Тяговый электродвигатель. Асинхронный тяговый электропривод на вагонах метрополитена. Учебное пособие. Характеристики и свойства тяговых двигателей

Существенно повысить силу тяги и скорость движения невозможно, не увеличив мощность тяговых двигателей электровозов. Но дальнейшее повышение их мощности осуществлять все трудней и трудней. Этому препятствуют прежде всего размеры тягового двигателя: длина его ограничена расстоянием между бандажами колесных пар, диаметр - расстоянием между осью колесной пары и валом двигателя - централью Ц (см. рис. 3) . До сих пор при наличии жестких габаритных ограничений размеров двигателей мощность их повышали, применяя более теплостойкие изоляционные материалы, усиливая охлаждение, увеличивая число пар полюсов, применяя компенсационную обмотку, выбирая оптимальное напряжение для тяговых двигателей электровозов переменного тока.

С повышением мощности двигателей все напряженнее работает коллекторно-щеточный узел. Его состоянием в значительной мере определяется продолжительность работы электровоза между осмотрами и ремонтами. Повышение мощности коллекторных тяговых двигателей не способствует увеличению их надежности и к. п. д. Поэтому вполне понятно стремление создать мощный бесколлекторный тяговый двигатель.

Электровозы с асинхронными тяговыми двигателями. На протяжении всей истории создания и совершенствования электровозов не раз пытались использовать на них самый простой и дешевый асинхронный двигатель. До недавнего времени этого не удавалось сделать, так как частоту его вращения можно экономично регулировать только изменением частоты питающего тока. Применяемые ранее с этой целью электромашинные преобразователи были тяжелыми и громоздкими. Появление тиристоров открыло путь для создания легкого и надежного преобразователя частоты.

Устройство асинхронного тягового двигателя, как отмечалось, несложно. Он имеет неподвижный статор и вращающийся ротор (рис. 126). Различают асинхронные двигатели с короткозамк-нутым ротором и с фазовым ротором. В качестве тяговых используют асинхронные двигатели с короткозамкнутым ротором. Сердечник такого ротора, как и статора, собирают из листов электротехнической стали. Обмотка ротора состоит из медных стержней, расположенных в пазах сердечника и замкнутых с торцов кольцами. Обмотка представляет собой так называемое «беличье колесо». В пазах статора уложены три обмотки, сдвинутые одна относительно другой на 120°. Эти обмотки обычно соединяют «звездой» (рис. 126, а) . При включении обмоток в трехфазную цепь по каждой из них проходит переменный ток и создается три переменных магнитных потока. Потоки, складываясь, образуют результирующий поток, вращающийся с частотой 3000 об/мин при одной паре полюсов на каждую фазу. Вращающийся магнитный поток статора двигателя, пересекая обмотку ротора, наводит в ней э. д. с. Под действием э. д. с. в обмотке ротора проходит ток, создающий собственный магнитный поток. Магнитные потоки статора и ротора взаимодействуют, в результате чего ротор начинает вращаться.

Частота вращения ротора несколько меньше частоты вращения магнитного потока статора, иначе силовые линии не пересекали бы обмотку ротора. Разность этих частот вращения называется скольжением. Увеличивая число пар полюсов, можно получить другие частоты вращения магнитного потока: 1500, 1000, 750 об/мин и т. д. Частота вращения ротора будет несколько меньше этих значений.

Обычно скольжение составляет 1 - 3% синхронной частоты. Следовательно, если изменять частоту питающего напряжения в широких пределах и тем самым синхронную частоту, вместе с ней будет изменяться и частота вращения ротора. Но, помимо частоты, необходимо регулировать и напряжение, подводимое к асинхронному двигателю, для того, чтобы получить тяговую характеристику, примерно такую, как при использовании двигателей постоянного тока с последовательным возбуждением.

Регулирование напряжения осуществляется, как и на отечественных электровозах переменного тока, переключением вторичной обмотки тягового трансформатора с помощью главного контроллера ГК (рис. 127) ступенями. Затем в выпрямительной установке В напряжение выпрямляется и подается на инвертор И. В выпрямителе осуществляется плавное регулирование напряжения, подводимого к инвертору И.

Открывая и закрывая тиристоры инвертора в определенной последовательности, получают трехфазное напряжение, которое подводится к обмотке статора асинхронного двигателя АД. Напомним, что к обычным асинхронным двигателям подводится переменное трехфазное напряжение, а следовательно, и ток, изменяющийся синусоидально. При этом каждая фаза питающего напряжения сдвинута относительно другой на 120° эл., как показано на рис. 128. Для наглядности изменение напряжения каждой фазы показано на отдельных осях. При формировании трехфазного напряжения на электровозе с асинхронными двигателями тиристоры инвертора создают напряжение ступенчатой формы в каждой фазе. Частота напряжения, подводимого к асинхронному двигателю, регулируется изменением частоты переключения этих тиристоров.

В инверторе предусмотрено специальное устройство, надежно восстанавливающее управляющие свойства тиристоров при срыве инвертирования. Реверсирование тяговых двигателей осуществляют, переключая цепи управления тиристоров инвертора, так как для изменения направления вращения асинхронного двигателя достаточно поменять местами любые две подводимые фазы питающего напряжения.

На основе разработок научно-исследовательских и учебных институтов на Новочеркасском электровозостроительном заводе построен электровоз переменного тока с асинхронными тяговыми двигателями ВЛ80а на базе электровоза ВЛ80К. Мощность каждого тягового двигателя составляет 1200 кВт, т. е. в 1,5 раза больше, чем коллекторного двигателя электровоза ВЛ80К. Один из вариантов (12-осный, мощность часового режима 11400 кВт) электровоза с асинхронными тяговыми двигателями получил обозначение ВЛ86. Он разработан в содружестве с финской фирмой «Стрёмберг».

Электровозы с вентильными синхронными двигателями. В качестве бесколлекторных тяговых двигателей на электровозе можно использовать и синхронные двигатели со статическими (вентильными) преобразователями - так называемые вентильные двигатели.

Поясним принцип работы вентильного двигателя. На его статоре расположена трехфазная обмотка, а на роторе - обмотка возбуждения постоянного тока (рис. 129). Начало и конец обмотки возбуждения соединены с двумя кольцами, электрически изолированными одно от другого. Фазные обмотки статора соединены в «звезду»; начала их подключены к преобразователю - инвертору И (или источнику постоянного тока). Инвертор И питается от выпрямителя В, подключенного к вторичной обмотке тягового трансформатора. Если, например, в какой-либо момент времени открыты тиристоры К5 и У85 инвертора, ток от выпрямителя В пройдет через тиристор У81, обмотки статора 1 и 2, тиристор Ув5, обмотку возбуждения ОВ и возвратится в выпрямитель. При указанном стрелками направлении тока в обмотках 1, 2 и обмотке возбуждения результирующий магнитный поток статора, взаимодействуя с потоком обмотки возбуждения, создаст вращающий момент, и ротор повернется по часовой стрелке. Переключая в определенном порядке выводы статорной обмотки, можно обеспечить непрерывное вращение ротора.

Таким образом, по принципу действия вентильный двигатель подобен машине постоянного тока, у которой коллектор заменен системой силовых управляемых вентилей инверторной установки. В отличие от двигателя постоянного тока вентильный двигатель имеет только три коммутируемых вывода при трехфазной обмотке вместо нескольких сотен коллекторных пластин. Кроме того, обмотка возбуждения в вентильном двигателе стала подвижной, а якорь - неподвижным. Вентильная коммутация тока в обмотках допускает значительное напряжение между выводами - до нескольких тысяч вольт. Напомним, что обычный механический коллектор удовлетворительно работает при напряжении между коллекторными пластинами не более 30-32 В (максимальное допустимое 37-42 В). Переключение выводов статорной обмотки в необходимой очередности и соответственно изменение положения ротора осуществляет система управления, имеющая специальный датчик положения ротора.

Вентильный двигатель является многофазной машиной, обмотка якоря которой питается от преобразователя, управляемого синхронно с вращением ротора, снабженного обмоткой возбуждения. Таким образом, вентильный двигатель состоит из электрической машины, вентильного преобразователя и связывающей их системы управления.

Новочеркасским электровозостроительным заводом первоначально был построен опытный образец восьмиосного грузового электровоза ВЛ80В с вентильными тяговыми двигателями. После испытания его была выпущена небольшая партия подобных электровозов для эксплуатационных испытаний. Электровозы оборудованы системой автоматического управления, действующей в режимах тяги и электрического торможения. На электровозе применено независимое возбуждение вентильных двигателей от выпрямителей-возбудителей, изменяющих ток возбуждения пропорционально току обмотки якоря двигателя. Ротор двигателя имеет шесть полюсов, ток к обмотке возбуждения подводится через два кольца и щетки.

Частота вращения двигателя регулируется изменением подводимого напряжения. Напряжение вторичной обмотки, а следовательно, и выпрямителя регулируется примерно так же, как и на электровозах переменного тока с коллекторными двигателями. Исключено только встречное включение регулируемой и нерегулируемой обмоток трансформатора и несколько повышено их напряжение. После того как к двигателям будет подведено номинальное напряжение, дальнейшее увеличение скорости осуществляется регулированием магнитного потока возбуждения.

На опытных электровозах ВЛ80 схема выпрямления и преобразования тока несколько отличается от изображенной на рис. 129. На рис. 129 показаны отдельно выпрямитель В и инвертор Я, т. е. приведена так называемая схема с явным звеном постоянного тока. На электровозе ВЛ808 выпрямитель и инвертор совмещены.

Тяговый электродвигатель

Тяговый электродвигатель (ТЭД) - электрический двигатель , предназначенный для приведения в движение транспортных средств (электровозов , электропоездов , тепловозов , трамваев , троллейбусов , электромобилей , электроходов , большегрузных автомобилей с электроприводом , танков и машин на гусеничном ходу с электропередачей, подъемно-транспортных машин, самоходных кранов и т. п.). Вращающиеся тяговые электродвигатели регулируются ГОСТ 2582-81 (кроме аккумуляторных погрузочно-разгрузочных машин, электротягачей, электротележек и теплоэлектрических автотранспортных систем).

Основное отличие ТЭД от обычных электродвигателей большой мощности заключается в условиях монтажа двигателей и ограниченном месте для их размещения. Это привело к специфичности их конструкций (ограниченные диаметры и длина, многогранные станины, специальные устройства для крепления и т. п.).

Тяговые двигатели городского и железнодорожного транспорта, а также двигатели мотор-колес автомобилей эксплуатируются в сложных погодных условиях, во влажном и пыльном воздухе . Также в отличие от электродвигателей общего назначения ТЭД работают в самых разнообразных режимах (кратковременных, повторно-кратковременных с частыми пусками), сопровождающихся широким изменением частоты вращения ротора и нагрузки по току (при трогании с места может в 2 раза превышать номинальный). При эксплуатации тяговых двигателей имеют место частые механические, тепловые и электрические перегрузки, тряска и толчки. Поэтому при разработке их конструкции предусматривают повышенную электрическую и механическую прочность деталей и узлов, теплостойкую и влагостойкую изоляцию токоведущих частей и обмоток, устойчивую коммутацию двигателей. Кроме того ТЭД рудничных электровозов должны удовлетворять требованиям, относящимся к взрывозащищенному электрооборудованию.

Тяговые двигатели должны иметь характеристики, обеспечивающие высокие тяговые и энергетические свойства (особенно КПД) подвижного состава.

Развитие полупроводниковой техники открыло возможности перехода от двигателей с электромеханической коммутацией к бесколлекторным машинам с коммутацией при помощи полупроводниковых преобразователей.

Из-за тяжелых условий работы и жестких габаритных ограничений тяговые двигатели относят к машинам предельного использования.

Классификация

Тяговые электродвигатели классифицируют по:

Эксплуатационные свойства

Эксплуатационные свойства тяговых двигателей могут быть универсальными , то есть присущими всем видам ЭПС , и частными , то есть присущими ЭПС определенных видов. Некоторые эксплуатационные свойства могут быть взаимопротиворечивыми.

Пример частных свойств: высокая перегрузочная способность двигателей, необходимая для получения высоких пусковых ускорений пригородных электропоездов и поездов метрополитена ; возможность продолжительной реализации наибольшей возможной силы тяги для грузовых электровозов; низкая регулируемость ТЭД пригородных поездов и поездов метрополитена в сравнении с ТЭД электровозов.

Устройство ТЭД

Тяговый электродвигатель, по сути, представляет собой электродвигатель с передачей вращающего момента на движитель транспортного средства (колесо, гусеницу или гребной винт).

Существенным моментом использования ТЭД является необходимость обеспечения плавного пуска-торможения двигателя для управления скоростью транспортного средства. Вначале регулирование силы тока осуществлялось за счёт подключения дополнительных резисторов и изменения схемы коммутации силовых цепей. С целью уйти от бесполезной нагрузки и повысить КПД стали применять импульсный ток, регулировка которого не требовала резисторов. В дальнейшем стали использоваться электронные схемы, обслуживаемые микропроцессорами . Для управления данными схемами (вне зависимости от их устройства) применяются контроллеры, управляемые человеком, определяющим требуемую скорость транспортного средства.

