Газотурбинный двигатель. Фото. Строение. Характеристики. Безотрывный переходный канал между турбиной высокого давления и турбиной низкого давления двухконтурного авиационного двигателя. Приведенная изоэнтропическая скорость потока в относительном движении

0

Воздушно-реактивные двигатели по способу предварительного сжатия воздуха перед поступлением в камеру сгорания разделяются на компрессорные и бескомпрессорные. В бескомпрессорных воздушно-реактивных двигателях используется скоростной напор воздушного потока. В компрессорных двигателях воздух сжимается компрессором. Компрессорным воздушно-реактивным двигателем является турбореактивный двигатель (ТРД). В группу, получившую название смешанных или комбинированных двигателей, входят турбовинтовые двигатели (ТВД) и двухконтурные турбореактивные двигатели (ДТРД). Однако конструкция и принцип работы этих двигателей во многом схожи с турбореактивными двигателями. Часто все типы указанных двигателей объединяют под общим названием газотурбинных двигателей (ГТД). В качестве топлива в газотурбинных двигателях используется керосин.

Турбореактивные двигатели

Конструктивные схемы. Турбореактивный двигатель (рис. 100) состоит из входного устройства, компрессора, камеры сгорания, газовой турбины и выходного устройства.

Входное устройство предназначено для подвода воздуха к компрессору двигателя. В зависимости от расположения двигателя на самолете оно может входить в конструкцию самолета или в конструкцию двигателя. Входное устройство способствует повышению давления воздуха перед компрессором.

Дальнейшее повышение давления воздуха происходит в компрессоре. В турбореактивных двигателях применяются компрессоры центробежные (рис. 101) и осевые (см. рис. 100).

В осевом компрессоре при вращении ротора рабочие лопатки, воздействуя на воздух, закручивают его и заставляют двигаться вдоль оси в сторону выхода из компрессора.

В центробежном компрессоре при вращении рабочего колеса воздух увлекается лопатками и под действием центробежных сил движется к периферии. Наиболее широкое применение в современной авиации нашли двигатели с осевым компрессором.





Осевой компрессор включает в себя ротор (вращающаяся часть) и статор (неподвижная часть), к которому крепится входное устройство. Иногда во входных устройствах устанавливаются защитные сетки, предотвращающие попадание в компрессор посторонних предметов, которые могут привести к повреждению лопаток.

Ротор компрессора состоит из нескольких рядов профилированных рабочих лопаток, расположенных по окружности и последовательно чередующихся вдоль оси вращения. Роторы подразделяют на барабанные (рис. 102, а), дисковые (рис. 102, б) и барабаннодисковые (рис. 102, в).

Статор компрессора состоит из кольцевого набора профилированных лопаток, закрепленных в корпусе. Ряд неподвижных лопаток, называемых спрямляющим аппаратом, в совокупности с рядом рабочих лопаток называется ступенью компрессора.

В современных авиационных турбореактивных двигателях применяются многоступенчатые компрессоры, увеличивающие эффективность процесса сжатия воздуха. Ступени компрессора согласуются между собой таким образом, чтобы воздух на выходе из одной ступени плавно обтекал лопатки следующей ступени.

Нужное направление воздуха в следующую ступень обеспечивает спрямляющий аппарат. Для этой же цели служит и направляющий аппарат, устанавливаемый перед компрессором. В некоторых конструкциях двигателей направляющий аппарат может отсутствовать.

Одним из основных элементов турбореактивного двигателя является камера сгорания, расположенная за компрессором. В конструктивном отношении камеры сгорания выполняются трубчатыми (рис. 103), кольцевыми (рис. 104), трубчато-кольцевыми (рис. 105).




Трубчатая (индивидуальная) камера сгорания состоит из жаровой трубы и наружного кожуха, соединенных между собой стаканами подвески. В передней части камеры сгорания устанавливаются топливные форсунки и завихритель, служащий для стабилизации пламени. На жаровой трубе имеются отверстия для подвода воздуха, предотвращающего перегрев жаровой трубы. Поджигание топливо-воздушной смеси в жаровых трубах осуществляется специальными запальными устройствами, устанавливаемыми на отдельных камерах. Между собой жаровые трубы соединяются патрубками, которые обеспечивают поджигание смеси во всех камерах.



Кольцевая камера сгорания выполняется в форме кольцевой полости, образованной наружным и внутренним кожухами камеры. В передней части кольцевого канала устанавливается кольцевая жаровая труба, а в носовой части жаровой трубы - завихрители и форсунки.

Трубчато-кольцевая камера сгорания состоит из наружного и внутреннего кожухов, образующих кольцевое пространство, внутри которого размещаются индивидуальные жаровые трубы.

Для привода компрессора ТРД служит газовая турбина. В современных двигателях газовые турбины выполняются осевыми. Газовые турбины могут быть одноступенчатыми и многоступенчатыми (до шести ступеней). К основным узлам турбины относятся сопловые (направляющие) аппараты и рабочие колеса, состоящие из дисков и расположенных на их ободах рабочих лопаток. Рабочие колеса крепятся к валу турбины и образуют вместе с ним ротор (рис. 106). Сопловые аппараты располагаются перед рабочими лопатками каждого диска. Совокупность неподвижного соплового аппарата и диска с рабочими лопатками называется ступенью турбины. Рабочие лопатки крепятся к диску турбины при помощи елочного замка (рис. 107).

Выпускное устройство (рис. 108) состоит из выпускной трубы, внутреннего конуса, стойки и реактивного сопла. В некоторых случаях из условий компоновки двигателя на самолете между выпускной трубой и реактивным соплом устанавливается удлинительная труба. Реактивные сопла могут быть с регулируемым и нерегулируемым выходным сечением.

Принцип работы. В отличие от поршневого двигателя рабочий процесс в газотурбинных двигателях не разделен на отдельные такты, а протекает непрерывно.

Принцип работы турбореактивного двигателя заключается в следующем. В полете воздушный поток, набегающий на двигатель, проходит через входное устройство в компрессор. Во входном устройстве происходит предварительное сжатие воздуха и частичное преобразование кинетической энергии движущегося воздушного потока в потенциальную энергию давления. Более значительному сжатию воздух подвергается в компрессоре. В турбореактивных двигателях с осевым компрессором при быстром вращении ротора лопатки компрессора, подобно лопастям вентилятора, прогоняют воздух в сторону камеры сгорания. В установленных за рабочими колесами каждой ступени компрессора спрямляющих аппаратах вследствие диффузорной формы межлопаточных каналов происходит преобразование приобретенной в колесе кинетической энергии потока в потенциальную энергию давления.

