручивания потока силовыми стойками, конструктивно проходящими через канал. При необходимости, добиться нужной раскрутки потока следует установкой дополнительного раскручивающего лопаточного аппарата на входе в переходный канал. Раскрутка потока в центральной части канала призвана снизить радиальный градиент статического давления и уменьшить интенсивность вторичных течений, утолщающих пограничный слой и уменьшающих его стойкость к отрыву. Величина относительной пристеночной закрутки должна быть по возможности приближена к значению 0,3-0,35.

Поскольку установка дополнительного лопаточного аппарата связана с появлением потерь в этом аппарате, то его следует устанавливать только в том случае, если уменьшение коэффициента потерь в переходном канале заметно превышает величину потерь в дополнительном закручивающем и раскручивающем устройстве. Как вариант возможна установка дополнительного закручивающего аппарата на втулке и периферии ограниченного высотами от 5% до 10% Н (Фиг.4).

Перфорация меридиональных образующих переходного канала изменяет режим течения в ламинарном подслое на турбулентный. Экстраполяция логарифмического профиля скорости на область ламинарного подслоя до расстояния от твердой стенки, равного 8% толщины ламинарного подслоя, дает для величины скорости значение τ с т ρ 6,5 , что всего лишь в 2 раза меньше скорости на границе ламинарного подслоя, в то время как как скорость течения собственно в ламинарном подслое (на этом расстоянии) в 4 раза меньше, а удельная кинетическая энергия в 16 раз меньше.

Экстраполяция логарифмического закона распределения скоростей, характерного сугубо для турбулентного режима течения на область ламинарного подслоя, предполагает полную свободу для перемещения турбулентных вихрей. Такая возможность существует при двух условиях: 1) степень перфорации твердой поверхности близка к 100%;

2) турбулентные вихри всех размеров в данном сечении имеют полную свободу для перемещений в поперечном направлении.

Реально эти условия недостижимы в полном объеме, но практически можно близко к ним подойти. В результате скорость движения у перфорированной поверхности будет в разы выше скорости движения на том же расстоянии от стенки у сплошной поверхности. При этом плотность расположения элементов перфорации и ее структура должны быть согласованы с максимумом энергетического спектра турбулентных пульсаций в отношении их линейного размера для данного сечения переходного канала.

Плотность перфорации (отношение площади перфорации к общей площади) следует выдерживать максимально возможной по конструктивным и жесткостным соображениям.

Структура перфорации адаптирована к линейному размеру энергосодержащих вихрей местной турбулентности, определяемому высотой переходного канала и его средним радиусом в данном сечении. В качестве модели структуры перфорации может быть принята следующая модель:

d min =(0,2-0,5)l э (R, II);

d max =(1,5-2)l э (R, II);

d ¯ = (0,6 − 0,8) ;

d min ¯ = (0,2 − 0,3) ;

d max ¯ = (0,1 − 0,2) ;

d min - минимальный диаметр перфорации; d=l э (R, II) - основной диаметр перфорации, равный линейному размеру энергосодержащих вихрей турбулентной структуры; d max - максимальный диаметр перфорации; d ¯ = S d S - доля основного размера перфорации; S d - площадь перфорации, выполненная по размеру d=(l э (R, II); S - общая площадь перфорации; d min ¯ = S d min S - доля минимального размера перфорации; S dmin - площадь перфорации, выполненная по размеру d min ; d max ¯ = S d max S - доля максимального размера перфорации; S dmax - площадь перфорации, выполненная по размеру d max (Фиг.5).

Размер энергосодержащих вихрей l э (R, II) определяется расчетным путем в зависимости от принятой модели турбулентности.

В переходных каналах с очень большой степенью расширения (n>2) и очень большим эквивалентным углом раскрытия плоского диффузора (α экв >17°) максимально достижимой пристеночной закруткой (Ф ст ≈0,3) и максимально достижимой и должным образом структурированной перфорации (S ¯ ≈ 0,8 , где S ¯ = S п е р S , S пер - общая площадь перфорированной поверхности, S - суммарная площадь меридиональных обводов) может не хватить для организации безотрывного течения по всей длине переходного канала. В этом случае возможный отрыв на последней трети длины диффузора следует предотвратить путем отсоса пограничного слоя через часть перфорации. Удаление отсасываемого газа следует организовать в центральную часть канала через соответствующие отверстия в силовых стоках, которые расположены вблизи входной кромки профиля стенок, т.е. там, где местное статическое давление минимально. Площадь части перфорации 9, работающей на отсос, и площади проходных сечений в стойках 7 должны быть согласованны между собой.

Полость в силовых стойках имеет щели, расположенные вблизи входной кромки, вертикальная протяженность которых может достигать 0,8 от высоты стоек. Щели расположены симметрично относительно середины канала. Совокупность полостей и каналов, связанная с перфорацией и щелями в силовых стойках, организует отсос пограничного слоя в переходном канале.

Организация отсоса пограничного слоя целесообразна только в том случае, если потери смешения при вдуве отсосанного газа на вход в переходный канал меньше величины уменьшения потерь в диффузоре в связи с отсосом.