Значение сопротивления изоляции обмоток устанавливают в соответствующей нормативно-технической документации или в рабочих чертежах. Для городского электротранспорта после испытаний на влагостойкость сопротивление должно быть не менее 0,5 МОм .

Вибрация, создаваемая ТЭД, должна устанавливаться по ГОСТ 20815 в соответствующей нормативно-технической документации .

Характеристики

Тяговый электродвигатель НБ-418К: 1 - остов; 2 - добавочный полюс; 3 - сердечник якоря; 4 - коробка якоря; 5, 11 - лобовые части якоря; 6 - коллектор; 7, 9 - подшипниковые щиты; 8 - вал; 10 - подшипник; 12 - компенсационная обмотка

Как правило, определяются следующие характеристики ТЭД:

  • Электромеханические (типовые)
    • зависимости от тока якоря
      • частоты вращения
      • вращающего момента
  • Электротяговые
    • зависимости от тока якоря
      • окружной скорости движущих колёс ПС
      • силы тяги
      • КПД на ободе движущих колёс ПС
  • Тяговые
  • Тепловые (зависимость температур отдельных частей ТЭД от времени при различной силе тока);
  • Аэродинамические (характеризуют обдув двигателя).

Остов

В ТЭД постоянного и пульсирующего тока остов выполняет функции массивного стального магнитопровода (статора) и корпуса - основной несущей и защитной части машины.

Остовы четырехполюсных двигателей чаще имеют поперечное сечение магнитного ярма и выполняются гранеными. Это обеспечивает использование габаритного пространства до 91-94 %. Обработка такого остова сложна, а масса превышает массу цилиндрического остова. Технология изготовления цилиндрических остовов проще, а точность изготовления более высока. Однако использование габаритного пространства при цилиндрической форме остова не превышает 80-83 %. На остове крепят главные и добавочные полюса, подшипниковые щиты, моторно-осевые подшипники (при опорно-осевом подвешивании двигателя). Для двигателей большой мощности все чаще применяют остовы цилиндрической формы.

Длина двигателя по наружным поверхностям подшипниковых щитов при ширине колеи 1520 мм равна 1020-1085 мм в случае двусторонней передачи и 1135-1185 мм в случае односторонней.

Различают четырехполюсные двигатели с вертикально-горизонтальным и диагональным расположением главных полюсов. В первом случае обеспечивается наиболее полное использование пространства (до 91-94 %), но масса остова больше, во втором это пространство используется несколько хуже (до 83-87 %), но заметно меньше масса. Остовы цилиндрической формы при низком использовании габаритного пространства (до 79 %), но при равных условиях имеют минимальную массу. Цилиндрическая форма остова и диагональное расположение полюсов обеспечивают почти одинаковую высоту главных и добавочных полюсов.

У бесколлекторных ТЭД сердечник статора полностью шихтован - набран и спрессован из изолированных листов электротехнической стали. Его скрепляют специальными стяжками-шпонками, закладываемыми в наружные пазы в нагретом состоянии. Функции несущей конструкции выполняет литой или сварной корпус, в котором закреплен комплект статора.

Остовы ТЭД обычно изготавливают литыми из низкоуглеродистой стали 25Л. Только для двигателей подвижного состава электротранспорта с использованием реостатного торможения как рабочего применяют сталь с большим содержанием углерода , обладающего большей коэрцитивной силой. На двигателях НБ-507 (электровоз ВЛ84) применены сварные остовы. Материал остова должен обладать высокими магнитными свойствами, зависящими от качества стали и отжига , иметь хорошую внутреннюю структуру после литья: без раковин, трещин , окалины и других дефектов. Предъявляют также высокие требования к качеству формовки при отливке остова.

Коллектор

Подшипниковые щиты

Линейные тяговые двигатели

При скоростях движения более 300-384 км/ч сильно снижается коэффициент сцепления колес с рельсами, а следовательно реализовать необходимую силу тяги через контакт колесо-рельс становится затруднительным. Для решения этой проблемы для высокоскоростного наземного транспорта применяют линейные тяговые двигатели .

Частота вращения

Для расчета прочности элементов двигателя установлена испытательная частота вращения

  • для двигателей, включенных постоянно параллельно - n исп = 1,25·n max
  • для двигателей, включенных постоянно последовательно - n исп = 1,35·n max

Соотношение скоростей

где n max и n ном - частоты вращения максимальная и номинальная соответственно;

V max и v ном - соответственно конструкционная и эксплуатационная скорости подвижного состава.

Соотношение скоростей для электровозов составляет , для тепловозов -

Подвешивание тяговых электродвигателей и тяговая передача

Номинальные ток, напряжение, частоту вращения и др. характеристики при необходимости корректируют после определения .

Вентиляция ТЭД

Вентиляция

На электровозах применяется интенсивная независимая вентиляция . Для нагнетания воздуха используется специальный мотор-вентилятор, установленный в кузове локомотива. Предельные допускаемые превышения температур для данного типа вентиляции не должны превышать указанных в таблице .

Класс нагревостойкости изоляции Режим работы Части электрической машины Метод измерения температуры Предельное допускаемое превышение температуры, °C, не более
A Продолжительный и повторно-кратковременный Обмотки якоря и возбуждения Метод сопротивления 85
Коллектор Метод термометра 95
Часовой, кратковременный Обмотки якоря и возбуждения Метод сопротивления 100
Коллектор Метод термометра 95
E Продолжительный, повторно-кратковременный, часовой, кратковременный Обмотки якоря Метод сопротивления 105
Обмотки возбуждения 115
Коллектор Метод термометра 95
B Обмотки якоря Метод сопротивления 120
Обмотки возбуждения 130
Коллектор Метод термометра 95
F Обмотки якоря Метод сопротивления 140
Обмотки возбуждения 155
Коллектор Метод термометра 95
H Обмотки якоря Метод сопротивления 160
Обмотки возбуждения 180
Коллектор Метод термометра 105

На электропоездах из-за отсутствия места в кузове применяют систему самовентиляции ТЭД. Охлаждение в таком случае осуществляется вентилятором установленном на якоре тягового двигателя.

Соотношение между токами или мощностями номинальных режимов одного и того же двигателя зависит от интенсивности его охлаждения и называется коэффициентом вентиляции

При чём чем ближе к 1, тем интенсивнее вентиляция.

Предельная допускаемая температура подшипников электрических машин должна соответствовать ГОСТ 183 .

Очистка воздуха

Для вентиляционных систем электроподвижного состава обеспечение чистоты охлаждающего воздуха имеет важное значение. Воздух, поступающий в вентиляционную систему двигателей, содержит пыль, а также металлические частицы, образующиеся при истирании тормозных колодок. Зимой также может захватываться 20-25 г/m³ снега. Полностью избавиться от этих загрязнений невозможно. Сильное загрязнение проводящими частицами приводит к повышенному износу щеток и коллектора (из-за повышенного нажатия щеток). Ухудшается состояние изоляции и условия ее охлаждения.

Для электровозов наиболее приемлемы жалюзийные инерционные воздухоочистители с фронтальным подводом воздушного потока к плоскости решетки, с горизонтальным (малоэффективна, устанавливалась на ВЛ22м , ВЛ8 , ВЛ60к) или вертикальным расположением рабочих элементов. Наибольшей эффективностью по задержанию капельной влаги обладает вертикальная лабиринтная решетка с гидравлическим затвором . Общим недостатком жалюзийных воздухоочистителей является низкая эффективность очистки воздуха.

В последнее время получают распространение воздухоочистители, обеспечивающие аэродинамическую (ротационную) очистку охлаждающего воздуха (устанавливались на ВЛ80р, ВЛ85).

КПД

Коэффициент полезного действия для тяговых двигателей пульсирующего тока определяется отдельно на постоянном токе и на пульсирующем .

где - номинальная (на валу) мощность двигателя,
- подведенная мощность двигателя,
- суммарные потери в двигателе,
- напряжение на зажимах двигателя,
- номинальный ток.

где - пульсационные потери.

Для ТЭД постоянного тока достаточно только КПД на постоянном токе.

Типовые характеристики

В качестве типовых характеристик принимают :

  • усредненные характеристики, которые изготовитель должен представить после испытания первых 10 машин установочной серии,
  • типовые характеристики электрических машин, одна или несколько серий которых были ранее изготовлены.

Для получения типовой характеристики КПД и типовых характеристик тяговых двигателей городского транспорта должны быть испытаны первые 4 машины первой партии .

Конструктивная и эксплуатационная перегрузка

Предельные значения тока и мощности определяются коэффициентом конструктивной перегрузки

где I max и P max - максимальные ток и напряжение соответственно;

I nom и P nom - номинальные ток и напряжение соответственно.

Для условий эксплуатации принимают коэффициент эксплуатационной перегрузки

где I eb и P eb - соответственно наибольшие расчетные токи и мощность в условиях эксплуатации.

Разницу между значениями К per и К pe выбирают такой, чтобы при предельных ожидаемых возмущениях значения тока и мощности не превышали соответственно I max и P max .

Сферы применения

Электровоз ЭП1

ТЭД локомотива со снятыми шапками моторно-осевых подшипников

  • Локомотивы (электровозы , тепловозы с электропередачей);
  • Электропоезда и высокоскоростной наземный транспорт (ВСНТ);
  • Бронетехника и другие машины на гусеничном ходу ;
  • Электромобили и большегрузные автомобили с электроприводом (в том числе подъемно-транспортные машины и самоходные краны);
  • Теплоходы с электроприводом (дизель-электроходы), атомоходы , подводные лодки ;
  • Городской электротранспорт : трамваи , троллейбусы ;

В случае использования электрической передачи на теплоходах, тепловозах, тяжёлых грузовиках и гусеничных машинах дизель вращает генератор питающий ТЭД, приводящий в движение гребные винты или колёса напрямую, либо посредством механической передачи .

На тяжёлых грузовиках ТЭД может встраиваться в само колесо. Такая конструкция получила название мотор-колесо . Попытки применения мотор-колёс предпринимались также на автобусах, трамваях и даже легковых автомобилях.

Заводы

Заводы-изготовители

  • Россия
    • Сарапульский электрогенераторный завод - производство тяговых электродвигателей и электродвигателей гидронасоса для электропогрузчиков и электротележек российского и болгарского производства сайт завода
    • Завод «Электросила» в Санкт-Петербурге - ТЭД для локомотивов
    • Псковский электромашиностроительный завод - ТЭД для городского электротранспорта
    • Новочеркасский электровозостроительный завод - ТЭД для локомотивов
    • Завод «Сибэлектропривод» в Новосибирске - ТЭД для большегрузных самосвалов , электропоездов , тракторов , морских судов
    • Завод «Татэлектромаш» в г. Набережные Челны - ТЭД для большегрузных самосвалов «БелАЗ», электропоездов, городского транспорта
    • ОАО «Карпинский электромашиностроительный завод» в г. Карпинск - тяговые электродвигатели постоянного тока карьерных и шагающих экскаваторов , тяговый электродвигатель постоянного тока ДПТ 810 магистрального электровоза 2ЭС6, имеются разработки по ТЭД постоянного тока тепловозов
  • Украина
    • «Электротяжмаш » в Харькове - ТЭД для локомотивов
    • «Смелянский электромеханический завод » (г. Смела Черкасской обл) - ТЭД для локомотивов
  • Латвия
    • Рижский электромашиностроительный завод - ТЭД для электропоездов
  • Индия
    • Diesel-Loco Modernisation Works - ТЭД для локомотивов
  • Польша
    • EMIT S.A - ТЭД для электропоездов и городского электротранспорта

Ремонтные заводы

Технические характеристики некоторых ТЭД

Данные представлены для общего ознакомления и сравнения ТЭД. Подробные характеристики, размеры и особенности конструкции и эксплуатации можно найти в рекомендуемой литературе и других источниках.