В двигателях с центробежным компрессором сжатие воздуха происходит за счет воздействия центробежной силы. Воздух, входя в компрессор, подхватывается лопатками быстро вращающейся крыльчатки и под действием центробежной силы отбрасывается от центра к окружности колеса компрессора. Чем быстрее вращается крыльчатка, тем большее давление создается компрессором.

Благодаря компрессору ТРД могут создавать тягу при работе на месте. Эффективность процесса сжатия воздуха в компрессоре


характеризуется величиной степени повышения давления π к, которая представляет собой отношение давления воздуха на выходе из компрессора р 2 к давлению атмосферного воздуха р H


Воздух, сжатый во входном устройстве и компрессоре, далее поступает в камеру сгорания, разделяясь на два потока. Одна часть воздуха (первичный воздух), составляющая 25-35% от общего расхода воздуха, направляется непосредственно в жаровую трубу, где происходит основной процесс сгорания. Другая часть воздуха (вторичный воздух) обтекает наружные полости камеры сгорания, охлаждая последнюю, и на выходе из камеры смешивается с продуктами сгорания, уменьшая температуру газовоздушного потока до величины, определяемой жаропрочностью лопаток турбины. Незначительная часть вторичного воздуха через боковые отверстия жаровой трубы проникает в зону горения.

Таким образом, в камере сгорания происходит образование топливо-воздушной смеси путем распыливания топлива через форсунки и смешения его с первичным воздухом, горение смеси и смешение продуктов сгорания со вторичным воздухом. При запуске двигателя зажигание смеси осуществляется специальным запальным устройством, а при дальнейшей работе двигателя топливо-воздушная смесь поджигается уже имеющимся факелом пламени.

Образовавшийся в камере сгорания газовый поток, обладающий высокой температурой и давлением, устремляется на турбину через суживающийся сопловой аппарат. В каналах соплового аппарата скорость газа резко возрастает до 450-500 м/сек и происходит частичное преобразование тепловой (потенциальной) энергии в кинетическую. Газы из соплового аппарата попадают на лопатки турбины, где кинетическая энергия газа преобразуется в механическую работу вращения турбины. Лопатки турбины, вращаясь вместе с дисками, вращают вал двигателя и тем самым обеспечивается работа компрессора.

В рабочих лопатках турбины может происходить либо только процесс преобразования кинетической энергии газа в механическую работу вращения турбины, либо еще и дальнейшее расширение газа с увеличением его скорости. В первом случае газовая турбина называется активной, во втором - реактивной. Во втором случае лопатки турбины, помимо активного воздействия набегающей газовой струи, испытывают и реактивное воздействие за счет ускорения газового потока.

Окончательное расширение газа происходит в выходном устройстве двигателя (реактивном сопле). Здесь давление газового потока уменьшается, а скорость возрастает до 550-650 м/сек (в земных условиях).

Таким образом, потенциальная энергия продуктов сгорания в двигателе преобразуется в кинетическую энергию в процессе расширения (в турбине и выходном сопле). Часть кинетической энергии при этом идет на вращение турбины, которая в свою очередь вращает компрессор, другая часть - на ускорение газового потока (на создание реактивной тяги).

Турбовинтовые двигатели

Устройство и принцип действия. Для современных самолетов,

обладающих большой грузоподъемностью я дальностью полета, нужны двигатели, которые могли бы развить необходимые тяги при минимальном удельном весе. Этим требованиям удовлетворяют турбореактивные двигатели. Однако они неэкономичны по сравнению с винтомоторными установками на небольших скоростях полета. В связи с этим некоторые типы самолетов, предназначенные для полетов с относительно невысокими скоростями и с большой дальностыо, требуют постановки двигателей, которые сочетали бы в себе преимущества ТРД с преимуществами винтомоторной установки на малых скоростях полета. К таким двигателям относятся турбовинтовые двигатели (ТВД).

Турбовинтовым двигателем называется газотурбинный авиационный двигатель, в котором турбина развивает мощность, большую потребной для вращения компрессора, и этот избыток мощности используется для вращения воздушного винта. Принципиальная схема ТВД показана на рис. 109.

Как видно из схемы, турбовинтовой двигатель состоит из тех же узлов и агрегатов, что и турбореактивный. Однако в отличие от ТРД на турбовинтовом двигателе дополнительно смонтированы воздушный винт и редуктор. Для получения максимальной мощности двигателя турбина должна развивать большие обороты (до 20000 об/мин). Если с этой же скоростью будет вращаться воздушный винт, то коэффициент полезного действия последнего будет крайне низким, так как наибольшего значения к. п. д. винта на расчетных режимах полета достигает при 750-1 500 об/мин.


Для уменьшения оборотов воздушного винта по сравнению с оборотами газовой турбины в турбовинтовом двигателе устанавливается редуктор. На двигателях большой мощности иногда используют два винта, вращающихся в противоположные стороны, причем работу обоих воздушных винтов обеспечивает один редуктор.

В некоторых турбовинтовых двигателях компрессор приводится во вращение одной турбиной, а воздушный винт - другой. Это создает благоприятные условия для регулирования двигателя.

Тяга у ТВД создается главным образом воздушным винтом (до 90%) и лишь незначительно за счет реакции газовой струи.

В турбовинтовых двигателях применяются многоступенчатые турбины (число ступеней от 2 до 6), что диктуется необходимостью срабатывать на турбине ТВД большие теплоперепады, чем на турбине ТРД. Кроме того, применение многоступенчатой турбины позволяет снизить ее обороты и, следовательно, габариты и вес редуктора.

Назначение основных элементов ТВД ничем не отличается от назначения тех же элементов ТРД. Рабочий процесс ТВД также аналогичен рабочему процессу ТРД. Так же, как и в ТРД, воздушный поток, предварительно сжатый во входном устройстве, подвергается основному сжатию в компрессоре и далее поступает в камеру сгорания, в которую одновременно через форсунки впрыскивается топливо. Образовавшиеся в результате сгорания топливовоздушной смеси газы обладают высокой потенциальной энергией. Они устремляются в газовую турбину, где, почти полностью расширяясь, производят работу, которая затем передается компрессору, воздушному винту и приводам агрегатов. За турбиной давление газа практически равно атмосферному.