Список использованной литературы

1. Гладков Ю.И. Исследование переменной по радиусу входной закрутки потока на эффективность межтурбинных переходных каналов ГТД [Текст]: автореферат диссертации на соискание ученой степени кандидата технических наук 05.07.05 / Ю.И.Гладков - Рыбинская государственная авиационная технологическая академия имени П.А.Соловьева. - 2009 - 16 с.

2. Шлихтинг, Г. Теория пограничного слоя [Текст] / Г.Шлихтинг. - М.: Наука, 1974. - 724 с.

1. Безотрывный кольцевой переходный канал между турбиной высокого давления (ТВД) и турбиной низкого давления (ТНД) со степенью расширения более 1,6 и эквивалентным углом раскрытия плоского диффузора более 12°, содержащий внешнюю стенку и внутреннюю стенку, отличающийся тем, что внешняя и внутренняя стенка перфорированы, а имеющиеся за рабочим колесом турбины высокого давления (ТВД) закрутка преобразована в направлении ее усиления у стенок и ослабления в центре за счет профилирования ступени турбины высокого давления (ТВД) и за счет закручивающего устройства, расположенного за рабочим колесом турбины высокого давления (ТВД) высотой 10% от высоты канала по 5% высоты на внутренней и внешней стенках канала, или за счет подкручивающе-раскручивающего устройства полной высоты.

2. Канал по п.1, отличающийся тем, что преобразованная закрутка ограничена достижением интегрального параметра закрутки до уровня Ф ст =0,3-0,35.

3. Канал по п.1, отличающийся тем, что секция перфорации, расположенная на расстоянии 0,6-0,7 длины переходного канала от входного сечения, соединена с полостью в силовых стойках, имеющих щели на 80% высоты стоек симметрично геометрической середины канала, а щели расположены вблизи входной кромки.

Похожие патенты:

Изобретение относится к области энергетики, преимущественно для сбросных систем пара тепловых электрических станций, например, выбросам пара при срабатывании главных предохранительных клапанов котлов, продувок пароперегревателей, растолок котлов и котлов-утилизаторов при расходах сбрасываемого пара более 30 т/ч и степени нерасчетности недорасширенной струи пара n=pa/pc>1, где pa - давление атмосферного воздуха, pc - статическое давление пара на срезе выхлопного трубопровода

Выхлопное устройство турбомашины содержит корпус с входным отверстием, расположенным вокруг оси вращения турбины, диффузор, расположенное в наружной стенке корпуса выходное отверстие и дополнительную перегородку. Диффузор включает осевую и радиальную части, образованные соответственно внутренней и наружной трактовыми стенками, расположенными внутри корпуса вокруг оси вращения турбины. Дополнительная перегородка выполнена внутри корпуса устройства в плоскости, перпендикулярной оси вращения турбины, с периметром равным периметру параллельных ей стенок корпуса устройства. В дополнительной перегородке выполнено коаксиально оси вращения турбины отверстие, диаметр которого равен максимальному диаметру наружной трактовой стенки радиальной части диффузора. В нижней части дополнительной перегородки выполнены симметрично и «зеркально», относительно вертикальной оси указанной перегородки сквозные пазы. По периметру сквозных пазов неподвижно и герметично установлены полые короба, выполненные в виде усеченных пирамид с двумя криволинейными гранями. Меньшие по площади основания указанных усеченных пирамид направлены в сторону турбины устройства, пространство от верхней кромки дополнительной перегородки до верхней кромки стенки корпуса, содержащей входное отверстие устройства, закрыто герметичной плоской стенкой. Изобретение позволяет повысить эффективность устройства и к.п.д. газотурбинной установки. 3 ил.

Изобретение относится к конструкции опорных или установочных устройств выходного устройства турбины. Выходное устройство турбины содержит полые аэродинамические профилированные стойки, размещенные за рабочим колесом последней ступени турбины, а также аэродинамические профилированные контура. Контура образованы передними и задними лопатками, размещенными между стойками со смещением относительно друг друга. Средние линии входных участков контуров и входных участков профилированных стоек повернуты в направлении вращения рабочего колеса последней ступени турбины на угол 20-40° к ее продольной оси. Средние линии выходных участков контуров направлены вдоль продольной оси турбины. Лопатки установлены со смещением относительно друг друга на расстояние равное 0,03÷0,15 длины хорды передней лопатки. По длине хорды контура лопатки установлены в положение совмещения фронта выходной кромки передней лопатки и фронта входной кромки задней лопатки или смещены относительно него. Количество контуров установленных между стойками определено зависимостью защищаемой настоящим изобретением. Изобретение позволяет повысить коэффициент полезного действия последней ступени турбины, а также уменьшить закрутку выходящего потока. 3 ил.

Изобретение относится к выхлопным устройствам и может использоваться в составе газоперекачивающего агрегата с газотурбинной установкой. Выхлопное устройство содержит диффузор, переходник с разделяющими поток ребрами и шумоглушитель кассетного типа, размещенный под углом 30-60° к оси переходника. Каждая из кассет шумоглушителя состоит из силового каркаса, обшитого листами, полость между которыми заполнена звукопоглощающим материалом. Со стороны наклоненной к диффузору кассеты обшиты перфорированным листом, а с противоположной стороны - цельным. Изобретение позволяет повысить эффективность снижения шума в выходном устройстве за счет обеспечения равномерного движения потока. 2 ил.