ТЭД
Тип двигателя Мощность, кВт Напряжение номинальное (максимальное), В Частота вращения номинальная(максимальная), об/мин КПД, % Масса, кг Длина двигателя, мм Диаметр (ширина/высота) двигателя, мм Способ подвешивания Подвижной состав
Тяговые двигатели тепловозов
ЭД-104 307 - - - 2850 - - Опорно-осевое ТЭ10 , 2ТЭ10
ЭД-120А 411 512 (750) 657 (2320) 91,1 3000 - - Опорно-рамное -
ЭД-121 411 515 (750) 645 (2320) 91,1 2950 1268 825/825 Опорно-рамное ТЭМ12 , ТЭП80
ЭД-120 230 381 (700) 3050 87,5 1700 - - Опорно-рамное -
ЭД-108 305 476 (635) 610 (1870) - 3550 - - Опорно-рамное ТЭП60 , 2ТЭП60
ЭД-108А 305 475 (635) 610 (1870) 91,7 3350 1268 -/1525 Опорно-рамное -
ЭД-125 410 536 (750) 650 (2350) 91,1 3250 - - Опорно-осевое -
ЭД-118 305 463 (700) 585 (2500) 91,6 3100 1268 827/825 Опорно-осевое ТЭ114
ЭДТ-200Б 206 275 (410) 550 (2200) - 3300 - - Опорно-осевое ТЭ3 , ТЭ7
ЭД-107Т 86 195 (260) 236 (2240) - 3100 - - Опорно-осевое ТЭМ4
ЭД-121A 412 780 (2320) - 2950 - - - -
ЭД-135Т 137 530 (2700) - 1700 - - - Тепловозы узкой колеи
ЭД-150 437 780 (2320) - 2700 - - - ТЭП150
Тяговые двигатели электровозов (магистральные и карьерные) по
ТЛ2К1 670 1500 790 93,4 5000 - - Опорно-осевое ВЛ10 У, ВЛ11 постоянного тока
НБ-418К6 790 950 890 (2040) 94,5 4350 - 1045 Опорно-осевое ВЛ80 Р, ВЛ80Т, ВЛ80К, ВЛ80С переменного тока
НБ-514 835 980 905 (2040) 94,1 4282 - 1045 Опорно-осевое ВЛ85 переменного тока
ДТ9Н 465 1500 670 92,6 4600 - - Опорно-осевое Агрегаты тяговые ПЭ2М , ОПЭ1 Б постоянного и переменного тока
НБ-511 460 1500 670 93 4600 - - Опорно-осевое Агрегаты тяговые ПЭ2М, ОПЭ1Б постоянного и переменного тока
НБ-507 930 1000 670 (1570) 94,7 4700 - - Опорно-рамное ВЛ81 и ВЛ85 переменного тока
НБ-412П 575 1100 570 - 4950 - 1105 Опорно-осевое Агрегат тяговый ОПЭ1
НБ-520 800 1000 1030(1050) - - - - Опорно-рамное ЭП1 переменного тока
НТВ-1000 1000 1130 1850 94,8 2300 1130 710/780 Опорно-рамное ЭП200
НБ-420А 700 - 890/925 - 4500 - - Опорно-рамное ВЛ82
НБ-407Б 755 1500 745/750 - 4500 - - Опорно-осевое ВЛ82м
Тяговые двигатели городского транспорта
ДК117М/А 112/110 375/750 1480 (3600) - 760/740 912 607/603 - Метро-вагон "И" /81-714 , 81-717
УРТ-110А 200 - 1315 (2080) - 2150 - - - Метро-вагон "Яуза" (также используется на электропоездах ЭР2)
ДК210А3/Б3 110 550 1500 (3900) - 680 997 528 - Троллейбусы ЗиУ-682 В/ЗиУ-У682В
ДК211А/Б 150 550 1750/1860 (3900) - 900 1000 590 - Троллейбусы ЗиУ-684/ЗиУ-682В1
ДК211АМ/А1М 170/185 550/600 1520/1650 (3900) 91,1 900 1000 590 - Троллейбусы ЗиУ-684
ДК211БМ/Б1М 170/185 550/600 1700/1740 (3900) 91 880 1000 590 - Троллейбусы

ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ
«Регионального Центра Инновационных Технологий»

Учебное пособие
Главы 1 - 7

Министерство транспорта Российской Федерации
Федеральное агентство железнодорожного транспорта
Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
«Дальневосточный государственный университет путей сообщения»

Кафедра «Электроподвижной состав»
Ю.А. Давыдов, А.К. Пляскин

Тяговые электрические машины.
Учебное пособие

1.
2.
3.
3.1. Способы подвешивания тяговых двигателей
3.2. Кинематические схемы тяговых передач
3.3. Элементы конструкции тягового двигателя постоянного тока
3.4. Особенности конструкции тяговых двигателей переменного тока
3.5. Особенности конструкции и перспективы применения линейных двигателей
4.
5.
6.
6.1. Номинальные и предельные данные тяговых двигателей
6.2. Магнитные и нагрузочные характеристики тягового электродвигателя
6.3. Рабочие характеристики двигателей
6.3.1. Электромеханические характеристики
6.3.2. Электротяговые характеристики
6.4. Коэффициент полезного действия и потери в двигателе
7.
8. КОММУТАЦИЯ ТЯГОВЫХ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА
8.1. Критерии оценки качества коммутации
8.2. Коммутация при установившихся процессах
8.3. Электромагнитные причины искрения
9. ПОТЕНЦИАЛЬНЫЕ УСЛОВИЯ НА КОЛЛЕКТОРЕ
9.1. Распределение индукции и напряжения
9.2. Способы повышения потенциальной устойчивости
9.3. Дополнительные полюса и компенсация ими реактивной эдс
9.4. Компенсационная обмотка и ее влияние на потенциальные условия
9.5. Круговой огонь на коллекторе тяговых двигателей
10. ТЯГОВЫЕ ДВИГАТЕЛИ ПУЛЬСИРУЮЩЕГО ТОКА
10.1. Внешние способы сглаживания пульсации
10.2. Коммутация переменной составляющей тока
10.3. Переменная составляющая момента
10.4. Особенности коммутационного процесса двигателей пульсирующего тока
10.5. Определение переменной составляющей екп
10.6. Компенсация реактивной эдс дополнительными полюсами двигателей пульсирующего тока
10.7. Способы улучшения коммутации тяговых двигателей пульсирующего тока
11. НЕУСТАНОВИВШИЕСЯ ПРОЦЕССЫ В ЦЕПИ ТЯГОВЫХ ДВИГАТЕЛЕЙ
11.1. Виды переходных процессов
11.2. Влияние вихревых потоков в магнитопроводах на протекание переходных процессов
11.3. Влияние индуктивности обмоток тяговых машин на переходные процессы
11.4. Влияние параметров внешних цепей на переходные процессы
11.5. Мероприятия, направленные на облегчение протекания переходных процессов
12. НАГРЕВАНИЕ И ОХЛАЖДЕНИЕ ТЯГОВЫХ ЭЛЕКТРИЧЕСКИХ МАШИН
12.1. Допустимые превышения температур
12.2. Классическая теория нагревания однородного твердого тела
13. ВЕНТИЛЯЦИЯ ТЯГОВЫХ ДВИГАТЕЛЕЙ
13.1. Самовентилирующиеся машины
13.2. Независимая вентиляция
13.3. Расчет вентиляции тяговых электрических машин
14. ТЯГОВЫЕ ДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА
14.1. Асинхронные двигатели. Основные понятия.
14.2. Принцип регулирования асинхронного тягового двигателя
14.3. Формы фазных токов и напряжений АТД
14.4. Моменты от высших временных гармоник тока и потока одного порядка
14.5. Коэффициент мощности и кпд АТД
15. ВСПОМОГАТЕЛЬНЫЕ МАШИНЫ И МАШИННЫЕ ПРЕОБРАЗОВАТЕЛИ
15.1. Назначение и классификация вспомогательных машин
15.2. Особенности конструкции вспомогательных машин электроподвижного состава постоянного тока
15.3. Вспомогательные машины ЭПС переменного тока
15.4. Мотор-вентиляторы
15.5. Мотор-компрессоры
15.6. Мотор-насосы
15.7. Расщепители фаз
15.8. Мотор-генераторы и генераторы управления
15.9. Делители напряжения
16. ИСПЫТАНИЯ ТЯГОВЫХ ЭЛЕКТРИЧЕСКИХ МАШИН
17. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И РЕМОНТ ЭЛЕКТРИЧЕСКИХ МАШИН
17.1. Основные неисправности электрических машин
17.2. Тяговый электродвигатель НБ-520В
ЗАКЛЮЧЕНИЕ
БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Тяговые электрические машины.
Учебное пособие

1. ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ОТЕЧЕСТВЕННОГО
И МИРОВОГО ЭЛЕКТРОМАШИНОСТРОЕНИЯ

2. ОСНОВНЫЕ СВЕДЕНИЯ О ТЯГОВЫХ ЭЛЕКТРИЧЕСКИХ МАШИНАХ

Классификация тяговых электрических машин. Терминология. Определения. Назначение

Тяговыми электрическими машинами (ТЭМ) называют электрические машины, предназначенные для работы в качестве двигателей, генераторов, преобразователей на подвижном составе всех видов.

Тяговые электрические машины классифицируются:
1) по назначению:
- на тяговые электродвигатели;
- тяговые генераторы;
- вспомогательные машины;
2) по роду тока:
- на постоянного тока (пульсации тока не превышают 10 %);
- пульсирующего тока;
- коллекторные машины однофазного переменного тока промышленной и пониженной частоты;
- асинхронные машины переменного трехфазного (или многофазного) тока;
3) по способу защиты от внешних воздействий:
- на защищенные;
- брызгозащищенные;
- закрытые;
4) по способу охлаждения:
- с независимой вентиляцией;
- самовентиляцией;
- обдуваемые;
- естественным охлаждением;
5) по виду возбуждения:
- с независимым возбуждением;
- параллельным возбуждением;
- последовательным возбуждением;
- смешанным возбуждением.

Тяговым электродвигателем (ТЭД) называется электрическая машина, предназначенная для преобразования электрической энергии в механическую работу, затрачиваемую на движение поезда. В настоящее время на электроподвижном составе (ЭПС) применяют в основном тяговые двигатели постоянного и пульсирующего тока. Однако есть пробные шаги к созданию электровозов с асинхронными и вентильными двигателями.

Вспомогательными машинами называют электродвигатели, служащие для привода компрессоров, обеспечивающих питание сжатым воздухом
- тормозных систем и электропневматических приводов тяговых аппаратов, вентиляторов;
- расщепители фаз;
- делители напряжения;
- генераторы служебного тока;
- двигатель-генераторы.

Мотор-вентиляторы используются для охлаждения тяговых двигателей и выпрямительных установок.

Расщепители фаз предназначены для преобразования однофазного тока в трехфазный, которым питают асинхронные двигатели других вспомогательных машин.

Делители напряжения (двухколлекторные машины) делают для питания двигателей других вспомогательных машин с напряжением, вдвое меньшим напряжения контактной сети.

Генераторы служебного тока предназначены для получения электроэнергии напряжением 50…1100 В для питания цепей управления и сигнализации.

Двигатель-генераторные агрегаты возбуждения применяют на ЭПС для питания обмоток возбуждения в период электрического торможения.

3. КОНСТРУКЦИЯ ТЯГОВЫХ ДВИГАТЕЛЕЙ

3.1. Способы подвешивания тяговых двигателей

Тяговый двигатель является электрической машиной, встроенной в тележку ЭПС. Это обстоятельство накладывает определенный отпечаток на его габариты и конструкцию, в том числе на вид подвешивания тягового двигателя в тележке.

Различают два вида подвешивания:
- опорно-осевое;
- опорно-рамное.

В первом случае двигатель одной из своих сторон посредством моторно-осевых подшипников опирается на вал оси колёсной пары, а второй стороной посредством резинометаллических блоков к раме тележки.

При опорно-рамном подвешивании весь двигатель крепится к раме тележки через систему подвешивания, позволяющую погасить воздействия пути на него.

Схема крепления и передачи момента при опорно-рамном подвешивании зависит от системы передачи этого момента. Из рис. 3.1 видно, что двигатель при опорно-осевом подвешивании одной стороны опирается на ось колесной пары и естественно воспринимает все усилия, переданные от пути. При этом ускорения достигают 21g.

Если двигатель полностью подрессорен, как при опорно-рамном подвешивании, то ускорение всего лишь 3g.

При опорно-осевой подвеске конструкция передачи чрезвычайно проста, но зато такой тип подвески требует повышения механической прочности элементов тягового двигателя, снимается надежность токосъема.

Схематично крепление двигателя при опорно-осевом подвешивании показано на рис. 3.1.

При рамном подвешивании конструкция существенно усложняется. Необходимость расположения во внутренней полости якоря шарнирной муфты требует увеличения диаметра якоря. Затруднена смазка и ревизия. Поэтому опорно-рамное подвешивание применяют лишь для скоростей движения более 120 км/ч и на метрополитене, чтобы снизить шум.

Конструктивное исполнение двигателей с опорно-рамным подвешиванием рекомендуется посмотреть в книге М.Д. Находкина на с. 67–68 .

Рассмотрим кинематические схемы тяговых передач.

3.2. Кинематические схемы тяговых передач

Наиболее простой является передача при опорно-осевом подвешивании. Она, как правило, двухсторонняя или односторонняя. Схематично эти передачи изображены на рис. 3.2.

При двусторонней передаче редуктор делается из косозубых шестерней и колес для обеспечения равномерности передачи момента. Кроме того, необходимо обеспечить радиальное перемещение якоря на 8…10 мм.& Передача при опорно-рамном подвешивании на рис. 3.3.

Очень редко применяют еще один способ привода – это групповой, когда один тяговый двигатель приводит во вращение несколько колесных пар, но редуктор в этом случае громоздок, дорог и сложен (Франция).
Общее устройство такого привода можно видеть на примере группового (мономоторного) привода тепловоза СС72000, где также была использован муфта Альстом. Электродвигатель, установленный сверху на раме трехосной тележки и фактически находящийся в кузове локомотива, через раздаточный редуктор передает тяговый момент на тяговый редуктор, со- стоящий из ряда последовательно соединенных ведомых и промежуточных колес (рис. 3.4).