В современных турбовинтовых двигателях сила тяги, получаемая только за счет реакции вытекающей из двигателя газовой струи, составляет 10-20% суммарной силы тяги.

Двухконтурные турбореактивные двигатели

Стремление повысить тяговый коэффициент полезного действия ТРД на больших дозвуковых скоростях полета привело к созданию двухконтурных турбореактивных двигателей (ДТРД).

В отличие от ТРД обычной схемы в ДТРД газовая турбина приводит во вращение (помимо компрессора и ряда вспомогательных агрегатов) низконапорный компрессор, называемый иначе вентилятором второго контура. Привод вентилятора второго контура ДТРД может осуществляться и от отдельной турбины, располагаемой за турбиной компрессора. Простейшая схема ДТРД представлена на рис. 110.


Первый (внутренний) контур ДТРД представляет собой схему обычного ТРД. Вторым (внешним) контуром является кольцевой канал с расположенным в нем вентилятором. Поэтому двухконтурные турбореактивные двигатели называют иногда турбовентиляторными.

Работа ДТРД происходит следующим образом. Набегающий на двигатель воздушный поток поступает в воздухозаборник и далее одна часть воздуха проходит через компрессор высокого давления первого контура, другая - через лопатки вентилятора (компрессора низкого давления) второго контура. Так как схема первого контура представляет собой обычную схему ТРД, то и рабочий процесс в этом контуре аналогичен рабочему процессу в ТРД. Действие вентилятора второго контура подобно действию многолопастного воздушного винта, вращающегося в кольцевом канале.

ДТРД могут найти применение и на сверхзвуковых летательных аппаратах, но в этом случае для увеличения их тяги необходимо предусматривать сжигание топлива во втором контуре. Для быстрого увеличения (форсирования) тяги ДТРД иногда осуществляется сжигание дополнительного топлива либо в воздушном потоке второго контура, либо за турбиной первого контура.

При сжигании дополнительного топлива во втором контуре необходимо увеличивать площадь его реактивного сопла для сохранения неизменными режимов работы обоих контуров. При несоблюдении этого условия расход воздуха через вентилятор второго контура уменьшится вследствие повышения температуры газа между вентилятором и реактивным соплом второго контура. Это повлечет за собой снижение потребной мощности для вращения вентилятора. Тогда, чтобы сохранить прежние числа оборотов двигателя, придется в первом контуре снизить температуру газа перед турбиной, а это приведет к уменьшению тяги в первом контуре. Повышение суммарной тяги будет недостаточным, а в некоторых случаях суммарная тяга форсированного двигателя может оказаться меньше суммарной тяги обычного ДТРД. Кроме того, форсирование тяги связано с большими удельными расходами топлива. Все эти обстоятельства ограничивают применение данного способа увеличения тяги. Однако форсирование тяги ДТРД может найти широкое применение при сверхзвуковых скоростях полета.

Используемая литература: "Основы авиации" авторы: Г.А. Никитин, Е.А. Баканов

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

К авиационным двигателям относятся все типы тепловых машин, используемых как движители для летательных аппаратов авиационного типа, т. е. аппаратов, использующих аэродинамическое качество для перемещения, маневра и т. п. в пределах атмосферы (самолеты, вертолеты, крылатые ракеты классов "В-В", "В-3", "3-В", "3-3", авиакосмические системы и др.). Отсюда вытекает большое разнообразие применяемых двигателей - от поршневых до ракетных.

Авиационные двигатели (рис.1) делятся на три обширных класса:

  • поршневые (ПД );
  • воздушно-реактивные (ВРД включая ГТД );
  • ракетные (РД или РкД ).

Более детальной классификации подлежат два последних класса, в особенности класс ВРД .

По принципу сжатия воздуха ВРД делятся на:

  • компрессорные , т. е. включающие компрессор для механического сжатия воздуха;
  • бескомпрессорные :
    • прямоточные ВРД (СПВРД ) со сжатием воздуха только от скоростного напора;
    • пульсирующие ВРД (ПуВРД ) с дополнительным сжатием воздуха в специальных газодинамических устройствах периодического действия.

Класс ракетных двигателей ЖРД также относится к компрессорному типу тепловых машин, так как в этих двигателях сжатие рабочего тела (топлива) осуществляется в жидком состоянии в турбонасосных агрегатах.

Ракетный двигатель твердого топлива (РДТТ ) не имеет специального устройства для сжатия рабочего тела. Оно осуществляется при начале горения топлива в полузамкнутом пространстве камеры сгорания, где располагается заряд топлива.

По принципу действия существует такое деление: ПД и ПуВРД работают по циклу периодического действия, тогда как в ВРД , ГТД и РкД осуществляется цикл непрерывного действия. Это дает им преимущества по относительным показателям мощности, тяги, массе и др., что и определило, в частности, целесообразность их использования в авиации.

По принципу создания реактивной тяги ВРД делятся на:

  • двигатели прямой реакции ;
  • двигатели непрямой реакции .

Двигатели первого типа создают тяговое усилие (тягу Р) непосредственно - это все ракетные двигатели (РкД ), турбореактивные без форсажа и с форсажными камерами (ТРД и ТРДФ ), турбореактивные двухконтурные (ТРДД и ТРДДФ ), прямоточные сверхзвуковые и гиперзвуковые (СПВРД и ГПВРД ), пульсирующие (ПуВРД ) и многочисленные комбинированные двигатели .

Газотурбинные двигатели непрямой реакции (ГТД ) передают вырабатываемую ими мощность специальному движителю (винту, винтовентилятору, несущему винту вертолета и т. п.), который и создает тяговое усилие, используя тот же воздушно-реактивный принцип (турбовинтовые , турбовинтовентиляторные , турбовальные двигатели - ТВД , ТВВД , ТВГТД ). В этом смысле класс ВРД объединяет все двигатели, создающие тягу по воздушно-реактивному принципу.

На основе рассмотренных типов двигателей простых схем рассматривается ряд комбинированных двигателей , соединяющих особенности и преимущества двигателей различных типов, например, классы:

  • турбопрямоточных двигателей - ТРДП (ТРД или ТРДД + СПВРД );
  • ракетно-прямоточных - РПД (ЖРД или РДТТ + СПВРД или ГПВРД );
  • ракетно-турбинных - РТД (ТРД + ЖРД );

и многие другие комбинации двигателей более сложных схем.