Изобретение относится к машиностроению и может быть использовано в выхлопном тракте газоперекачивающего агрегата или газотурбинной электростанции. Диффузор выхлопного тракта газотурбинной установки содержит обечайку с фланцами, кожух, охватывающий обечайку и звукоизоляцию, размещенную между обечайкой и кожухом. Обечайка выполнена из подвижных, телескопически соединенных частей с ограничителями перемещений. Кожух образован эластичным материалом, например тканью «Атом», закрепленным на обечайке. Изобретение позволит повысить надежность работы конструкции диффузора, а также снизить его металлоемкость. 3 ил.

Выпускной патрубок для использования с турбиной, включающей множество ступеней, выполнен с возможностью направления пара из турбины в конденсатор и содержит опорный конус, окружающий ротор турбины, направляющую и колпак направляющей. Направляющая расположена радиально снаружи опорного конуса, при этом направляющая и опорный конус выполнены с возможностью направления текучей среды из турбины. Колпак направляющей проходит от края и задней поверхности направляющей к турбине и содействует предотвращению образования вихрей текучей среды в выпускном патрубке. Другое изобретение группы относится к паровой турбине, включающей указанный выше выпускной патрубок. Группа изобретений позволяет увеличить производительность турбины. 2 н. и 6 з.п. ф-лы, 5 ил.

Изобретение относится к энергетике. Часть низкого давления паровой турбины, включающая регулирующий орган на входе, группу ступеней с промежуточными камерами и выхлопной патрубок, соединенный с конденсатором, разделенным трубной системой на входной и выходной объемы, при этом выходной объем конденсатора соединен с промежуточной камерой, например, перед последней ступенью, посредством перепускной трубы с клапаном. Заявляемое техническое решение основано на особенности работы последней ступени низкого давления при малых расходах пара, когда ее рабочее колесо не вырабатывает мощности, а получает ее от ротора, затрачивая на перекачку пара в сторону выхлопа. При таком «компрессорном» режиме работы давление перед последней ступенью оказывается ниже, чем в конденсаторе. Это позволяет направить в камеру перед последней ступенью пар, охлажденный трубной системой конденсатора при протекании из его входного объема в выходной объем. Заявленное изобретение позволяет повысить надежность и экономичность паровой турбины при малых расходах пара через группу ступеней части низкого давления за счет снижения вентиляционного нагрева проточной части и устранения его последствий без использования охлаждающих впрысков влаги, усиливающих эрозию, и без увеличения расхода рабочего пара, сокращающего отпуск тепла и электроэнергии. 1 ил.

Изобретение относится к области авиационных газотурбинных двигателей, в частности к узлу, расположенному между турбиной высокого давления и турбиной низкого давления внутреннего контура двухконтурного авиационного двигателя

Полезная модель позволяет повысить эффективность работы турбореактивного двухконтурного двигателя (ТРДД), путем гарантированного охлаждения последней ступени турбины на максимальных режимах (например, на взлетном режиме) и повышения экономичности на крейсерских режимах работы. Система охлаждения последней ступени осевой турбины низкого давления ТРДД содержит заборник воздуха из наружного контура двигателя и дополнительно заборник воздуха за одной из промежуточных ступеней компрессора. Система охлаждения снабжена устройством регулирования подачи воздуха в полость, примыкающую к задней поверхности диска турбины последней ступени. Устройство регулирования содержит поворотное кольцо с приводом. Поворотное кольцо контактирует с торцевой стенкой опоры турбины. В торцевой стенке опоры выполнены два отверстия. Одно отверстие соединяется с кольцевой полостью опоры турбины последней ступени, а другое - с полостью воздухосборника, расположенного в кольцевой полости опоры турбины. Поворотное кольцо устройства регулирования снабжено сквозным эллипсовидным отверстием, расположенным с возможностью поочередного сообщения с одним из двух сквозных отверстий торцевой стенки опоры турбины.

Полезная модель относится к системам охлаждения элементов двигателей летательных аппаратов, а более точно касается системы охлаждения турбины низкого давления (ТНД) турбореактивного двухконтурного двигателя (ТРДД).

Для охлаждения горячих элементов конструкции турбореактивных двигателей используют охлаждающий воздух.

Известна система охлаждения турбины турбореактивного двухконтурного двигателя, в которой для охлаждения лопаток турбины используется воздух, забираемый из промежуточной или последней ступени компрессора высокого давления (КВД) (см., например, «Конструкция турбокомпрессора ТРДДФ», Изд-во МАИ, 1996 г, стр.27-28). Отобранный из КВД охлаждающий воздух обладает достаточно высоким давлением (по сравнению с местом его выпуска в проточный тракт турбины), что обеспечивает его гарантированный подвод ко всем поверхностям охлаждения. В связи с этим эффективность работы такой системы охлаждения весьма высока.