Рассмотрев кинематические схемы тяговых передач, хотелось бы остановиться на элементах конструкции якоря, в особенности на тех, которые имеют место практически на всех тяговых двигателях. За основу возьмем тяговый двигатель опорно-осевого исполнения, поскольку это наиболее распространенный двигатель на ЭПС Российской Федерации.

3.3. Элементы конструкции тягового двигателя постоянного тока

Элементы конструкции якоря . В данном разделе мы коротко остановимся на основных элементах конструкции, не вдаваясь значительно в подробности. Это объясняется тем, что при выполнении курсового проекта необходимая информация будет изучаться дополнительно, и рассматриваться каждый (или большинство элементов) тяговый двигатель.

Вал якоря тягового двигателя служит для соединения всех деталей якоря и как несущая конструкция этих деталей, а также для передачи вращающего момента от двигателя через шестерню к зубчатому колесу (рис. 3.5).

Остальные проточки предназначены для насадки других узлов тягового двигателя и при различных конструкциях могут изменяться. Обычно это посадочные поверхности под подшипниковые крышки (щиты), лабиринтные кольца и т. д. Жесткость вала должна быть такой, чтобы максимальные нагрузки, в том числе и электрические, не приводили к прогибу и якорь, насаженный на вал, не задевал за полюса. Шероховатость посадочных поверхностей должна быть не ниже 7 класса.

Для придания валу необходимой прочности все изменения его диаметра выполнены плавно без кольцевых выточек и шпоночных канавок.

Сердечник якоря тягового двигателя . Сердечник якоря тягового двигателя служит для передачи магнитного потока, крепления обмотки и является одной из важнейших деталей тягового двигателя (рис. 3.6).

Обычно сердечник набирают на втулку (рис. 3.7).


Рис. 3.7. Втулка якоря


Если диаметр якоря меньше 350 мм (Д Я Сердечник якоря выполнен из наборных пластин, которые напрессовываются на втулку якоря, а затем вместе с втулкой надевается на вал якоря, образуя с ним и коробкой якоря единую конструкцию. Внешний вид листа якорного пакета представлен на рис. 3.8.

Для предотвращения распушения, крайние листы выполняют из стали толщиной 1 мм и скрепляют сваркой. Пазы шлифуют и в них, с краёв, во избежание перетирания изоляции, вставляют изоляционные гильзы.

Коллекторный узел . Коллектор – это устройство электромеханической коммутации.

Коллектор очень нагруженное устройство и у современных машин находится на пределе использования возможностей материалов и технологии. Каждая коллекторная пластина, соединенная с соответствующей секцией обмотки якоря. Пластин обычно более 300.

В тяговых двигателях обычно применяют коллекторы арочного типа. Пластины коллектора медные, трапецеидальные, изолированные друг от друга миканитовыми прокладками.

Внешний вид коллекторной пластины и её крепление можно представить, как показано на рис. 3.9.

Вся конструкция образует коллектор, и его втулка насажена на втулку якоря. Для изоляции стяжного конуса и втулки от коллекторных пластин используются миканитовые манжеты и цилиндр. Коллектор требует особой тщательности при сборке. Биение рабочей поверхности коллектора должно быть не более 0,04 мм. Поэтому коллектор опрессовывается и одновременно стягивается болтами. При этом между пластинами образуется боковое давление – арочный распор из-за чего возникающие силы трения препятствуют смещению пластин относительно друг друга (рис. 3.10).

После сборки коллектору делают продорожку, чтобы исключить затягивание межламельных промежутков медью и снять заусеницы, предотвратив слом щеток и нарушение коммутации.

Обмотка якоря . Проводники, уложенные в позах якоря и соединенные с коллекторными пластинами, образуют обмотку якоря.

В тяговых двигателях обмотка выполняется в виде секций или катушек. Такая секция содержит несколько проводников из прямоугольной меди. По виду соединения между собой и укладке катушки делятся (рис. 3.11):
- на волновые;
- петлевые;
- «лягушечьи».

Для тяговых двигателей применяют обычно волновую и петлевую обмотки. Причем волновую обмотку применяют для двигателей мощностью примерно до 500 кВт (рис. 3.12).

Обмотки тяговых двигателей специальным образом изолируют. Различают три основных вида изоляции:
- витковая;
- корпусная;
- покровная.

Витковая изоляция во всех двигателях выполняется стекло-слюдинитовой лентой, в один слой (каждый проводник).

Корпусная изоляция является основной, эта изоляция пакета проводников. Её толщина определяется величиной напряжения и видом материалов. Между секциями вставляется (если они в одном пазу) изоляционная прокладка.

Покровная изоляция – это самый верхний слой изоляции в пазу – служит для защиты секций от механических повреждений. Крепление секции в пазу осуществляется клиньями. Обычно это секционированные текстолитовые или буковые клинья (в последнее время используются редко). Передние и задние лобовые вылеты обмоток бондажируются. Это может быть либо металлический, либо не металлический бандаж.

Элементы конструкции остова . Остов тяговых двигателей постоянного и пульсирующего тока является магнитопроводом и одновременно несущим корпусом для подшипниковых щитов и полюсной системы. Как правило, остов выполняется литым из стали 25Л. Его толщина выбирается исходя из необходимой магнитной индукции.

Длина остова это полуторакратная длина главного полюса. Там, где магнитный поток не проходит, толщина остова на 15…20 мм меньше. С наружной стороны имеются приливы для крепления моторноосевых подшипников, люков и т. д. К внутренней поверхности крепятся главные и добавочные полюса. У 4-полюсных машин делаются специальные приливы с внутренней стороны для крепления полюсов, так как остов не является круглым (рис. 3.13).

Со стороны коллектора имеется вентиляционный люк, а также люк для регламентных работ с коллекторно-щёточным аппаратом.

Главные и добавочные полюса . Сердечники главных полюсов выполнены из штампованных листов малоуглеродистой стали. Технология изготовления и набора приблизительно такая же, как и сердечного якоря, конечные листы сваривают на точечную сварку (рис. 3.14).

У машин с компенсационной обмоткой на главных полюсах выполнены пазы для её укладки.

Главные полюса крепятся к остову и удерживают обмотку возбуждения.

Вид главного полюса показан на рис. 3.15.

В тяговых двигателях катушки главных полюсов выполняют из шинной прямоугольной меди в основном наматываемую на ребро.

Межвитковую изоляцию выполняют в зависимости от необходимого класса изоляции F или Н. Есть некоторые отклонения при выполнении катушек главных полюсов двигателей последовательного и независимого возбуждения. У последних обмотка многовитковая, а ток в 3…5 раз меньше, чем ток якоря.

Соединительные кабели повышенной нагревостойкости.

Компенсационные катушки изготавливают отдельно и готовые секции вкладывают в пазы главных полюсов.

Катушки обмоток возбуждения производят тремя способами:
- в моноблочном исполнении;
- с монолитной изоляцией;
- с немонолитной изоляцией.

В первом случае катушку вместе с главным полюсом заливают компаундом и сушат в печах F.

Во втором случае катушку после компаунда сушат отдельно. В немонолитном исполнении катушку пропитывают термопластичным компаундом.

Для улучшения крепления катушки между ней и полюсом вставляют волнообразную прокладку, которая сжимает катушку. Крепление главных полюсов к остову осуществляется болтами с пружинными шайбами.

Добавочные полюса устанавливаются между главными полюсами и служат для улучшения условий коммутации.

В современных тяговых двигателях пульсирующего тока сердечники выполняют набором из листов электротехнической стали.

Для двигателей постоянного тока сердечники выполняют цельными из стального проката. Иногда между остовом и сердечником добавочного полюса делают диамагнитную прокладку.

Катушка добавочных полюсов наматывается на узкое ребро. Изоляция витков и катушки в целом аналогична катушке главных полюсов. Внешний вид добавочного полюса показан на рис. 3.16.

3.4. Особенности конструкции тяговых двигателей переменного тока

В тяговом электромашиностроении накоплен опыт использования асинхронных, вентильных и линейных двигателей. До настоящего времени нет твердого мнения о преимущественном использовании какого-либо из них на всех видах подвижного состава. Каждый из двигателей имеет свои достоинства и недостатки.

В настоящем разделе будут рассмотрены конструктивные особенности данных электрических машин.

Остов, подшипниковые щиты, вал могут быть выполнены практически одинаковыми. Статор вентильного двигателя выполняется большим в связи с необходимостью расположения датчиков для контроля положения ротора . Конструктивно статоры асинхронного и вентильного двигателя практически не отличаются. Ротор асинхронного двигателя выполняется либо с алюминиевыми, либо с медными стержнями. Ротор вентильного двигателя может быть выполнен только в неявнополюсном виде.

В качестве примера асинхронного тягового двигателя можно привести разрез двигателя НТА350, установленного на электропоездах ЭР9Т, ЭР9 (рис. 3.17).

Особенности конструкции асинхронного тягового двигателя (АТД) связаны с установкой его на ЭПС. Это предопределяет его конструкцию как по способу крепления, так и по мощности.


Рис. 3.17. Продольный разрез АТД НТА350:
1 – сердечник статора; 2 – сердечник ротора; 3, 24 литые боковины; 4 – обмотка статора; 5 – вентиляционный диск; 6 – ступица вентилятора; 7, 21 – подшипниковые щиты; 8, 17 – крышки подшипников; 9, 15 – подшипники; 10, 14 – цапфы; 11, 13 – лабиринтные уплотнения; 12 – барабан; 16 – упорная шайба; 18 – ступичная часть подшипникового щита; 19 – зубчатое колесо; 20 – считывающий элемент; 21 – верхняя часть подшипникового щита; 22 – короткозамкнутое кольцо; 23 – бандажное кольцо; 25 – стальная накладка; 26 – сердечник ротора

Зачастую остов АТД имеет круглую форму с элементами крепления тягового двигателя к раме тележки. Корпус выполняется из различных, в том числе и алюминиевых сплавов с ребрами жесткости.

Для статорной обмотки используют только открытые прямоугольные пазы. Причем есть некоторые особенности в креплении обмотки статора.

В АТД желательно использовать магнитные клинья, изготовленные прессованием из различных магнитных материалов. Это позволяет уменьшить коэффициент воздушного зазора и сократить пульсации магнитного потока.

Обмотка статора также имеет некоторые особенности по сравнению с обмотками машин постоянного тока. В статорной обмотке АТД из-за повышенной частоты питающего напряжения, которая, как правило, достигает значений 140 Гц, происходит вытеснения тока к поверхности обмотки и увеличение потерь.

Снижение потерь из-за эффекта вытеснения достигается путем выбора рационального сечения проводника и его расположения в пазу. В АТД проводники в основном располагаются «плашмя».

Обмотка ротора (рис. 3.18). На обмотку ротора накладываются серьезные ограничения и требования к ее конструкции. Во время пуска нагрев роторной обмотки (впрочем, как и статорной) может быть значительным. Кроме того, крепление обмотки должно быть надежным, так как при пуске в холодное время, допустим с температурой –60 С, за короткое время обмотка нагревается до 100…150 С. Это очень большой перепад температур. Для улучшения теплоотвода необходимо иметь плотное прилегание стержней роторной обмотки и стенкам. Стержень должен быть упруго закреплен в пазу.

Для асинхронных двигателей мощностью до 300 кВт обычно используют, в качестве метода изготовления роторной обмотки, заливку пазов алюминиевым сплавом.

Однако метод заливки обладает существенным недостатком: из-за качества литья образуются раковины, изменяющие сопротивление стержней, а значит и мощность машины. Когда машина используется индивидуально, это не имеет особого значения. А вот на ЭПС, где колесномоторные блоки подбирают по характеристикам, этот факт приобретает большое значение. В связи с этим стержни изготавливают заранее, опрессовывают и закладывают в пазы.

Обычно в АТД применяют следующие виды пазов и способы закладки стержней (рис. 3.19).

Обмотка ротора, изображенная на рис. 3.18, технологична и обладает эластичностью при входе в коротко замыкающее кольцо, но из-за отсутствия упругого элемента в пазу стержни могут ослабляться. На рис. 3.19, а, б, в изображены стержни, лишенные этих недостатков, но технология их изготовления сложнее.


Рис. 3.18. Обмотка ротора

В заключение несколько слов о воздушном зазоре и вентиляции. Как правило, зазор в АТД меньше чем в двигателях постоянного тока и составляет 2,5…3 мм. Охлаждение аналогично двигателям постоянного тока – это осевая вентиляция с каналами в роторе и статоре. Говоря о современных направлениях в тяговом электромашиностроении, нельзя не сказать о линейных тяговых двигателях.

3.5. Особенности конструкции и перспективы применения линейных двигателей

До настоящего времени на ЭПС применяют различные двигатели: постоянного тока и вентильные, асинхронные. Но все они обладают одним свойством: передают тяговое усилие на колесную пару. При этом сила тяги ограничена нагрузкой на ось и коэффициентом сцепления:

(3.1)

Для значительного повышения силы тяги необходимо увеличивать нагрузку на ось (что нельзя делать беспредельно по условиям прочности пути и оси), или коэффициент сцепления, что также в условиях гладких рельсов затруднительно. Кроме того, при наметившейся тенденции увеличения скоростей вопросы взаимодействия колеса и пути встают еще острее. Выход из создавшегося положения может быть найден в использовании линейных асинхронных двигателей (ЛАД).