Поршневые двигатели (ПД)

Двухрядный звездообразный 14-ти цилиндровый поршневой двигатель с воздушным охлаждением. Общий вид.

Поршневой двигатель (англ. Piston engine ) -

Классификация поршневых двигателей. Авиационные поршневые двигатели могут быть классифицированы по различным признакам:

  • В зависимости от рода применяемого топлива - на двигатели легкого или тяжелого топлива.
  • По способу смесеобразования - на двигатели с внешним смесеобразованием (карбюраторные) и двигатели с внутренним смесеобразованием (непосредственный впрыск топлива в цилиндры).
  • В зависимости от способа воспламенения смеси - на двигатели с принудительным зажиганием и двигатели с воспламенением от сжатия.
  • В зависимости от числа тактов - на двигатели двухтактные и четырехтактные.
  • В зависимости от способа охлаждения - на двигатели жидкостного и воздушного охлаждения.
  • По числу цилиндров - на двигатели четырехцилиндровые, пятицилиндровые, двенадцатицилиндровые и т.д.
  • В зависимости от расположения цилиндров - на рядные (с расположением цилиндров в ряд) и звездообразные (с расположением цилиндров по окружности).

Рядные двигатели в свою очередь подразделяются на однорядные, двухрядные V-образные, трехрядные W-образные, четырехрядные Н-образные или Х-образные двигатели. Звездообразные двигатели также подразделяются на однорядные, двухрядные и многорядные.

  • По характеру изменения мощности в зависимости от изменения высоты - на высотные, т.е. двигатели, сохраняющие мощность с подъемом самолета на высоту, и невысотные двигатели, мощность которых падает с увеличением высоты полета.
  • По способу привода воздушного винта - на двигатели с прямой передачей на винт и редукторные двигатели.

Современные авиационные поршневые двигатели представляют собой звездообразные четырехтактные двигатели, работающие на бензине. Охлаждение цилиндров поршневых двигателей выполняется, как правило, воздушным. Ранее в авиации находили применение поршневые двигатели и с водяным охлаждением цилиндров.

Сгорание топлива в поршневом двигателе осуществляется в цилиндрах, при этом тепловая энергия преобразуется в механическую, так как под действием давления образующихся газов происходит поступательное движение поршня. Поступательное движение поршня в свою очередь преобразуется во вращательное движение коленчатого вала двигателя через шатун, являющийся связующим звеном между цилиндром с поршнем и коленчатым валом.

Газотурбинные двигатели (ГТД)

Газотурбинный двигатель - тепловая машина, предназначенная для преобразования энергии сгорания топлива в кинетическую энергию реактивной струи и (или) в механическую работу на валу двигателя, основными элементами которой являются компрессор, камера сгорания и газовая турбина.

Одновальные и многовальные двигатели

Простейший газотурбинный двигатель имеет только одну турбину, которая приводит компрессор и одновременно является источником полезной мощности. Это накладывает ограничение на режимы работы двигателя.

Иногда двигатель выполняется многовальным. В этом случае имеется несколько последовательно стоящих турбин, каждая из которых приводит свой вал. Турбина высокого давления (первая после камеры сгорания) всегда приводит компрессор двигателя, а последующие могут приводить как внешнюю нагрузку (винты вертолёта или корабля, мощные электрогенераторы и т.д.), так и дополнительные компрессоры самого двигателя, расположенные перед основным.

Преимущество многовального двигателя в том, что каждая турбина работает при оптимальном числе оборотов и нагрузке. При нагрузке, приводимой от вала одновального двигателя, была бы очень плоха приемистость двигателя, то есть способность к быстрой раскрутке, так как турбине требуется поставлять мощность и для обеспечения двигателя большим количеством воздуха (мощность ограничивается количеством воздуха), и для разгона нагрузки. При двухвальной схеме легкий ротор высокого давления быстро выходит на режим, обеспечивая двигатель воздухом, а турбину низкого давления большим количеством газов для разгона. Также есть возможность использовать менее мощный стартер для разгона при пуске только ротора высокого давления.

Турбореактивный двигатель (ТРД)

Турбореактивный двигатель (англ. Turbojet engine ) - тепловой двигатель, в котором используется газовая турбина, а реактивная тяга образуется при истечении продуктов сгорания из реактивного сопла. Часть работы турбины расходуется на сжатие и нагревание воздуха (в компрессоре).

Схема турбореактивного двигателя:
1. входное устройство;
2. осевой компрессор;
3. камера сгорания;
4. рабочие лопатки турбины;
5. сопло.

В турбореактивном двигателе сжатие рабочего тела на входе в камеру сгорания и высокое значение расхода воздуха через двигатель достигается за счёт совместного действия встречного потока воздуха и компрессора, размещённого в тракте ТРД сразу после входного устройства, перед камерой сгорания. Компрессор приводится в движение турбиной, смонтированной на одном валу с ним, и работающей на том же рабочем теле, нагретом в камере сгорания, из которого образуется реактивная струя. Во входном устройстве осуществляется рост статического давления воздуха за счёт торможения воздушного потока. В компрессоре осуществляется рост полного давления воздуха за счёт совершаемой компрессором механической работы.

Степень повышения давления в компрессоре является одним из важнейших параметров ТРД, поскольку от него зависит эффективный КПД двигателя. Если у первых образцов ТРД этот показатель составлял 3, то у современных он достигает 40. Для повышения газодинамической устойчивости компрессоров они выполняются двухкаскадными. Каждый из каскадов работает со своей скоростью вращения и приводится в движение своей турбиной. При этом вал 1-го каскада компрессора (низкого давления), вращаемого последней (самой низкооборотной) турбиной, проходит внутри полого вала компрессора второго каскада (высокого давления). Каскады двигателя так же именуют роторами низкого и высокого давления.

Камера сгорания большинства ТРД имеет кольцевую форму и вал турбина-компрессор проходит внутри кольца камеры. При поступлении в камеру сгорания воздух разделяется на 3 потока:

  • Первичный воздух - поступает через фронтальные отверстия в камере сгорания, тормозится перед форсунками и принимает непосредственное участие в формировании топливно-воздушной смеси. Непосредственно участвует в сгорании топлива. Топливо-воздушная смесь в зоне сгорания топлива в ВРД по своему составу близка к стехиометрической .
  • Вторичный воздух - поступает через боковые отверстия в средней части стенок камеры сгорания и служит для их охлаждения путём создания потока воздуха с гораздо более низкой температурой, чем в зоне горения.
  • Третичный воздух - поступает через специальные воздушные каналы в выходной части стенок камеры сгорания и служит для выравнивания поля температур рабочего тела перед турбиной.