Недостаток применения такой системы охлаждения состоит в снижении удельной тяги на максимальных режимах и экономичности на крейсерских режимах работы. Это снижение происходит вследствие того, что часть мощности турбины высокого давления, идущая на сжатие охлаждающего ТНД воздуха, теряется и не используется ни на вращение компрессора высокого давления (КВД), ни на создание тяги двигателя. Например, при расходе охлаждающего лопатки ТНД воздуха, составляющем ~5% от расхода воздуха на входе в КВД, и отборе воздуха из последней его ступени потери мощности могут составить ~5%, что эквивалентно снижению кпд турбины на эту же величину.

Наиболее близким к заявляемому техническому решению является система охлаждения турбины турбореактивного двухконтурного двигателя, в которой для охлаждения лопаток турбины низкого давления используется воздух, забираемый из канала наружного контура (см., например, «Турбореактивный двухконтурный двигатель с форсажной камерой АЛ-31Ф» Учебное пособие, изд-во ВВИА им Н.Е.Жуковского, 1987 год, стр.128-130). Охлаждение турбины осуществляется на всех режимах работы двигателя. При таком варианте отбора охлаждающего воздуха не расходуется дополнительная мощность турбины на его сжатие в КВД, поэтому большее количество потенциальной энергии газового потока за турбиной может быть преобразовано в реактивном сопле в кинетическую энергию выхлопной струи, что, в свою очередь, приведет к увеличению тяги двигателя и его экономичности.

Недостаток применения такой системы охлаждения состоит в снижении эффективности охлаждения вследствие недостаточного давления воздуха, отобранного из канала наружного контура охлаждающего воздуха на режимах работы двигателя, близких к максимальным (например, взлетный режим). На указанных режимах работы, оптимальное для эффективности работы двигателя (максимального значения удельной тяги двигателя) соотношение давлений в канале наружного контура и на выходе из турбины низкого давления близко к единице. Такого перепада давлений с учетом потерь в подводящих каналах и патрубках недостаточно для реализации эффективного охлаждения рабочей лопатки ТНД двигателя на этих режимах.

Известные технические решения имеют ограниченные возможности, так как приводят к снижению эффективности работы двигателя.

В основу полезной модели положена задача повышения эффективности работы ТРДД путем гарантированного охлаждения последней ступени турбины на максимальных режимах (например, взлетном) и повышения экономичности на крейсерских режимах работы.

Технический результат - повышение эффективности работы ТРДД.

Поставленная задача решается тем, что система охлаждения последней ступени осевой турбины низкого давления турбореактивного двухконтурного двигателя содержит заборник воздуха из наружного контура двигателя. Заборник воздуха сообщается через полости стоек и кольцевую полость опоры турбины последней ступени, снабженную передней торцевой стенкой, с полостью, примыкающей к задней поверхности диска турбины, и через напорный диск с внутренними полостями лопаток. Торцевая стенка опоры турбины имеет сквозные отверстия, а внешняя поверхность корпуса турбины последней ступени выполнена в виде части внутренней поверхности канала наружного контура двигателя.

Новым в полезной модели является то, что система охлаждения дополнительно снабжена на входе заборником воздуха за одной из промежуточных ступеней компрессора, соединенного трубопроводом с полым воздухосборником на выходе. Система охлаждения снабжена устройством регулирования подачи воздуха в полость, примыкающую к задней поверхности турбины последней ступени. Устройство регулирования содержит поворотное кольцо с приводом. Поворотное кольцо контактирует с торцевой стенкой опоры турбины. В торцевой стенке опоры выполнены два отверстия. Одно отверстие соединяется с кольцевой полостью опоры турбины последней ступени, а другое - с полостью воздухосборника, расположенного в кольцевой полости опоры турбины. Поворотное кольцо устройства регулирования снабжено сквозным эллипсовидным отверстием, расположенным с возможностью поочередного сообщения с одним из двух сквозных отверстий торцевой стенки опоры турбины.

Выполнение системы охлаждения последней ступени осевой турбины низкого давления турбореактивного двухконтурного двигателя в соответствии с заявленной полезной моделью обеспечивает:

Дополнительное снабжение системы охлаждения на входе заборником воздуха за одной из промежуточных ступеней компрессора, соединенного трубопроводом с полым воздухосборником на выходе, сообщающимся с полостью, задней поверхности диска последней ступени турбины, обеспечивает гарантированное охлаждение на максимальных режимах, в том числе на взлетном режиме;