Необходимо отметить, что впервые потребность в ЛАД возникла в ХIХ в. Однако они не получили распространения из-за массогабаритных показателей. В СССР освоение ЛАД началось примерно в 1920 г. с использованием их в ударных установках (электропривод). Это работы М.П. Костенко, Я.С. Япольского. Затем, уже в послевоенное время, ЛАД получили свое дальнейшее развитие в фундаментальных исследованиях Г.И. Штурмана, А.И. Вольдена и ряда других ученых.

Сила тяги, развиваемая линейным асинхронным двигателем, вызывается взаимодействием бегущего поля статора (первичного элемента, уложенного на ЭПС или в пути) с электрическими токами, индуктируемыми в реактивной шине во вторичном элементе, представляющем собой развернутый ротор, т. е. по существу это разрезанная асинхронная машина (рис. 3.20).

где V 1 – скорость бегущего поля индуктора.

Естественно, что один из элементов должен быть во всю длину участка работы этого двигателя. Поэтому такие машины выполняют либо с коротким первичным, либо с коротким вторичным элементом. И возбуждают только те секции, над (или под) которыми проходит ротор. Казалось бы, все просто, но трудность заключается в том, чтобы создать силу не только горизонтального перемещения, но и магнитного подвешивания, т. е. поперечную силу. Кроме того, увеличенные зазоры между первичным и вторичным элементом искажают магнитные поля, вызывая несимметрию магнитного потока.

Эту составляющую приходится убирать с помощью дополнительных катушек. То есть трудностей очень много, но все они постепенно преодолеваются. В настоящее время уже созданы опытные образцы подвижного состава с линейными тяговыми двигателями.

4. УСЛОВИЯ РАБОТЫ ТЯГОВЫХ ДВИГАТЕЛЕЙ

Значительное влияние на работу двигателя оказывают нагрузки.

Условия эксплуатации таковы, что ток тягового двигателя ежеминутно меняется, также меняется и частота вращения. При этом и тот и другой показатель могут, как длительное время сохранять постоянство значений, так и резко изменяться (рис. 1.1).

У электропоездов токовые нагрузки более стабильны (рис. 4.2) и из-за сравнительно больших режимов выбега в целом двигатели электропоездов перегреваются меньше.

Сложная работа двигателей и по напряжению. Изменение напряжения по ГОСТ 6962–75 может заключаться в следующих пределах:
- постоянный ток 2000…4000 В;
- переменный ток 19 000…29 000 В.

Сложны и климатические условия работы тяговых двигателей. По ГОСТ 2582–81 двигатели должны работать от +40 до –60 С. Такие резкие перепады температур могут привести к износу изоляции, её быстрому ста- рению и т. д.

В настоящее время в основном используются 3 класса изоляции (В; F; Н) с различным превышением температуры. Говоря о воздействиях на тяговый двигатель, нельзя не остановиться на динамических воздействиях.

В соответствие с ГОСТ 2582–81 электрические машины должны быть рассчитаны на работу в условиях вибрации и ударов, достигающих ускорения 150 м/с2. Результирующее ускорение для различных видов подвешивания составляет:
- опорно-осевое – 212 м/с2;
- опорно-рамное – 30 м/с2.

Все эти удары, естественно, сказываются и на креплении деталей двигателя, и на качестве токосъема.

Тяговые двигатели должны быть защищены от воздействия пыли и грязи. Исполнение тяговых двигателей занимает промежуточное положение между закрытым и защищенным исполнениями, они закрыты от соприкосновения с электрическими частями, но не защищены от влаги и пыли.

Однако несмотря на сложные условия эксплуатации, в последние годы удалось повысить надежность тяговых двигателей и увеличить их межремонтные пробеги. Это получено за счет:
- разработки и внедрения компенсационной обмотки;
- повышения технологического уровня производства; применения электротехнической стали, 2212 вместо стали 1312 (это позволило уменьшить массу);
- использования стекло-слюдинитовой ленты вместо миколенты, что позволило повысить электрическую прочность, влагостойкость и механическую стойкость.

Увеличить показатели позволили следующие меры:
- совершенствование механических элементов конструкции (подшипниковые щиты, межкатушечные соединения);
- совершенствование изоляционных конструкций и материалов.

5. ЭЛЕКТРОТЕХНИЧЕСКИЕ МАТЕРИАЛЫ,
ИСПОЛЬЗУЕМЫЕ В ТЯГОВЫХ ДВИГАТЕЛЯХ

Проводниковые материалы . В качестве проводникового материала используют, как правило, медь. Для изготовления обмоток применяют проволоку, ленту и медные шины.

Используют следующие типы проводов:

для класса нагревостойкости В и F

для класса нагревостойкости Н

Цифры 1, 2, 3 соответствуют толщине изоляции 0,23; 0,3; 8,35.

Для изготовления коллекторов используется медь с присадкой серебра или кадмия. Это обеспечивает качество коммутации за счет образующейся пленки.

Магнитные материалы . Как уже ранее говорилось, магнитопроводы изготавливают из стального литья, электротехнической и листовой стали.

Электротехническая сталь марок 2212, 2213, 2214.

Характеристики этих сталей – толщина 0,5 мм, при индукции 1,5 Тл и частоте перемагничивания 50 Гц потери составляют:
- сталь 2212 – 5 Вт/кг;
- сталь 2213 – 4,5 Вт/кг;
- сталь 2213 – 4 Вт/кг.

Обычно до или после штамповки сталь покрывают электроизоляционными материалами.

Электрическая изоляция . В предыдущих разделах упоминалось о трех классах изоляции В, Н, F; они разделены по нагревостойкости (табл. 5.1).

Таблица 5.1. Характеристика классов изоляции

Нормирование осуществляется для неподвижных обмоток, подвижных обмоток (обмотки якоря) и коллектора. Изоляционные материалы приведены в табл. 5.2.

Таблица 5.2. Электроизоляционные материалы для систем изоляции тяговых электродвигателей

ЯКОРНАЯ ОБМОТКА

Тип изоляции Класс нагревостойкости
В, F
Класс нагревостойкости
Н
Витковая изоляция ЛСЭК-5-ТПл
ЛСК-110-ТПл
ЛСЭП-934-ТПл
Элмикатерм 524019
Провод ПСДКТ
Провод ППИПК-2
ПМ-40
Корпусная изоляция катушек ЛСЭК-5-ТПл
ЛСК-110-ТПл
Элмикатерм 524019
ЛСЭП-934-ТПл
ЛСУ
ЛСМ
ЛСПМ
ЛСК-СС
ЛИКО-ТТ
Пазовая изоляция:
– пазовая коробка
– клин пазовый
Изофлекс 191
Синтофлекс 515
Синтофлекс 616
СТЭФ
Имидофлекс 292
Синтофлекс 818
СТ-ЭТФ
Межламельная изоляция коллектора КИФЭ,
КИФЭ-А
Элмикапласт 1440
КИФЭ-Н,
КИФК
Элмикапласт 1440
Коллекторные манжеты Элмикаформ 323 Пл Элмикаформ 325,
325 ПМ,
ФИФК-ТПл
Бандаж ЛСБЭ-155 ЛСБЭ-180
Межслойная изоляция Элмика 423 СТЭФ Элмика 425
Пропиточные составы ФЛ-98,
МЛ-92,
ПЭ-933
Компаунд эпоксидно-ангидридный
Компаунд полиэфирный
КО-916,
Компаунд полиэфиримидный

СТАТОРНАЯ ОБМОТКА: Катушки главного и добавочного полюсов

СТАТОРНАЯ ОБМОТКА: Компенсационная катушка

Тип изоляции Класс нагревостойкости
В, F
Класс нагревостойкости
Н
Витковая изоляция ЛСК-110-ТПл
ЛСЭК-5-ТПл
Элмикатерм 524019
ПМ-40
Корпусная изоляция ЛСК-110-ТПл
ЛСЭК-5-ТПл
Элмикатерм 524019
ПМ-4040
Пазовая изоляция Изофлекс 191
Синтофлекс 515
Синтофлекс 616
Имидофлекс 292
Синтофлекс 818

Синтофлекс представляет собой двухслойную или многослойную композицию, состоящую из полиэфирной пленки и полиэфирной бумаги, пропитанную смолой со стороны бумаги. Он применяется для пазовой изоляции, крышки-клина, межслойная изоляция низковольтных электрических машин в системе изоляции класса нагревостойкости В (130 °С). В сочетании с более нагревостойкими пропиточными составами допускается применение с длительно допустимой рабочей температурой 155°С. Ресурс работы 30 000 ч.

МЛ, ФЛ – лаки на основе модифицированного глифталя с различными свойствами в зависимости от марки.

Имидофлекс – изоляционный материал, основа которого полиамидная пленка, стеклоткань, эпоксидно-каучуковый состав.

К классу В относятся материалы на основе слюдинитов и эпоксидно-полиэфирных компаундов.

К классу F относятся ленты на основе эпоксидно-полиэфирного лака ЭП-934. Сама лента слюдинитовая.

К классу Н относится асбестная бумага толщиной от 0,2 до 1 мм, миканиты, полиамидная пленка.

6. ХАРАКТЕРИСТИКИ И СВОЙСТВА ТЯГОВЫХ ДВИГАТЕЛЕЙ

6.1. Номинальные и предельные данные тяговых двигателей

Номинальными и определяющими параметрами тяговых машин называют ток, мощность и кпд, соответствующие определенному режиму работы, установленному стандартом.

Для тяговых машин таких режимов два:
- часовой;
- длительный.

Часовой режим – это режим работы двигателя с таким током на испытательном стенде в течение 1-го часа, с возбуждением, предусмотренным для этого режима и нормально действующей вентиляцией, который не вызывает превышения температуры его частей над температурой окружающего воздуха выше норм, установленных для данного класса изоляции.

Длительный режим – определяется наибольшим током, так же как и часовой, но при работе двигателя на испытательном стенде в течение неограниченного времени. Номинальными для электровоза считаются параметры длительного режима:

I ∞ , Р ∞ , n ∞ , η ∞ .

Номинальные данные тяговых двигателей приводят на специальных табличках, которые укрепляются на несъёмной части тягового двигателя. В них указывают:
1) товарный знак предприятия-изготовителя;
2) род (двигатель, генератор) машины;
3) тип машины;
4) род тока;
5) номинальные режимы работы;
6) наибольшую эксплуатационную частоту вращения n;
7) номинальную степень возбуждения;
8) массу машины;
9) год выпуска машины;
10) обозначение стандарта, которому машина соответствует;
11) класс изоляции.

Естественно, как и любая машина, тяговый двигатель обладает определенными характеристиками.

6.2. Магнитные и нагрузочные характеристики тягового электродвигателя

Магнитной характеристикой машины называют зависимость магнитного потока Ф от магнитно-движущей силы (мдс) F катушки главного полюса или пропорционального от тока возбуждения в Ι (часто вместо в Ф f I) используют зависимости

С п Ф = f Ι в

(6.1)

С v Ф = f Ι в

(6.2)

где 60 n p C а; 1000 60 v n б С С Д;
n С – конструкционная постоянная машины;
p – число пар полюсов;
а – число пар параллельных ветвей обмотки якоря;
N – число проводников обмотки якоря;
передаточное отношение тяговой передачи;
б Д – диаметр бандажа.

Нагрузочная характеристика – это зависимость Ф f F или в Ф f при различных в I , но постоянных я I . Эти кривые учитывают размагничивающее действие я I . Магнитные характеристики получают при расчете магнитной цепи машины.

Для 4-полюсного тягового двигателя без компенсационной обмотки магнитная цепь имеет вид, показанный на рис. 6.1.

Магнитная характеристика при холостом ходе машины определяется несколькими значениями магнитного потока, который может быть определен следующим:

где к U – напряжение на коллекторе;
н n – частота вращения в номинальном режиме. Обычно задается или определяется исходя из эксплуатационной необходимости.

Намагничивающую силу катушки главного полюса находят суммированием всех магнитных напряжений по участкам магнитной цепи. Индукция на участках

где Si – сечение отдельных участков магнитной цепи. Следует учитывать, что магнитный поток сердечника полюса и остова определяется как

Ф" = σФ , (6.5)

где – коэффициент рассеяния магнитного потока главных полюсов.

Сечения участков магнитной цепи можно определить следующим образом: воздушного зазора

S = α τ l я , (6.6)

где – коэффициент полюсного перекрытия;
я – длина якоря;
– полюсное деление


Рис. 6.1. Эскиз магнитной цепи тягового двигателя

остова
при я l 0 0 я S h ; (6.8)

при я 0 0 2 я S h ; (6.9)

где 0 h – толщина остова;
зубцов якоря

1/3 / 2 z ия я S К Z Z р, (6.10)

где ия К – коэффициент заполнения пакета якоря сталью;
1/3 Z – ширина зубцов на 1/3 их высоты; ;
Z – число зубцов. сердечника якоря

0,5 2 2 0,65 я я z i вр в я ия S Д h Д n d К, (6.11)

где я Д – диаметр якоря;
z h – высота зубцов;
i Д – внутренний диаметр пакета якоря;
вр n – количество рядов вентиляционных каналов;
в d – диаметр канала;

сердечника полюса

m я ип S в К, (6.12)

где m в – ширина сердечника полюса;
ип К – коэффициент заполнения сердечника полюса сталью.