Газовоздушная смесь расширяется и часть её энергии преобразуется в турбине через рабочие лопатки в механическую энергию вращения основного вала. Эта энергия расходуется, в первую очередь, на работу компрессора, а также используется для привода агрегатов двигателя (топливных подкачивающих насосов, масляных насосов и т. п.) и привода электрогенераторов, обеспечивающих энергией различные бортовые системы.

Основная часть энергии расширяющейся газовоздушной смеси идёт на ускорение газового потока в сопле, который истекает из него, создавая реактивную тягу.

Чем выше температура сгорания, тем выше КПД двигателя. Для предупреждения разрушения деталей двигателя используют жаропрочные сплавы, оснащенные системами охлаждения, и термобарьерные покрытия.

Турбореактивный двигатель с форсажной камерой (ТРДФ)

Турбореактивный двигатель с форсажной камерой - модификация ТРД, применяемая в основном на сверхзвуковых самолётах. Отличается от ТРД наличием форсажной камеры между турбиной и реактивным соплом. В эту камеру подается дополнительное количество топлива через специальные форсунки, которое сжигается. Процесс горения организуется и стабилизируется с помощью фронтового устройства, обеспечивающего перемешивание испаренного топлива и основного потока. Повышение температуры, связанное с подводом тепла в форсажной камере, увеличивает располагаемую энергию продуктов сгорания и, следовательно, скорость истечения из реактивного сопла. Соответственно, возрастает и реактивная тяга (форсаж) до 50 %, но расход топлива резко возрастает. Двигатели с форсажной камерой, как правило, не используются в коммерческой авиации по причине их низкой экономичности.

Двухконтурный турбореактивный двигатель (ТРДД)

Первым, предложившим концепцию ТРДД в отечественном авиадвигателестроении был Люлька А. М. (На основе исследований, проводившихся с 1937, А. М. Люлька представил заявку на изобретение двухконтурного турбореактивного двигателя. Авторское свидетельство вручили 22 апреля 1941 года.)

Можно сказать, что с 1960-х и по сей день, в самолетном авиадвигателестроении - эра ТРДД. ТРДД различных типов являются наиболее распространенным классом ВРД, используемых на самолетах, от высокоскоростных истребителей-перехватчиков с ТРДДФсм с малой степенью двухконтурности, до гигантских коммерческих и военно-транспортных самолетов с ТРДД с высокой степенью двухконтурности.

Схема турбореактивного двухконтурного двигателя:
1. компрессор низкого давления;
2. внутренний контур;
3. выходной поток внутреннего контура;
4. выходной поток внешнего контура.

В основу двухконтурных турбореактивных двигателей положен принцип присоединения к ТРД дополнительной массы воздуха, проходящей через внешний контур двигателя, позволяющий получать двигатели с более высоким полетным КПД, по сравнению с обычными ТРД.

Пройдя через входное устройство, воздух попадает в компрессор низкого давления, именуемый вентилятором. После вентилятора воздух разделяется на 2 потока. Часть воздуха попадает во внешний контур и, минуя камеру сгорания, формирует реактивную струю в сопле. Другая часть воздуха проходит сквозь внутренний контур, полностью идентичный с ТРД, о котором говорилось выше, с той разницей, что последние ступени турбины в ТРДД являются приводом вентилятора.

Одним из важнейших параметров ТРДД, является степень двухконтурности (m), то есть отношение расхода воздуха через внешний контур к расходу воздуха через внутренний контур. (m = G 2 / G 1 , где G 1 и G 2 расход воздуха через внутренний и внешний контуры соответственно.)

При степени двухконтурности меньше 4 (m<4) потоки контуров на выходе, как правило, смешиваются и выбрасываются через общее сопло, если m>4 - потоки выбрасываются раздельно, так как из-за значительной разности давлений и скоростей смешение затруднительно.

В ТРДД заложен принцип повышения полетного КПД двигателя, за счёт уменьшения разницы между скоростью истечения рабочего тела из сопла и скоростью полета. Уменьшение тяги, которое вызовет уменьшение этой разницы между скоростями, компенсируется за счёт увеличения расхода воздуха через двигатель. Следствием увеличения расхода воздуха через двигатель является увеличение площади фронтального сечения входного устройства двигателя, следствием чего является увеличение диаметра входа в двигатель, что ведет к увеличению его лобового сопротивления и массы. Иными словами, чем выше степень двухконтурности - тем большего диаметра будет двигатель при прочих равных условиях.

Все ТРДД можно разбить на 2 группы:

  • со смешением потоков за турбиной;
  • без смешения.

В ТРДД со смешением потоков (ТРДДсм ) потоки воздуха из внешнего и внутреннего контура попадают в единую камеру смешения. В камере смешения эти потоки смешиваются и покидают двигатель через единое сопло с единой температурой. ТРДДсм более эффективны, однако наличие камеры смешения приводит к увеличению габаритов и массы двигателя

ТРДД как и ТРД могут быть снабжены регулируемыми соплами и форсажными камерами. Как правило это ТРДДсм с малыми степенями двухконтурности для сверхзвуковых военных самолетов.

Военный ТРДДФ EJ200 (m=0,4)

Двухконтурный турбореактивный двигатель с форсажной камерой (ТРДДФ)

Двухконтурный турбореактивный двигатель с форсажной камерой - модификация ТРДД. Отличается наличием форсажной камеры. Нашел широкое применение.

Продукты сгорания, выходящие из турбины, смешиваются с воздухом, поступающим из внешнего контура, а затем к общему потоку подводится тепло в форсажной камере, работающей по такому же принципу, как и в ТРДФ . Продукты сгорания в этом двигателе истекают из одного общего реактивного сопла. Такой двигатель называется двухконтурным двигателем с общей форсажной камерой .

ТРДДФ с отклоняемым вектором тяги (ОВТ).