Снабжение системы охлаждения устройством регулирования подачи воздуха в полость, примыкающую к задней поверхности диска последней ступени турбины из промежуточной ступени компрессора или из наружного контура, обеспечивает эффективность охлаждения рабочей лопатки ТНД на всех режимах работы двигателя. Устройство регулирования позволяет совместить положительные качества обеих систем охлаждения, то есть путем последовательного подключения различных каналов подвода охлаждающего воздуха наиболее рационально обеспечить работоспособность и эффективность работы системы охлаждения турбины во всем диапазоне эксплуатационных режимов двигателя и тем самым улучшить тягово-экономические и ресурсные характеристики двигателя. Так, на взлетном режиме устройство регулирования соединено таким образом, что обеспечивается поступление охлаждающего воздуха из промежуточной ступени компрессора с давлением, достаточным для эффективного охлаждения последней ступени турбины. Это позволяет либо при фиксированном расходе охлаждающего воздуха повысить ресурс турбины и всего двигателя в целом, либо уменьшить расход охлаждающего воздуха и тем самым повысить тяговые характеристики двигателя. Воздух в канале наружного контура не обладает необходимым для эффективного охлаждения избыточным давлением. На крейсерском режиме устройство регулирования обеспечивает поступление охлаждающего воздуха из канала наружного контура, при этом канал поступления воздуха из компрессора перекрывается (переключение положения кольца осуществляется по сигналу в зависимости от частоты вращения вала турбины низкого давления двигателя n нд и температуры торможения воздуха на входе в двигатель T* Н). Вследствие того, что охлаждающий воздух не проходит сжатие в компрессоре, уменьшается необходимая мощность КВД и повышается свободная энергия рабочего тела за турбиной; это приводит к росту тяги двигателя и его экономичности. Кроме того воздух из канала наружного контура обладает большим хладоресурсом, что позволит либо при фиксированном расходе охлаждающего воздуха повысить ресурс турбины и всего двигателя в целом, либо уменьшить расход охлаждающего воздуха и тем самым дополнительно повысить экономичность двигателя.

Таким образом, решена поставленная в полезной модели задача - повышение эффективности работы ТРДД, путем гарантированного охлаждения последней ступени турбины на максимальных режимах (например, взлетном) и повышения экономичности на крейсерских режимах работы по сравнению с известными аналогами.

Настоящая полезная модель поясняется последующим подробным описанием системы охлаждения и ее работы со ссылкой на чертежи, представленные на фиг.1-3, где

на фиг.1 схематично изображен продольный разрез последней ступени осевой турбины низкого давления турбореактивного двухконтурного двигателя и системы ее охлаждения;

на фиг.2 - вид А на фиг.1;

на фиг.3 - сечение Б-Б на фиг.2.

Система охлаждения последней ступени осевой турбины низкого давления турбореактивного двухконтурного двигателя содержит (см. фиг.1) заборник 1 воздуха из наружного контура 2 двигателя. Заборник 1 воздуха сообщается с полостью 3, примыкающей к задней поверхности диска 4 турбины через полости 5 стоек 6 и кольцевую полость 7 опоры турбины последней ступени, снабженную передней торцевой стенкой 8 со сквозными отверстиями 9 (см. фиг.2, 3) турбины, и по каналам 10 в диске 4 с внутренними полостями лопаток 11.

Система охлаждения последней ступени осевой турбины низкого давления турбореактивного двухконтурного двигателя дополнительно содержит на входе заборник воздуха за одной из промежуточных ступеней компрессора (на фиг.1 заборник воздуха и промежуточные ступени компрессора не показаны). Данный заборник воздуха соединен трубопроводом 12 с полым воздухосборником 13 на выходе, примыкающим к торцевой стенке 8 опоры турбины со сквозными отверстиями 14 (см. фиг.2, 3).

Причем система охлаждения снабжена устройством регулирования подачи воздуха в полость 3, примыкающую к задней поверхности диска 4 турбины последней ступени. Устройство регулирования, выполнено в виде поворотного кольца 15 (см. фиг.1-3) с приводом (привод не показан), контактирующим с торцевой стенкой 8 опоры турбины, где отверстие 9 обеспечивает сообщение полости 3 с кольцевой полостью 7, а отверстие 14 обеспечивает сообщение полости 3 с полостью 16 воздухосборника 13, расположенного в кольцевой полости 7 опоры турбины. Привод поворотного кольца 15 может быть выполнен, например, в виде пневмомотора или привода подобного типа. Поворотное кольцо 15 устройства регулирования имеет сквозное эллипсовидное отверстие 17, обеспечивающее возможность поочередного сообщения со сквозными отверстиями 9, 14 в торцевой стенке 8 опоры турбины.

Предлагаемая система охлаждения содержит заборник воздуха a (на фиг.1 заборник воздуха не показан) за одной из промежуточных ступеней компрессора, заборник 1 воздуха b из канала наружного контура 2. Работа системы подачи охлаждающего воздуха описана ниже.

Система охлаждения последней ступени осевой турбины низкого давления турбореактивного двухконтурного двигателя работает следующим образом. Кольцо 15 может находиться в двух положениях. При повороте кольца 15 в положение I (см. фиг.2) (взлетный режим работы двигателя) воздух а поступает по трубе 12, под действием перепада давлений, через воздухосборник 13, отверстие 14 в стенке 8 и отверстие 17 в кольце 15 в полость 3, примыкающую к задней поверхности диска 4. При этом проход в полость 3 воздуха b перекрыт кольцом 15. При повороте кольца 15 в положение II (не показано) (крейсерский режим), отверстие 17 поворачивается таким образом, что отверстие 14, перекрывается кольцом 15, и в полость 3 через отверстие 9 и отверстие 17 в кольце 15 поступает воздух b. В этом случае воздух a, отбираемый за промежуточной ступенью компрессора, в полость 3 не поступает.