Если у машины есть компенсационная обмотка, то площадь сечения зубцов

zko zko ко я ип S в Z К, (6.13)

где zko в – ширина зубца компенсационной обмотки;
ко Z – число зубцов на полюсе.

Падение напряжения в воздушном зазоре

8 в в в F В К, (6.14)

где – эквивалентный воздушный зазор; ;
в В – индукция в воздушном зазоре;
в К – коэффициент воздушного зазора (учитывает зубчатую структуру якоря)

где 1 t – зубцовое деление якоря;
1 Z – ширина зубца по окружности якоря.

У машин с компенсационной обмоткой

10 10 ко в в zko t К К в. (6.16)

Имея значение магнитной индукции для соответствующей стали, можно определить значения i Н напряженности магнитного поля.
Падение напряжения на стальных участках магнитной цепи

i i i F Н L , (6.17)

где i Н – напряженность магнитного поля на ом i участке магнитной цепи;
i L – длина силовых линий на этом участке магнитной цепи.

Из-за дополнительного воздушного зазора между полюсом и остовом возникает дополнительное падение магнитного напряжения

0,8 mo m F В, (6.18)

где m В – индукция в сердечнике полюса.

o o o m m zko zko z z я я в mo F Н L Н L H h Н h Н L F F (6.19)

для расчета характеристики Ф f F .

Необходимо проделать расчеты для различных значений магнитного потока (0,5Ф; 0,25Ф и т. д.).

При расчете двигателей последовательного возбуждения

/ в o в I I F , (6.20)

где в – число витков обмотки возбуждения.

По току якоря можно определить реакцию якоря и затем зависимость Ф f F при нагрузке

o ря ря F F K F , (6.21)

где ря К – коэффициент размагничивания якоря (получают опытным путем).

Кривая намагничивания показана на рис. 6.2. F Ф в I

Характеристика намагничивания является как бы базовой, служащей основанием для расчета всех остальных (эксплуатационных) рабочих характеристик двигателей.

6.3. Рабочие характеристики двигателей

Рабочие характеристики двигателей делятся:
- на электромеханические;
- электротяговые;
- тяговые;
- мощности.

Электромеханические характеристики – зависимость частоты вращения n, вращающего момента M и коэффициента полезного действия от тока I .

Электротяговые характеристики – это зависимости скорости движения локомотива V, касательной силы тяги F и кпд 0 на ободе движущих колес от I (тока).

Тяговой характеристикой называют зависимость силы тяги двигателя (или локомотива) от скорости движения локомотива.

Характеристикой мощности называют зависимости мощности от скорости движения локомотива.

6.3.1. Электромеханические характеристики

Частота вращения двигателя определяется по формуле

к д n U I r n С Ф, (6.22)

где д r – сопротивление цепи тока тягового двигателя. Электромагнитный вращающий момент может быть получен из уравнения электромагнитной мощности

э n E Р Е I С Фn I или / 0,974 э э Р M n ; (6.23)

Мэ 0,974 Сn . (6.24)

Часть момента тратится на преодоление внутренних сил сопротивления

0,974 / мех маг в M Р Р Р n , (6.25)

где мех Р – механические потери; маг Р – потери на перемагничивание в стали; в Р – потери на вентиляцию.

Вращающий момент на валу двигателя

0,974 / э n мех маг в М М М С Ф I Р Р Р n . (6.26)

6.3.2. Электротяговые характеристики

Скоростная характеристика получается из зависимости n f I путем несложных пересчетов:

к д v U I r V С Ф, (6.26 а)

0,188 n v б C C Д. (6.27)

где к U – напряжение на коллекторе;
I – ток двигателя;
д r – сопротивление всех обмоток;
v С – конструкционная постоянная колесно-моторного блока;
Ф – магнитный поток;
– передаточное отношение;
б Д – диаметр бандажа.

Касательная сила тяги на ободе колеса

3 2 / к б F М Д, (6.28)

где 3 – кпд зубчатой передачи;
б Д – диаметр бандажа колеса.

6.4. Коэффициент полезного действия и потери в двигателе

Потери в тяговых двигателях (как и вообще в электрических машинах) складываются из электрических э Р, магнитных маг Р, добавочных д Р и механических мех Р

дв э маг мех доб Р Р Р Р Р Р. (6.29)

Естественно, что для расчета этих потерь необходимо определить все соответствующие приведенной формулы.

Электрические потери

2 э д щ Р I r I U , (6.30)

где д r – сопротивление всех обмоток двигателя;
Uщ – падение напряжения в щёточных контактах (обычно 2…3 В).

Магнитные потери возникают при перемагничивании сердечника якоря. Их определяют по удельным потерям в зубцах и теле якоря

маг с z z я я Р К р m р m , (6.31)

где с К – коэффициент магнитных потерь в стали якоря.

Это эмпирический коэффициент, учитывающий увеличение потерь в стали из-за неидеальности шихтовки, наклепа при штамповке и добавочных потерь холостого хода:

1,5/50 0,8 с К р, (6.32)

где 1,5/50 р – удельные потери в электротехнической стали при индукции 1,5 ТЛ и частоте 50 Гц (Вт/кг); я m – масса стали ярма якоря; z m – масса стали зубцового слоя якоря; я р – удельные магнитные потери в ярме якоря; я р – удельные магнитные потери в зубцовом слое якоря.

Масса ярма (или тела) якоря определяется по формуле

2 2 2 2 4 я я п i к к ия я с m Д h Д m d К, (6.33)

где hп – высота паза якоря;
i Д – диаметр отверстия под втулку, на которую набирается сердечник якоря;
к m – количество вентиляционных каналов;
к d – диаметр вентиляционных каналов;
ия К – коэффициент заполнения пакета якоря сталью;
я – длина якоря;
я = 7850 кг/м3 – плотность.

Аналогично определяется масса зубцового слоя

z я п п п я uя с m Д h Z в h К, (6.34)

где Z – число зубцов якоря; п в – ширина паза якоря, м.

Удельные потери в ярме якоря определяются по формуле

2 2 0,044 5,6 0,01 я я я z р f f В (6.35)

и в зубцах

2 2 0,044 5,6 0,01 z я я z р f f В, (6.36)

где я f – частота перемагничивания якоря;

60 я р n f , (6.37)

где р – число пар полюсов; n – частота вращения.

Механические потери в двигателе зависят от следующих факторов:
- потери на трение в якорных подшипниках;
- потери на трение щеток о коллектор;
- потери на трение о воздух и вентиляцию при самовентиляции.
Потери на трение в якорных подшипниках качения составляют примерно 0,2 % от часовой мощности тягового двигателя, КВт,

0,002 пч ч Р Р. (6.38)

Вторые, из перечисленного списка, потери зависят от силы трения щеток о коллектор, а также от скорости вращения, и определяются как

тщ щ щ щ F f р S , (6.39)

где 0,25...0,29 щ f – коэффициент трения щеток о коллектор; щ S – общая площадь щеток; щ р – давление щеток на коллектор.

Тогда потери имеют вид:

9,81 тщ тщ кч Р F V , (6.40)

где Vкч – линейная скорость коллектора. Это потери при часовом режиме.

В случае изменения режима, а также при построении характеристик кпд, потери в подшипниках и от трения щеток о коллектор будут определяться по формуле

п тщ пч тщч ч n P Р Р Р n , (6.41)

где n, ч n – частоты вращения в заданном и часовом режимах.

В случае самовентиляции возникают дополнительные потери, вызванные сопротивлением воздуха

9,81 / вн в Р QH , (6.42)

где Q – расход воздуха м3/с;
Н – напор кг·с/м2;
в – кпд вентилятора.

К добавочным потерям д Р обычно относят потери, связанные с вихревыми токами в меди обмотки якоря. Вызваны они, как правило, искажением магнитного поля реакции якоря.

Есть несколько способов определения добавочных потерь. Самый простой из них – это определение потерь в процентном отношении от магнитных потерь по диаграмме (рис. 6.3).

Таким образом, имея потери в двигателе, можно определить кпд, отнесенный к валу двигателя, как

1 к дв дв к к U I Р Р U I U I . (6.43)

Если машина в генераторном режиме

1 1 к к дв дв к U I U I Р Р U I . (6.44)

Кпд, отнесенный к ободам движущей колесной пары,

где 3 – кпд зубчатой передачи. Обычно 3 определяется по диаграмме в функции от мощности.


Таким образом, определяются зависимости, описывающие электромеханические и электротяговые характеристики. Вид этих характеристик при- веден на рис. 6.4.

Осталось определить тяговую характеристику, т. е. зависимость

к F f V . 39 V, FK I FK V 0


Рис. 6.4. Общий вид электромеханических и электротяговых характеристик электродвигателя

При заданной скорости движения силу тяги можно определить, используя уравнения мощности, реализуемой на ободе колеса

/ 0,367 к к Р F V , (6.46)

так как к к о Р U I , то

0,367 / к к о F U I V . (6.47)

7. ПРИНЦИПЫ РЕГУЛИРОВАНИЯ РЕЖИМОВ
РАБОТЫ ТЯГОВЫХ ДВИГАТЕЛЕЙ

В условиях эксплуатации необходимо непрерывно менять режимы работы двигателя, поддерживая ток и силу тяги в допустимых или в необходимых пределах. Это же можно сказать и о скорости.
Для того чтобы было наглядно видно, какие из параметров тягового двигателя можно регулировать, запишем ещё раз формулу для расчета скорости

(7.1)

Из этого уравнения видно, что регулировать скорость можно изменением напряжения на коллекторе, изменением тока и магнитного потока.

Допустим, что формула записана для одного значения скорости V 1 и напряжения U к1 тогда если напряжение стало U к2 , то характеристику скоростную можно пересчитать по формуле

(7.2)

На электровозах переменного тока применяют либо ступенчатое регулирование напряжения за счет секционирования обмотки трансформатора ВЛ80к либо плавное регулирование – с использованием тиристорных регуляторов ВЛ80р, ВЛ85, 2(3)ЭС5К.

На электровозах постоянного тока обычно используют два способа регулирования напряжения. Это переключение числа последовательно включенных двигателей, т. е. изменение так называемой группировки двигателей С, СП, П, либо включение в цепь двигателей пусковых реостатов, снижение за счет падения напряжения на них и напряжения на тяговых двигателях.
При этом напряжение на двигателе можно определить как

(7.3)

где U с – напряжение контактной сети;
n с – число, последовательно включенных двигателей в сети;
m – число параллельных двигателей;
R n – сопротивление пускового реостата.

Тогда скорость при включении сопротивления будет определяться как

(7.4)

Как уже отмечалось, можно регулировать скорость и с помощью изменения магнитного потока. Достигается это несколькими способами:
1) секционированием катушек главных полюсов;
2) изменением тока возбуждения (при независимом возбуждении);
3) шунтированием обмотки возбуждения резистором.

Первый способ очень дорог и не удобен, так как для его реализации требуется усложнение конструкции машины.

Второй – не реализуется у двигателей последовательного возбуждения.

Третий способ самый распространенный. Обмотка возбуждения шунтируется резистором и индуктивным шунтом, включенным с ним последовательно. Шунт ставят для защиты двигателей от резких бросков напряжения. Его наличие позволяет относительно плавно изменяться току в двигателе при бросках напряжения.

Степень регулирования оценивается коэффициентом возбуждения β :

где I ов, I nв – ток в обмотке при ослабленном и полном возбуждении.

Для получения скоростных характеристик при ослабленном возбуждении обычно используют метод, основанный на примерном равенстве магнитных потоков при одинаковой скорости движения в случае полного и ослабленного возбуждения (рис. 7.1).

Получение зависимости силы тяги от тока при ослабленном возбуждении (рис. 7.2) основано на том, что при токах I nв и I ов магнитные потоки приблизительно равны Ф ов ≈ Ф nв:

(7.6)

Степень ослабления поля зависит от допустимого межламельного напряжения. У машин с компенсационной обмоткой β max = 0,2...0,4 .
Регулировочные свойства машины принято оценивать коэффициентом регулируемости:

К р = К н β max -1 , (7.7)

где К н = 1,6…2 – коэффициент насыщения. Обычно у современных двигателей.

Давыдов Ю.А.
Тяговые электрические машины. Учебное пособие
Хабаровск. Издательство ДВГУПС. 2013

Бесколлекторные тяговые двигатели

Около 8-10 лет назад масса поезда (весовая норма) ограничивалась условиями сцепления, т. е. достигнутым значением расчетного коэффициента сцепления. Поэтому не так остро ставился вопрос о существенном повышении силы тяги, а следовательно, и мощности тяговых двигателей электровозов. Исследования и опытная эксплуатация ряда новых устройств показали, что имеются большие возможности повышения расчетного коэффициента сцепления. Этого можно достичь, применив независимое возбуждение, а также осуществив автоматическое выравнивание нагрузок тяговых двигателей. О других возможностях повышения коэффициента сцепления будет рассказано ниже.