Управление вектором тяги (УВТ) / Отклонение вектора тяги (ОВТ)

Специальные поворотные сопла, на некоторох ТРДД(Ф), позволяют отклонять истекающий из сопла поток рабочего тела относительно оси двигателя. ОВТ приводит к дополнительным потерям тяги двигателя за счёт выполнения дополнительной работы по повороту потока и усложняют управление самолетом. Но эти недостатки полностью компенсируются значительным повышением маневренности и сокращением разбега самолета при взлете и пробега при посадке, до вертикальных взлета и посадки включительно. ОВТ используется исключительно в военной авиации.

ТРДД с высокой степенью двухконтурности / Турбовентиляторный двигатель

Схема турбовентиляторного двигателя:
1. вентилятор;
2. защитный обтекатель;
3. турбокомпрессор;
4. выходной поток внутреннего контура;
5. выходной поток внешнего контура.

Турбовентиляторный двигатель (англ. Turbofan engine ) - это ТРДД с высокой степенью двухконтурности (m>2). Здесь компрессор низкого давления преобразуется в вентилятор, отличающийся от компрессора меньшим числом ступеней и большим диаметром, и горячая струя практически не смешивается с холодной.

В данном типе двигателей используется одноступенчатый вентилятор большого диаметра, обеспечивающий высокий расход воздуха через двигатель на всех скоростях полета, включая низкие скорости при взлёте и посадке. По причине большого диаметра вентилятора сопло внешнего контура таких ТРДД становится достаточно тяжёлым и его часто выполняют укороченным, со спрямляющими аппаратами (неподвижными лопатками, поворачивающими воздушный поток в осевое направление). Соответственно, большинство ТРДД с высокой степенью двухконтурности - без смешения потоков .

Устройство внутреннего контура таких двигателей подобно устройству ТРД, последние ступени турбины которого являются приводом вентилятора.

Внешний контур таких ТРДД, как правило, представляет собой одноступенчатый вентилятор большого диаметра, за которым располагается спрямляющий аппарат из неподвижных лопаток, которые разгоняют поток воздуха за вентилятором и поворачивают его, приводя к осевому направлению, заканчивается внешний контур соплом.

По причине того, что вентилятор таких двигателей, как правило, имеет большой диаметр, и степень повышения давления воздуха в вентиляторе не высока - сопло внешнего контура таких двигателей достаточно короткое. Расстояние от входа в двигатель до среза сопла внешнего контура может быть значительно меньше расстояния от входа в двигатель до среза сопла внутреннего контура. По этой причине достаточно часто сопло внешнего контура ошибочно принимают за обтекатель вентилятора.

ТРДД с высокой степенью двухконтурности имеют двух- или трёхвальную конструкцию.

Достоинства и недостатки .

Главным достоинством таких двигателей является их высокая экономичность.

Недостатки - большие масса и габариты. Особенно - большой диаметр вентилятора, который приводит к значительному лобовому сопротивлению воздуха в полете.

Область применения таких двигателей - дальне- и среднемагистральные коммерческие авиалайнеры, военно-транспортная авиация.


Турбовинтовентиляторный двигатель (ТВВД)

Турбовинтовентиляторный двигатель (англ. Turbopropfan engine ) -

Полезная модель позволяет повысить эффективность работы турбореактивного двухконтурного двигателя (ТРДД), путем гарантированного охлаждения последней ступени турбины на максимальных режимах (например, на взлетном режиме) и повышения экономичности на крейсерских режимах работы. Система охлаждения последней ступени осевой турбины низкого давления ТРДД содержит заборник воздуха из наружного контура двигателя и дополнительно заборник воздуха за одной из промежуточных ступеней компрессора. Система охлаждения снабжена устройством регулирования подачи воздуха в полость, примыкающую к задней поверхности диска турбины последней ступени. Устройство регулирования содержит поворотное кольцо с приводом. Поворотное кольцо контактирует с торцевой стенкой опоры турбины. В торцевой стенке опоры выполнены два отверстия. Одно отверстие соединяется с кольцевой полостью опоры турбины последней ступени, а другое - с полостью воздухосборника, расположенного в кольцевой полости опоры турбины. Поворотное кольцо устройства регулирования снабжено сквозным эллипсовидным отверстием, расположенным с возможностью поочередного сообщения с одним из двух сквозных отверстий торцевой стенки опоры турбины.

Полезная модель относится к системам охлаждения элементов двигателей летательных аппаратов, а более точно касается системы охлаждения турбины низкого давления (ТНД) турбореактивного двухконтурного двигателя (ТРДД).

Для охлаждения горячих элементов конструкции турбореактивных двигателей используют охлаждающий воздух.

Известна система охлаждения турбины турбореактивного двухконтурного двигателя, в которой для охлаждения лопаток турбины используется воздух, забираемый из промежуточной или последней ступени компрессора высокого давления (КВД) (см., например, «Конструкция турбокомпрессора ТРДДФ», Изд-во МАИ, 1996 г, стр.27-28). Отобранный из КВД охлаждающий воздух обладает достаточно высоким давлением (по сравнению с местом его выпуска в проточный тракт турбины), что обеспечивает его гарантированный подвод ко всем поверхностям охлаждения. В связи с этим эффективность работы такой системы охлаждения весьма высока.

Недостаток применения такой системы охлаждения состоит в снижении удельной тяги на максимальных режимах и экономичности на крейсерских режимах работы. Это снижение происходит вследствие того, что часть мощности турбины высокого давления, идущая на сжатие охлаждающего ТНД воздуха, теряется и не используется ни на вращение компрессора высокого давления (КВД), ни на создание тяги двигателя. Например, при расходе охлаждающего лопатки ТНД воздуха, составляющем ~5% от расхода воздуха на входе в КВД, и отборе воздуха из последней его ступени потери мощности могут составить ~5%, что эквивалентно снижению кпд турбины на эту же величину.

Наиболее близким к заявляемому техническому решению является система охлаждения турбины турбореактивного двухконтурного двигателя, в которой для охлаждения лопаток турбины низкого давления используется воздух, забираемый из канала наружного контура (см., например, «Турбореактивный двухконтурный двигатель с форсажной камерой АЛ-31Ф» Учебное пособие, изд-во ВВИА им Н.Е.Жуковского, 1987 год, стр.128-130). Охлаждение турбины осуществляется на всех режимах работы двигателя. При таком варианте отбора охлаждающего воздуха не расходуется дополнительная мощность турбины на его сжатие в КВД, поэтому большее количество потенциальной энергии газового потока за турбиной может быть преобразовано в реактивном сопле в кинетическую энергию выхлопной струи, что, в свою очередь, приведет к увеличению тяги двигателя и его экономичности.