Переключение кольца 15 в положение I или II осуществляется по сигналу в зависимости от частоты вращения n вала турбины низкого давления двигателя и температуры торможения воздуха на входе в двигатель T* Н. При высоких значениях параметра (взлетный режим работы двигателя) кольцо 15 находится в положении I, при низких значениях параметра (крейсерский режим) - в положении II.

Выполнение системы охлаждения в соответствии с заявленным техническим решением позволяет обеспечить необходимое охлаждение последней ступени турбины низкого давления на всех режимах работы двигателя, одновременно повышая эффективность и экономичность его работы.

Система охлаждения последней ступени осевой турбины низкого давления турбореактивного двухконтурного двигателя, содержащая заборник воздуха из наружного контура двигателя, сообщающийся через полости стоек и кольцевую полость опоры турбины последней ступени, снабженную передней торцевой стенкой, с полостью, примыкающей к задней поверхности диска турбины, и через напорный диск с внутренними полостями лопаток, где торцевая стенка опоры турбины имеет сквозные отверстия, отличающаяся тем, что система охлаждения дополнительно снабжена на входе заборником воздуха за одной из промежуточных ступеней компрессора, соединенного трубопроводом с полым воздухосборником на выходе, и устройством регулирования подачи воздуха в полость, примыкающую к задней поверхности турбины последней ступени, где устройство регулирования выполнено в виде поворотного кольца с приводом, контактирующим с торцевой стенкой опоры турбины, в торцевой стенке опоры выполнены два отверстия, где одно отверстие соединено с кольцевой полостью опоры турбины последней ступени, а другое - с полостью воздухосборника, расположенного в кольцевой полости опоры турбины, поворотное кольцо устройства регулирования снабжено сквозным эллипсовидным отверстием, расположенным с возможностью поочередного сообщения с одним из двух сквозных отверстий торцевой стенки опоры турбины.

Турбина

Турбина предназначена для привода компрессора и вспомогательных агрегатов двигателя. Турбина двигателя - осевая, реактивная, двухступенчатая, охлаждаемая, двухроторная.

Узел турбины включает последовательно расположенные одноступенчатые осевые турбины высокого и низкого давления, а также опору турбины. Опора - элемент силовой схемы двигателя.

Турбина высокого давления

СА ТВД состоит из наружного кольца, внутреннего кольца, крышки, аппарата закрутки, блоков сопловых лопаток, лабиринтных уплотнений, уплотнений стыков сопловых лопаток, проставок с сотовыми вставками и крепёжных деталей.

Наружное кольцо имеет фланец для соединений с фланцем обода соплового аппарата ТНД и корпуса ВВТ. Кольцо телескопически соединено с корпусом ВВТ и имеет полость для подвода вторичного воздуха из ОКС на охлаждение наружных полок сопловых лопаток.

Внутреннее кольцо имеет фланец для соединения с крышкой и внутренним корпусом ОКС.

СА ТВД имеет сорок пять лопаток, объединенные в пятнадцать литых трёхлопаточных блоков. Блочная конструкция лопаток СА позволяет уменьшить число стыков и перетекания газа.

Сопловая лопатка - пустотелая, охлаждаемая двуполостная. Каждая лопатка имеет перо, наружную и внутреннюю полки, образующие с пером и полками соседних лопаток проточную часть СА ТВД.

Ротор ТВД предназначен для преобразования энергии газового потока в механическую работу на валу ротора. Ротор состоит из диска, цапфы с лабиринтными и маслоуплотнительными кольцами. Диск имеет девяносто три паза для крепления рабочих лопаток ТВД в “ёлочных” замках, отверстия для призонных болтов стягивающих диск, цапфу и вал ТВД, а также наклонные отверстия для подвода охлаждающего воздуха к рабочим лопаткам.

Рабочая лопатка ТВД - литая, полая, охлаждаемая. Во внутренней полости лопатки для организации процесса охлаждения имеются продольная перегородка, турбулизирующие штырьки и рёбра. Хвостовик лопатки имеет удлинённую ножку и замок “ёлочного” типа. В хвостовике имеются каналы для подвода охлаждающего воздуха к перу лопатки, а в выходной кромке - щель для выхода воздуха.

В хвостовике цапфы размещены масляное уплотнение и обойма радиального роликового подшипника задней опоры ротора высокого давления.

Турбина низкого давления

СА ТНД состоит из обода, блоков сопловых лопаток, внутреннего кольца, диафрагмы, сотовых вставок.

Обод имеет фланец для соединения с корпусом ВВТ и наружным кольцом ТВД, а также фланец для соединения с корпусом опоры турбины.

СА ТНД имеет пятьдесят одну лопатку спаянные в двенадцать четырёхлопаточные блоки и один трёхлопаточный блок. Сопловая лопатка - литая, полая, охлаждаемая. Перо, наружная и внутренняя полки образуют с пером и полками соседних лопаток проточную часть СА.

Во внутренней части полости пера лопатки размещён перфорированный дефлектор. На внутренней поверхности пера имеется поперечные рёбра и турбулизирующие штырьки.

Диафрагма предназначена для разделения полостей между рабочими колёсами ТВД и ТНД.