Но дальнейшее повышение мощности тяговых двигателей электровозов, необходимой для реализации более высокого расчетного коэффициента сцепления, осуществить все трудней. Этому препятствуют прежде всего размеры тягового двигателя: длина его ограничена расстоянием между бандажами колесных пар, диаметр - расстоянием между осью колесной пары и валом двигателя - централью Ц (см. рис. 3). До сих пор при наличии жестких габаритных ограничений размеров двигателей мощность их повышали путем применения более теплостойких изоляционных материалов, усиления охлаждения, увеличения числа пар полюсов, устройства компенсационной обмотки, выбора оптимального напряжения для тяговых двигателей электровозов переменного тока.

С повышением мощности все напряженнее работает коллекторно-щеточный узел. Его состоянием в значительной мере определяется продолжительность работы электровоза между осмотрами и ремонтами. Повышение мощности тяговых двигателей встречает все больше препятствий и не способствует увеличению их надежности и к. п. д. Поэтому вполне понятно стремление создать мощный бесколлекторный тяговый двигатель.

Электровозы с асинхронными тяговыми двигателями . На протяжении всей истории создания и совершенствования электровозов было много попыток использовать самый простой и дешевый асинхронный двигатель для целей тяги. До недавнего времени этого не удавалось сделать, так как частоту его вращения можно экономично регулировать только изменением частоты питающего тока. Применяемые ранее для этого электромашинные преобразователи были тяжелыми. Появление тиристоров открыло путь для создания легкого и надежного преобразователя частоты.

Устройство асинхронного двигателя, как уже отмечалось, несложно. Он имеет неподвижный статор и вращающийся ротор (рис. 75). Различают асинхронные двигатели: с короткозамкнутым ротором и с фазовым ротором. В качестве тяговых используют асинхронные двигатели с короткозамкнутым ротором. Сердечник такого ротора, как и статора, собирают из листов электротехнической стали. Обмотка ротора состоит из медных стержней, расположенных в пазах сердечника и замкнутых с торцов кольцами. Обмотка без сердечника ротора представляет собой так называемое "беличье колесо".

В пазах статора уложены три обмотки, сдвинутые одна относительно другой на 120°. Эти обмотки обычно соединяют звездой. При включении обмоток в трехфазную цепь по каждой из них проходит переменный ток и создается три переменных магнитных потока. Эти потоки, складываясь, образуют результирующий поток, вращающийся с частотой 3000 об/мин при одной паре полюсов на каждую фазу. Вращающийся магнитный поток статора двигателя, пересекая обмотку ротора, индуктирует в ней э. д. с. Под действием э. д. с. в обмотке ротора проходит ток, создающий собственный магнитный поток. Магнитные потоки статора и ротора взаимодействуют, в результате чего ротор начинает вращаться.

Частота вращения ротора несколько меньше частоты вращения магнитного потока статора, иначе силовые линии не пересекали бы обмотку ротора. Разность этих частот вращения называется скольжением. Увеличивая число пар полюсов, можно получить другие частоты вращения магнитного потока: 1500, 1000, 750 об/мин и т. д. Частота вращения ротора будет несколько меньше этих значений.

Обычно скольжение составляет 1-3% синхронной частоты. Следовательно, если изменять частоту питающего напряжения в широких пределах и тем самым синхронную частоту, вместе с ней будет изменяться и частота вращения ротора. Но, помимо частоты, необходимо регулировать и напряжение, подводимое к асинхронному двигателю для того, чтобы получить тяговую характеристику примерно такую, как при использовании двигателей постоянного тока с последовательным возбуждением.

Регулирование напряжения осуществляется, как и на отечественных электровозах переменного тока, переключением вторичной обмотки тягового трансформатора с помощью главного контроллера ГК (рис. 76) ступенями. Затем в выпрямительной установке В напряжение выпрямляется и подается на инвертор И. В выпрямителе осуществляется плавное регулирование напряжения, подводимого к инвертору И.

Отпирая и запирая тиристоры инверторной установки в определенной последовательности, получают трехфазное напряжение, которое подводится к обмотке статора асинхронного двигателя АД. Напомним, что к обычным асинхронным двигателям подводится переменное трехфазное напряжение, а следовательно, и ток, изменяющийся синусоидально. При этом каждая фаза сдвинута относительно другой на 120°, как показано на рис. 77. Для наглядности изменение напряжения каждой фазы показано на отдельных осях. При формировании трехфазного напряжения на электровозе с асинхронными двигателями переключаемые вентили инвертора создают напряжение ступенчатой формы в каждой фазе.

Частота напряжения, подводимого к асинхронному двигателю, регулируется изменением частоты переключения этих вентилей.

В инверторе предусмотрено специальное устройство, надежно восстанавливающее управляющие свойства тиристоров при срыве инвертирования. Реверсирование тяговых двигателей осуществляют, переключая цепи управления тиристоров инвертора, так как для изменения направления вращения асинхронного двигателя достаточно поменять местами любые две подводимые фазы.

На основе разработок научно-исследовательских и учебных институтов на Новочеркасском электровозостроительном заводе построен электровоз переменного тока с асинхронными тяговыми двигателями ВЛ80 а. Электровоз создан на базе восьмиосного электровоза ВЛ80 К. Мощность каждого тягового двигателя составляет 1200 кВт, т. е. в 1,5 раз больше, чем коллекторного двигателя электровоза ВЛ80 К.

Не исключена возможность создания тягового привода с асинхронным двигателем без редуктора. В этом случае ротор асинхронного двигателя монтируют непосредственно на оси колесной пары, а статор имеет разъемную форму.

Электровозы с вентильными синхронными двигателями . В качестве бесколлекторных тяговых двигателей на электровозе можно использовать синхронные двигатели со статическими (вентильными) преобразователями - так называемые вентильные двигатели.

Поясним принцип работы вентильного двигателя. На его статоре расположена трехфазная обмотка, а на роторе - обмотка возбуждения постоянного тока (рис. 78). Начало и конец обмотки возбуждения соединены с двумя кольцами, электрически изолированными одно от другого. Фазные обмотки статора соединены в звезду; начала их подключены к преобразователю - инвертору И (или источнику постоянного тока). Инвертор И питается от выпрямительной установки В, подключенной к вторичной обмотке тягового трансформатора. Если, например, в какой-либо момент времени открыты тиристоры А1 и Х2 инвертора, ток от выпрямителя В пройдет через тиристор А1, обмотки статора I и II, тиристор Х2, обмотку возбуждения ОВ и возвратится в выпрямительную установку. При указанном стрелками направлении тока в обмотках I, II и обмотке возбуждения результирующий магнитный поток статора, взаимодействуя с потоком обмотки возбуждения, создаст вращающий момент, и ротор повернется по часовой стрелке. Переключая в, определенном порядке выводы статорной обмотки, можно обеспечить непрерывное вращение ротора.

Таким образом, по принципу действия вентильный двигатель подобен машине постоянного тока, где коллектор заменен системой силовых управляемых вентилей инверторной установки. Но в отличие от двигателя постоянного тока вентильный двигатель имеет только три коммутируемых вывода при трехфазной обмотке вместо нескольких сотен коллекторных пластин. Кроме того, обмотка возбуждения в вентильном двигателе стала подвижной, а якорь неподвижным. Вентильная коммутация тока в обмотках допускает значительное напряжение между выводами: до нескольких тысяч вольт. Напомним, что обычный механический коллектор удовлетворительно работает при напряжении между коллекторными пластинами не более 30-32 В. Переключение выводов статорной обмотки в необходимой очередности и соответственно изменение положения ротора осуществляет система управления, имеющая специальный датчик положения ротора.

Вентильный двигатель является многофазной машиной, обмотка якоря которой питается от преобразователя, управляемого синхронно с вращением ротора, снабженного обмоткой возбуждения. Таким образом, вентильный двигатель состоит из электрической машины, вентильного преобразователя и связывающей их системы управления.

Новочеркасским электровозостроительным заводом первоначально был построен опытный образец восьмиосного грузового электровоза ВЛ80 В с вентильными тяговыми двигателями. После испытания его была выпущена небольшая партия подобных электровозов для эксплуатационных испытаний. Электровозы оборудованы системой автоматического управления, действующей в режимах тяги и электрического торможения. На электровозе применено независимое возбуждение вентильных двигателей от выпрямителей-возбудителей, изменяющих ток возбуждения пропорционально току обмотки якоря двигателя. Ротор двигателя имеет шесть полюсов, ток к обмотке возбуждения подводится через два кольца и щетки. Частота вращения двигателя регулируется изменением подводимого напряжения. Напряжение вторичной обмотки, а следовательно, и выпрямительной установки регулируется примерно так же, как и на электровозах переменного тока с коллекторными двигателями. Исключено только встречное включение регулируемой и нерегулируемой обмоток трансформатора и несколько повышено их напряжение. После того, как к двигателям будет подведено номинальное напряжение, дальнейшее увеличение скорости осуществляется регулированием магнитного потока возбуждения.

На электровозах ВЛ80 В применена схема выпрямления и преобразования тока, несколько отличающаяся от изображенной на рис. 78. На рис. 78 показаны отдельные выпрямительная В и инверторная И установки, т. е. приведена так называемая схема с явным звеном постоянного тока. На электровозе ВЛ80 В эти две установки совмещены в общем устройстве.

Общие сведения

Тяговый двигатель ДПМ-150 вагонов А

Развитие конструкции тяговых двигателей тесно связано с совершенствованием конструкции систем управления ими. Исторически подвижной состав всех видов электрического транспорта строился с коллекторными тяговыми двигателями. Это объясняется, в первую очередь, простотой простотой передачи энергии и управления режимами его работы. Такие двигатели обладают удобными для использования на транспорте механическими характеристиками. Однако, коллекторные двигатели имеют и ряд недостатков, связанных, в основном, с наличием коллектора. Коллектор, имеющий подвижные контакты (щетки), требует регулярного обслуживания. Для обеспечения надежной коммутации, снижения искрения усложняется конструкция электродвигателя. Кроме того, это ограничивает максимальную скорость вращения, что приводит к увеличению габаритов двигателя.

Развитие силовой полупроводниковой техники, обладающей высоким быстродействием, позволило в 1960-х - 80-х годах сначала отказаться от реостатной системы управления коллекторными тяговыми двигателями, заменив её более надежной и экономичной импульсной, а затем и перейти к выпуску вагонов с асинхронным тяговым приводом. На отечественных метрополитенах первым серийно выпускавшимся типом вагонов с импульсным регулированием стал тип 81-718/719 в 1991 году, а первым серийно выпускаемым типом вагонов с асинхронными двигателями - «Яуза» 81-720.1/721.1 в 1998 году.

Основными недостатками асинхронных двигателей являются сложность регулирования и сложность осуществления электрического торможения при использовании двигателей с короткозамкнутым ротором. Поэтому в настоящее время разрабатываются конструкции тяговых приводов, использующих синхронные двигатели с ротором на постоянных магнитах, вентильно-индукторные двигатели.

Коллекторные тяговые двигатели

Тяговый двигатель ДПТ-114 (аналог ДК-117)

В России существует единая унифицированная серия коллекторных тяговых двигателей постоянного тока, в которую вошли и двигатели электропоездов метрополитена . Все они имеют общий принцип компоновки и много унифицированных узлов и деталей. При изготовлении унифицированных тяговых двигателей можно использовать однотипное станочное оборудование, что снижает их стоимость. На вагонах метрополитена широко используют тяговые двигатели постоянного тока. Такие двигатели обладают хорошими тяговыми характеристиками, сравнительно просты по конструкции и надежны в эксплуатации. По конструкции тяговые двигатели электроподвижного состава существенно отличаются от стационарных двигателей постоянного тока, что объясняется особенностями их расположения и условиями работы. Размеры тягового двигателя, подвешенного под кузовом вагона, ограничены подвагонными габаритами. Диаметр его определяется диаметром колеса, так как должно быть выдержано определенное расстояние от нижней точки двигателя до уровня головки рельсов . Длина тягового двигателя ограничена габаритными размерами тележки . На вагонах установлены четыре тяговых двигателя: по одному на каждую колесную пару. Нумерация их идет по осям, считая от кабины управления . Тяговый двигатель работает в тяжелых условиях, так как на него попадают грязь с железнодорожного полотна , пыль от тормозных колодок, дождь и снег на открытых участках трассы. Поэтому все детали, расположенные в его корпусе, должны быть защищены. Для лучшего отвода тепла, выделяющегося при работе тягового двигателя, на валу якоря установлен вентилятор, засасывающий воздух со стороны коллектора и прогоняющий его через двигатель. В паспорте стационарных электрических машин обычно указывает их номинальную мощность продолжительного режима, то есть такую мощность, которую машина должна отдавать неограниченно долгое время, причем температура его узлов и деталей не должна превышать значений, допускаемых нормами для изоляционных материалов. Режим работы тяговых двигателей резко меняется в зависимости от профиля пути и веса поезда. Это не позволяет характеризовать работоспособность тягового двигателя только значением номинальной мощности продолжительного режима. Поэтому характеристики тяговых двигателей даны для часового и максимального режимов.