Недостаток применения такой системы охлаждения состоит в снижении эффективности охлаждения вследствие недостаточного давления воздуха, отобранного из канала наружного контура охлаждающего воздуха на режимах работы двигателя, близких к максимальным (например, взлетный режим). На указанных режимах работы, оптимальное для эффективности работы двигателя (максимального значения удельной тяги двигателя) соотношение давлений в канале наружного контура и на выходе из турбины низкого давления близко к единице. Такого перепада давлений с учетом потерь в подводящих каналах и патрубках недостаточно для реализации эффективного охлаждения рабочей лопатки ТНД двигателя на этих режимах.

Известные технические решения имеют ограниченные возможности, так как приводят к снижению эффективности работы двигателя.

В основу полезной модели положена задача повышения эффективности работы ТРДД путем гарантированного охлаждения последней ступени турбины на максимальных режимах (например, взлетном) и повышения экономичности на крейсерских режимах работы.

Технический результат - повышение эффективности работы ТРДД.

Поставленная задача решается тем, что система охлаждения последней ступени осевой турбины низкого давления турбореактивного двухконтурного двигателя содержит заборник воздуха из наружного контура двигателя. Заборник воздуха сообщается через полости стоек и кольцевую полость опоры турбины последней ступени, снабженную передней торцевой стенкой, с полостью, примыкающей к задней поверхности диска турбины, и через напорный диск с внутренними полостями лопаток. Торцевая стенка опоры турбины имеет сквозные отверстия, а внешняя поверхность корпуса турбины последней ступени выполнена в виде части внутренней поверхности канала наружного контура двигателя.

Новым в полезной модели является то, что система охлаждения дополнительно снабжена на входе заборником воздуха за одной из промежуточных ступеней компрессора, соединенного трубопроводом с полым воздухосборником на выходе. Система охлаждения снабжена устройством регулирования подачи воздуха в полость, примыкающую к задней поверхности турбины последней ступени. Устройство регулирования содержит поворотное кольцо с приводом. Поворотное кольцо контактирует с торцевой стенкой опоры турбины. В торцевой стенке опоры выполнены два отверстия. Одно отверстие соединяется с кольцевой полостью опоры турбины последней ступени, а другое - с полостью воздухосборника, расположенного в кольцевой полости опоры турбины. Поворотное кольцо устройства регулирования снабжено сквозным эллипсовидным отверстием, расположенным с возможностью поочередного сообщения с одним из двух сквозных отверстий торцевой стенки опоры турбины.

Выполнение системы охлаждения последней ступени осевой турбины низкого давления турбореактивного двухконтурного двигателя в соответствии с заявленной полезной моделью обеспечивает:

Дополнительное снабжение системы охлаждения на входе заборником воздуха за одной из промежуточных ступеней компрессора, соединенного трубопроводом с полым воздухосборником на выходе, сообщающимся с полостью, задней поверхности диска последней ступени турбины, обеспечивает гарантированное охлаждение на максимальных режимах, в том числе на взлетном режиме;

Снабжение системы охлаждения устройством регулирования подачи воздуха в полость, примыкающую к задней поверхности диска последней ступени турбины из промежуточной ступени компрессора или из наружного контура, обеспечивает эффективность охлаждения рабочей лопатки ТНД на всех режимах работы двигателя. Устройство регулирования позволяет совместить положительные качества обеих систем охлаждения, то есть путем последовательного подключения различных каналов подвода охлаждающего воздуха наиболее рационально обеспечить работоспособность и эффективность работы системы охлаждения турбины во всем диапазоне эксплуатационных режимов двигателя и тем самым улучшить тягово-экономические и ресурсные характеристики двигателя. Так, на взлетном режиме устройство регулирования соединено таким образом, что обеспечивается поступление охлаждающего воздуха из промежуточной ступени компрессора с давлением, достаточным для эффективного охлаждения последней ступени турбины. Это позволяет либо при фиксированном расходе охлаждающего воздуха повысить ресурс турбины и всего двигателя в целом, либо уменьшить расход охлаждающего воздуха и тем самым повысить тяговые характеристики двигателя. Воздух в канале наружного контура не обладает необходимым для эффективного охлаждения избыточным давлением. На крейсерском режиме устройство регулирования обеспечивает поступление охлаждающего воздуха из канала наружного контура, при этом канал поступления воздуха из компрессора перекрывается (переключение положения кольца осуществляется по сигналу в зависимости от частоты вращения вала турбины низкого давления двигателя n нд и температуры торможения воздуха на входе в двигатель T* Н). Вследствие того, что охлаждающий воздух не проходит сжатие в компрессоре, уменьшается необходимая мощность КВД и повышается свободная энергия рабочего тела за турбиной; это приводит к росту тяги двигателя и его экономичности. Кроме того воздух из канала наружного контура обладает большим хладоресурсом, что позволит либо при фиксированном расходе охлаждающего воздуха повысить ресурс турбины и всего двигателя в целом, либо уменьшить расход охлаждающего воздуха и тем самым дополнительно повысить экономичность двигателя.

Таким образом, решена поставленная в полезной модели задача - повышение эффективности работы ТРДД, путем гарантированного охлаждения последней ступени турбины на максимальных режимах (например, взлетном) и повышения экономичности на крейсерских режимах работы по сравнению с известными аналогами.

Настоящая полезная модель поясняется последующим подробным описанием системы охлаждения и ее работы со ссылкой на чертежи, представленные на фиг.1-3, где

на фиг.1 схематично изображен продольный разрез последней ступени осевой турбины низкого давления турбореактивного двухконтурного двигателя и системы ее охлаждения;

на фиг.2 - вид А на фиг.1;

на фиг.3 - сечение Б-Б на фиг.2.

Система охлаждения последней ступени осевой турбины низкого давления турбореактивного двухконтурного двигателя содержит (см. фиг.1) заборник 1 воздуха из наружного контура 2 двигателя. Заборник 1 воздуха сообщается с полостью 3, примыкающей к задней поверхности диска 4 турбины через полости 5 стоек 6 и кольцевую полость 7 опоры турбины последней ступени, снабженную передней торцевой стенкой 8 со сквозными отверстиями 9 (см. фиг.2, 3) турбины, и по каналам 10 в диске 4 с внутренними полостями лопаток 11.