Ротор ТНД состоит из диска с рабочими лопатками, цапфы, вала и напорного диска.

Диск ТНД имеет пятьдесят девять паза для крепления рабочих лопаток и наклонные отверстия для подвода охлаждающего воздуха к ним.

Рабочая лопатка ТНД - литая, полая, охлаждаемая. На периферийной части лопатка имеет бандажную полку с гребешком лабиринтного уплотнения, обеспечивающим уплотнение радиального зазора между статором и ротором.

От осевых перемещений в диске лопатки зафиксированы разрезным кольцом со вставкой, которая, в свою очередь, зафиксирована штифтом на ободе диска.

Цапфа имеет в передней части внутренние шлицы, для передачи крутящего момента на вал ТНД. На наружной поверхности передней части цапфы установлена внутренняя обойма роликового подшипника задней опоры ТВД, лабиринт и набор уплотнительных колец, образующей вместе с крышкой, установленной в цапфе, переднее уплотнение масляной полости опоры ТВД.

На цилиндрическом поясе в задней части установлен набор уплотнительных колец, образующих вместе с крышкой уплотнение масляной полости опоры ТНД.

Вал ТНД состоит из трёх частей. Соединение частей вала между собой - вильчатое. Крутящий момент в местах соединения передаётся радиальными штифтами. В задней части вала имеется откачивающий маслонасос опоры турбины.

В передней части ТНД имеются шлицы, передающие крутящий момент на ротор компрессора низкого давления через рессору.

Напорный диск предназначен для создания дополнительного подпора и обеспечивает увеличение давление охлаждающего воздуха на входе в рабочие лопатки ТНД.

Опора турбины включает в себя корпус опоры и корпус подшипника. Корпус опоры состоит из наружного корпуса и внутреннего кольца, соединённых силовыми стойками и образующие силовую схему опоры турбины. В состав опоры входят также экран с обтекателями, пеногасящая сетка и крепёжные детали. Внутри стоек размещены трубопроводы подвода и откачки масла, суфлирования масляных полостей и слива масла. Через полости стоек подводится воздух на охлаждение ТНД и отводится воздух из предмасляной полости опоры. Стойки закрыты обтекателями. На корпусе подшипника установленымаслооткачивающий насос и масляный коллектор. Между наружной обоймой роликоподшипника ротора ТНД и корпусом подшипника размещён упруго-масляный демпфер.

На опоре турбины закреплён конус-обтекатель, профиль которого обеспечивает вход газа в форсажную камеру сгорания с минимальными потерями.

В 2006 году руководством Пермского моторостроительного комплекса и ОАО «Территориальная генерирующая компания № 9» (Пермский филиал) подписан договор на изготовление и поставку газотурбинной электростанции ГТЭС-16ПА на базе ГТЭ-16ПА с двигателем ПС-90ЭУ-16А.

Об основных отличиях нового двигателя от существующего ПС-90АГП-2 мы попросили рассказать заместителя генерального конструктора-главного конструктора энергетических газотурбинных установок и электростанций ОАО «Авиадвигатель» Даниила СУЛИМОВА.

Основным отличием установки ГТЭ-16ПА от существующей ГТУ-16ПЭР является применение силовой турбины с частотой вращения 3000 об./мин (вместо 5300 об./мин). Уменьшение частоты вращения дает возможность отказаться от дорогостоящего редуктора и повысить надежность газотурбинной установки в целом.

Технические характеристики двигателей ГТУ-16ПЭР и ГТЭ-16ПА (в условиях ISO)

Оптимизация основных параметров силовой турбины

Базовые параметры свободной турбины (СТ): диаметр, проточная часть, количество ступеней, аэродинамическая эффективность - оптимизированы с целью минимизации прямых эксплуатационных расходов.

Эксплуатационные расходы включают затраты на приобретение СТ и расходы за определенный (приемлемый для заказчика в качестве срока окупаемости) период эксплуатации. Выбор вполне обозримого для заказчика (не более 3 лет) срока окупаемости позволил реализовать экономически обоснованную конструкцию.

Выбор оптимального варианта свободной турбины для конкретного применения в составе ГТЭ-16ПА производился в системе двигателя в целом на основе сравнения прямых эксплуатационных расходов для каждого варианта.

С использованием одномерного моделирования СТ по среднему диаметру определялся достижимый уровень аэродинамической эффективности СТ для дискретно заданного количества ступеней. Выбиралась оптимальная для данного варианта проточная часть. Количество лопаток, учитывая их значительное влияние на себестоимость, выбиралось из условия обеспечения коэффициента аэродинамической нагрузки Цвайфеля равным единице.

На основе выбранной проточной части оценивалась масса СТ и производственная себестоимость. Затем проводилось сравнение вариантов турбины в системе двигателя по прямым эксплуатационным расходам.

При выборе количества ступеней для СТ учитывается изменение кпд, затрат на приобретение и эксплуатацию (стоимость топлива).

Стоимость приобретения равномерно возрастает с ростом себестоимости при увеличении количества ступеней. Подобным же образом растет и реализуемый кпд - как следствие снижения аэродинамической нагрузки на ступень. Затраты на эксплуатацию (топливная составляющая) падают с ростом кпд. Однако суммарные затраты имеют четкий минимум при четырех ступенях в силовой турбине.