Асинхронные тяговые двигатели

Тяговый асинхронный двигатель ДАТЭ-170

Тяговые двигатели ДАТЭ-170 входят в комплект тягового привода КАТП-1, устанавливаемого на вагонах 81-720.1/721.1 и 81-740/741 . Их основные параметры:

  • Номинальная мощность - 170 кВт
  • Минимальное напряжение - 530 В
  • Номинальная частота тока статора - 43 Гц
  • Номинальная частота вращения - 1290 об/мин
  • Максимальная частота вращения - 3600 об/мин
  • Масса - 805 кг

Кроме того, в эксплуатации на метрополитенах Казани, Киева, Праги находятся вагоны отечественного производства с асинхронным приводом производства фирмы «Шкода».

Конструкция тяговых двигателей

Устройство тягового двигателя постоянного тока

Все тяговые двигатели постоянного тока вагонов метрополитена имеют в основном одинаковое устройство. Двигатель состоит из остова, четырех главных и четырех добавочных полюсов, якоря, подшипниковых щитов, щеточного аппарата, вентилятора.

Остов двигателя

Он выполнен из электромагнитной стали имеет цилиндрическую форму и служит магнитопроводом. Для жесткого крепления к поперечной балке рамы тележки на остов предусмотрены три прилива-кронштейна и два предохранительных ребра. В остове имеются отверстия для крепления главных и добавочных полюсов, вентиляционные и коллекторные люки. Из остова двигателя выходят шесть кабелей. Торцовые части остова закрыты подшипниковыми щитами. В остове укреплена паспортная табличка с указанием завода-изготовителя, заводского номера, массы, тока, частоты вращения, мощности и напряжения.

Главные полюсы

Тяговый двигатель ДК-117 в разрезе

Они предназначены для создания основного магнитного потока. Главный полюс состоит из сердечника и катушки. Катушки всех главных полюсов соединены последовательно и составляют обмотку возбуждения. Сердечник набран из листов электротехнической стали толщиной 1,5 мм для Уменьшения вихревых токов. Перед сборкой листы прокрашивают изоляционным лаком, сжимают прессом и скрепляют заклепками. Часть сердечника, обращенная к якорю, выполнена более широкой и называется полюсным наконечником. Эта часть служит для поддержания катушки, а также для лучшего распределения магнитного потока в воздушном зазоре. В тяговых двигателях ДК-108А, установленных на вагонах Е (по сравнению с ДК-104 на вагонах Д), увеличен зазор между якорем и главными полюсами, что, с одной стороны, дало возможность увеличить скорость в ходовых режимах на 26 %, а с другой стороны, уменьшилась эффективность электрического торможения (медленное возбуждение двигателей в генераторном режиме из-за недостаточного магнитного потока). Для увеличения эффективности электрического торможения в катушках главных полюсов кроме двух основных обмоток, создающих основной магнитный поток в тяговом и тормозном режимах, имеется третья - подмагничивающая, которая создает дополнительный магнитный поток при работе двигателя только в генераторном режиме. Подмагничивающая обмотка включена параллельно двум основным и получает питание от высоковольтной цепи через автоматический выключатель, предохранитель и контактор. Изоляция катушек главных полюсов кремнийорганическая. Главный полюс крепится к остову двумя болтами, которые ввертывают в квадратный стержень, расположенный в теле сердечника.

Добавочные полюсы

Они предназначены для создания дополнительного магнитного потока, который улучшает коммутацию и уменьшает реакцию якоря в зоне между главными полюсами. По размерам они меньше главных полюсов и расположены между ними. Добавочный полюс состоит из сердечника и катушки. Сердечник выполнен монолитным, так как вихревые токи в его наконечнике не возникают из-за небольшой индукции под добавочным полюсом. Крепится сердечник к остову двумя болтами. Между остовом и сердечником для меньшего рассеяния магнитного потока установлена диамагнитная латунная прокладка. Катушки добавочных полюсов соединены последовательно одна с другой и с обмоткой якоря.

Якорь

Тяговый двигатель ДК-108 в разрезе

Машина постоянного тока имеет якорь, состоящий из сердечника, обмотки, коллектора и вала. Сердечник якоря представляет собой цилиндр, набранный из штампованных листов электротехнической стали толщиной 0,5 мм. Для уменьшения потерь от вихревых токов, возникающих при пересечении якорем магнитного поля, листы изолируют один от другого лаком. В каждом листе имеется отверстие со шпоночной канавкой для насадки на вал, вентиляционные отверстия и пазы для укладки обмотки якоря. В верхней части пазы имеют форму ласточкиного хвоста. Листы насаживают на вал и фиксируют шпонкой. Собранные листы прессуются между двумя нажимными шайбами. Обмотка якоря состоит из секций, которые укладывают в пазы сердечника и пропитывают асфальтовым и бакелитовым лаками. Чтобы обмотка не выпадала из пазов, в пазовую часть забивают текстолитовые клинья, а переднюю и заднюю части обмотки укрепляют проволочными бандажами, которые после намотки пропаивают оловом. Назначение коллектора машины постоянного тока в различных режимах работы неодинаково. Так, в генераторном режиме коллектор служит для преобразования переменной электродвижущей силы (э.д.с), индуцируемой в обмотке якоря, в постоянную э.д.с. на щетках генератора, в двигательном - для изменения направления тока в проводниках обмотки якоря, чтобы якорь двигателя вращался в какую-либо определенную сторону. Коллектор состоит из втулки, коллекторных медных пластин, нажимного конуса. Коллекторные пластины изолированы друг от друга миканитовыми пластинами, от втулки и нажимного конуса - изоляционными манжетами. Рабочую часть коллектора, имеющую контакт со щетками, протачивают на станке и шлифуют. Чтобы при работе щетки не касались миканитовых пластин, коллектор подвергают «продорожке». При этом миканитовые пластины становятся ниже коллекторных примерно на 1 мм. Со стороны сердечника в коллекторных пластинах предусмотрены выступы с прорезью для впаивания проводников обмотки якоря. Коллекторные пластины имеют клинообразное сечение, а для удобства крепления - форму «ласточкин хвост». Коллектор насаживают на вал якоря прессовой посадкой и фиксируют шпонкой. Вал якоря имеет разные посадочные диаметры. Кроме якоря и коллектора, на вал напрессована стальная втулка вентилятора. Внутренние кольца подшипников и подшипниковые втулки насажены на вал в горячем состоянии.

Подшипниковые щиты

В щитах установлены шариковые или роликовые подшипники - надежные и не требующие большого ухода. Со стороны коллектора стоит упорный подшипник; его наружное кольцо упирается в прилив подшипникового щита. Со стороны тяговой передачи установлен свободный подшипник, который позволяет валу якоря удлиняться при нагреве. Для подшипников применяют густую консистентную смазку. Чтобы смазка при работе двигателей не выбрасывалась из смазочных камер, предусмотрено гидравлическое (лабиринтное) уплотнение. Вязкая смазка, попав в небольшой зазор между канавками-лабич рингами, проточенными в щите, и втулкой, насаженной на вал, под действием центробежной силы отбрасывается к стенкам лабиринта, где самой смазкой создаются гидравлические перегородки. Подшипниковые щиты крепят к обеим сторонам остова.

Щеточный аппарат

Для соединения коллектора двигателя с силовой цепью вагона используют электрографитные щетки марки ЭГ-2А, которые обладают хорошими коммутирующими свойствами, высокой механической прочностью и способны выдерживать большие перегрузки. Щетки представляют собой прямоугольные призмы размером 16 х 32 х 40 мм. Рабочую поверхность щеток пришлифовывают к коллектору для обеспечения надежного контакта. Щетки устанавливают в обоймы, называемые щеткодержателями, и соединяют с ними гибкими медными шунтами: в каждом щеткодержателе по две щетки, число щеткодержателей - четыре. Нажим на щетку осуществляется пружиной, упирающейся одним концом через палец в щетку, другим - в щеткодержатель. Нажатие на щетку должно быть отрегулировано в строго определенных пределах, так как чрезмерный нажим вызывает быстрый износ щетки и нагрев коллектора, а недостаточный не обеспечивает надежного контакта между щеткой и коллектором, вследствие чего возникает искрение под щеткой. Нажатие не должно превышать 25Н (2,5 кгс) и быть менее 15Н (1,5 кгс). Щеткодержатель укрепляют на кронштейне и с помощью двух шпилек, запрессованных в кронштейн, крепят непосредственно к подшипниковому щиту. Кронштейн от щеткодержателя и подшипникового шита изолируют фарфоровыми изоляторами. Для осмотра коллектора и щеткодержателей в остове двигателя имеются люки с крышками, обеспечивающими достаточную защиту от проникновения воды и грязи.

Вентилятор

В процессе работы необходимо охлаждать двигатель, так как с повышением температуры его обмоток снижается мощность двигателя. Вентилятор состоит из стальной втулки и силуминовой крыльчатки, скрепленных восемью заклепками. Лопатки крыльчатки расположены радиально для выброса воздуха в одном направлении. Вентилятор вращается вместе с якорем двигателя, создавая в нем разрежение. Потоки воздуха засасываются внутрь двигателя через отверстия со стороны коллектора. Часть воздушного потока омывает якорь, главные и добавочные полюса, другая проходит внутри коллектора и якоря по вентиляционным каналам. Воздух выталкивается наружу со стороны вентилятора через люк остова.

Устройство асинхронного двигателя с короткозамкнутым ротором

Промышленный асинхронный двигатель в разрезе

Асинхронный двигатель состоит из двух основных узлов: статора и ротора. На статоре размещают трехфазную обмотку, создающую вращающееся магнитное поле. Скорость вращения магнитного поля определяется частотой питающего двигатель тока и числом пар полюсов.

Обмотку ротора выполняют в виде так называемой «беличьей клетки». Она является короткозамкнутой и не имеет выводов. Беличья клетка состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами. Стержни этой обмотки вставляют в пазы сердечника ротора, набранного из листов электротехнической стали, без какой-либо изоляции. По торцам ротора устанавливают лопасти, образующие центробежный вентилятор. Ток в роторе наводится движущимся относительно него полем статора. Таким образом, для работы двигателя необходима разность скоростей вращения ротора и поля статора, что и отражено в его названии.

Характеристики тяговых двигателей

В таблице приведены технические характеристики коллекторных тяговых двигателей вагонов метрополитена:

Тип двигателя ДПМ-151 ДК-102А…Г SL-104n USL-421 ДК-104А ДК-104Г, Д ДК-108А ДК-108А1 ДК-108Г ДК-108Д ДК-112А ДК-115Г ДК-116А ДК-117А ДК-117ДМ ДК-120АМ
Тип вагонов В2 В3 В1 1959 1970 1973 1973 1975 1987 1991
Часовая мощность, кВт 153 83 100 70 80 73 64 68 66 66 68 90 72 110 112-114 115
Номинальное напряжение, В 750 375 750 375 375 375 375 375 375 375 375 375 375 375
Рабочее ослабление поля, % 65 44,5 40 40 35 28
Часовой ток, А 225 248 220 220 195 210 202 205 210 270 218 330 330-340 345
Часовая частота вращения, об/мин 950 / 968 1160 1300 1355 1530 1450 1510 1600 1600 1600 1360 1480 1480 1500
Длительный ток, А 173 205 185 175 182 178 178 185 230 185 295 290 295
Длительная частота вращения, об/мин 1075 1320 1455 1580 1600 1740 1220
Наибольший ток, А 450 500 440 420 420 440
Масса, кг 2340 1490 700 615 630 630 625 625 765 760 770
Число пар полюсов 2 2 2 2 2 2 2 2 2 2 2 2 2
Число коллекторных пластин 185 238 141 175 175 175 175 175 175 210 210
Возбуждение Посл. Посл. Посл. Посл. с подм. Посл. с подм. Посл. Посл. с подм. Посл. Посл. Посл.
Число витков обмотки ГП 38 16+16 33 30С+530Ш 30С 30 40 40 32 26 26
Сопротвиление обмотки якоря, Ом 0,066 0,041 0,068 0,086 0,078 0,092 0,092 0,092 0,066 0,034 0,0285
Сопротивление обмотки возбуждения, Ом 0,0615 0,0269 0,064 0,062+165 0,067+? 0,067 0,108 0,098 0,044 0,048 0,0312
Сопротивление добавочных полюсов, Ом 0,0338 0,0215 0,028 0,035 0,034 0,037 0,049 0,049 0,022 0,015 0,0103
Воздушный зазр под центром/краем полюса, мм 5 / 9 2,2 / 5 1,5 / 5,7 3,25 / 9 2,9 2,5 4 / 9

Конструкция используемых в настоящее время коллекторных тяговых двигателей ДК-117 и ДК-120 регламентируется техническими условиями ТУ 3355-029-05758196-02.

Характеристики коллекторных электродвигателей, применяемых на наземном городском транспорте.