При расчетах учитывался как опыт собственных разработок, так и опыт других фирм (реализованный в конкретных конструкциях), который позволил обеспечить объективность оценок.

В окончательной конструкции за счет увеличения нагрузки на ступень и снижение кпд СТ от максимально достижимой величины примерно на 1% удалось снизить суммарные затраты заказчика почти на 20%. Это было достигнуто за счет снижения себестоимости и цены турбины на 26% относительно варианта с максимальным кпд.

Аэродинамическое проектирование СТ

Высокая аэродинамическая эффективность новой СТ при достаточно высокой нагрузке достигнута за счет использования опыта ОАО «Авиадвигатель» в разработке турбин низкого давления и силовых турбин, а также применения многоступенчатых пространственных аэродинамических моделей, использующих уравнения Эйлера (без учета вязкости) и Навье-Стокса (учитывающих вязкость).

Сравнение параметров силовых турбин ГТЭ-16ПА и ТНД Rolls-Royce

Сравнение параметров СТ ГТЭ-16ПА и наиболее современных ТНД Rolls-Royce семейства Trent (диаграмма Смита) показывает, что по уровню угла поворота потока в лопатках (примерно 1050) новая СТ находится на уровне турбин Rolls-Royce. Отсутствие жесткого ограничения по массе, свойственного авиационным конструкциям, позволило несколько снизить коэффициент нагрузки dH/U2 за счет увеличения диаметра и окружной скорости. Величина выходной скорости (свойственная наземным конструкциям) позволила уменьшить относительную осевую скорость. В целом, потенциал спроектированной СТ для реализации кпд находится на уровне, характерном для ступеней семейства Trent.

Особенностью аэродинамики спроектированной СТ является также обеспечение оптимального значения кпд турбины на режимах частичной мощности, характерных для эксплуатации в базовом режиме.

При сохранении частоты вращения изменение (снижение) нагрузки на СТ приводит к возрастанию углов атаки (отклонению направления течения газа на входе в лопатки от расчетной величины) на входе в лопаточные венцы. Появляются отрицательные углы атаки, наиболее значительные в последних ступенях турбины.

Проектирование лопаточных венцов СТ с высокой устойчивостью к изменению углов атаки обеспечено специальным профилированием венцов с дополнительной проверкой стабильности аэродинамических потерь (по 2D/3D аэродинамическим моделям Навье-Стокса) при больших углах потока на входе.

Аналитические характеристики новой СТ показали в результате значительную устойчивость к отрицательным углам атаки, а также и возможность применения СТ и для привода генераторов, вырабатывающих ток с частотой 60 Гц (с частотой вращения 3600 об./мин), то есть возможность увеличения частоты вращения на 20% без заметных потерь кпд. Однако в этом случае практически неизбежны потери кпд на режимах пониженной мощности (приводящих к дополни-тельному увеличению отрицательных углов атаки).
Особенности конструкции СТ
Для снижения материалоемкости и веса СТ использовались проверенные авиационные подходы к конструированию турбины. В результате масса ротора, несмотря на увеличение диаметра и количества ступеней, оказа-лась равной массе ротора силовой турбины ГТУ-16ПЭР. Это обеспечило значительную унификацию трансмиссий, унифицированы также масляная система, система наддува опор и охлаждения СТ.
Увеличено количество и улучшено качество воздуха, применяемого для наддува опор трансмиссионных подшипников, включая его очистку и охлаждение. Улучшено также качество смазки трансмиссионных подшипников путем применения фильтроэлементов с тонкостью фильтрации до 6 мкм.
С целью повышения эксплуатационной привлекательности новой ГТЭ внедрена специально разработанная система управления, которая позволяет заказчику воспользоваться турбодетандерным (воздушным и газовым) и гидравлическим типами запуска.
Массогабаритные характеристики двигателя позволяют использовать для его размещения серийные конструкции блочно-комплектной электростанции ГТЭС-16П.
Шумо- и теплоизолирующий кожух (при размещении в капитальных помещениях) обеспечивает акустические характеристики ГТЭС на уровне, предусмотренном санитарными нормами.
В настоящее время первый двигатель проходит серию специальных испытаний. Газогенератор двигателя уже прошел первый этап эквивалентно-циклических испытаний и начал второй этап после ревизии технического состояния, который завершится весной 2007 года.

Силовая турбина в составе полноразмерного двигателя прошла первое специальное испытание, в ходе которого были сняты показатели по 7 дроссельным характеристикам и другие экспериментальные данные.
По результатам испытаний сделан вывод о работоспособности СТ и ее соответствии заявленным параметрам.
Кроме этого по результатам испытаний в конструкцию СТ внесены некоторые корректировки, в том числе изменена система охлаждения корпусов для снижения тепловыделения в помещение станции и обеспечения пожарной безопасности, а также для оптимизации радиальных зазоров повышения кпд, настройка осевой силы.
Очередное испытание силовой турбины планируется провести летом 2007 года.

Газотурбинная установка ГТЭ-16ПА
накануне специальных испытаний