Система охлаждения последней ступени осевой турбины низкого давления турбореактивного двухконтурного двигателя дополнительно содержит на входе заборник воздуха за одной из промежуточных ступеней компрессора (на фиг.1 заборник воздуха и промежуточные ступени компрессора не показаны). Данный заборник воздуха соединен трубопроводом 12 с полым воздухосборником 13 на выходе, примыкающим к торцевой стенке 8 опоры турбины со сквозными отверстиями 14 (см. фиг.2, 3).

Причем система охлаждения снабжена устройством регулирования подачи воздуха в полость 3, примыкающую к задней поверхности диска 4 турбины последней ступени. Устройство регулирования, выполнено в виде поворотного кольца 15 (см. фиг.1-3) с приводом (привод не показан), контактирующим с торцевой стенкой 8 опоры турбины, где отверстие 9 обеспечивает сообщение полости 3 с кольцевой полостью 7, а отверстие 14 обеспечивает сообщение полости 3 с полостью 16 воздухосборника 13, расположенного в кольцевой полости 7 опоры турбины. Привод поворотного кольца 15 может быть выполнен, например, в виде пневмомотора или привода подобного типа. Поворотное кольцо 15 устройства регулирования имеет сквозное эллипсовидное отверстие 17, обеспечивающее возможность поочередного сообщения со сквозными отверстиями 9, 14 в торцевой стенке 8 опоры турбины.

Предлагаемая система охлаждения содержит заборник воздуха a (на фиг.1 заборник воздуха не показан) за одной из промежуточных ступеней компрессора, заборник 1 воздуха b из канала наружного контура 2. Работа системы подачи охлаждающего воздуха описана ниже.

Система охлаждения последней ступени осевой турбины низкого давления турбореактивного двухконтурного двигателя работает следующим образом. Кольцо 15 может находиться в двух положениях. При повороте кольца 15 в положение I (см. фиг.2) (взлетный режим работы двигателя) воздух а поступает по трубе 12, под действием перепада давлений, через воздухосборник 13, отверстие 14 в стенке 8 и отверстие 17 в кольце 15 в полость 3, примыкающую к задней поверхности диска 4. При этом проход в полость 3 воздуха b перекрыт кольцом 15. При повороте кольца 15 в положение II (не показано) (крейсерский режим), отверстие 17 поворачивается таким образом, что отверстие 14, перекрывается кольцом 15, и в полость 3 через отверстие 9 и отверстие 17 в кольце 15 поступает воздух b. В этом случае воздух a, отбираемый за промежуточной ступенью компрессора, в полость 3 не поступает.

Переключение кольца 15 в положение I или II осуществляется по сигналу в зависимости от частоты вращения n вала турбины низкого давления двигателя и температуры торможения воздуха на входе в двигатель T* Н. При высоких значениях параметра (взлетный режим работы двигателя) кольцо 15 находится в положении I, при низких значениях параметра (крейсерский режим) - в положении II.

Выполнение системы охлаждения в соответствии с заявленным техническим решением позволяет обеспечить необходимое охлаждение последней ступени турбины низкого давления на всех режимах работы двигателя, одновременно повышая эффективность и экономичность его работы.

Система охлаждения последней ступени осевой турбины низкого давления турбореактивного двухконтурного двигателя, содержащая заборник воздуха из наружного контура двигателя, сообщающийся через полости стоек и кольцевую полость опоры турбины последней ступени, снабженную передней торцевой стенкой, с полостью, примыкающей к задней поверхности диска турбины, и через напорный диск с внутренними полостями лопаток, где торцевая стенка опоры турбины имеет сквозные отверстия, отличающаяся тем, что система охлаждения дополнительно снабжена на входе заборником воздуха за одной из промежуточных ступеней компрессора, соединенного трубопроводом с полым воздухосборником на выходе, и устройством регулирования подачи воздуха в полость, примыкающую к задней поверхности турбины последней ступени, где устройство регулирования выполнено в виде поворотного кольца с приводом, контактирующим с торцевой стенкой опоры турбины, в торцевой стенке опоры выполнены два отверстия, где одно отверстие соединено с кольцевой полостью опоры турбины последней ступени, а другое - с полостью воздухосборника, расположенного в кольцевой полости опоры турбины, поворотное кольцо устройства регулирования снабжено сквозным эллипсовидным отверстием, расположенным с возможностью поочередного сообщения с одним из двух сквозных отверстий торцевой стенки опоры турбины.

3. ПРОЦЕСС РАСШИРЕНИЯ ГАЗА В ТУРБИНЕ

В главе рассматриваются следующие вопросы:
— назначение в ТРД;
— схема и принцип действия осевой ;
— окружное усилие, эффективная работа газа, кпд и мощность турбины;
— основные параметры, определяющие мощность тур-бины;
— совместная работа турбины и компрессора в ТРД;
— многоступенчатые турбины и особенности работы тур-бин двухвальных двигателей;
— выходные устройства ВРД.

Газ, обладающий значительной потенциальной энергией, из камеры сгорания поступает я турбину.
представляет собой лопаточную маши-ну, преобразующую энергию сжатого и нагретого в камерах сгорания газа в механическую работу на валу. В ТРД турбина служит для вращения ротора компрессо-ра и всех обслуживающих агрегатов: топливных, масляных, гидравлических насосов и др.
В сравнении с другими двигателями, преобразующими энергию газа в механическую работу, имеет ряд преимуществ:
— возможность получения больших мощностей в одном агрегате при малых габаритах и весе;
высокий кпд, что обусловлено хорошей аэродинамикой проточной части и отсутствием крутых поворотов потока;
— простота и надежность конструкции.
Турбины классифицируют по направлению движения по-тока газа, по числу ступеней и другим признакам.
По направлению движения потока газа турбины могут бытьрадиальными, когда поток движется от центра к пери-ферии вдоль радиуса элементов турбин, и осевыми, у которых поток движется вдоль оси турбины.
В ТРД применяются осевые турбины.
—По числу ступеней турбины ТРД выполняются одно, двух или много ступенчатыми в зависимости от величины степени расширения газа в турбине.
Классификация турбин по другим признакам рассматри-вается в следующем параграфе.

3.2. СХЕМА И ПРИНЦИП ДЕЙСТВИЯ СТУПЕНИ ОСЕВОЙ

Основными элементами ступени турбины являются сопло-вой аппарат (СА) и рабочее колесо (РК) рис. 26.
Лопатки СА и РК образуют систему каналов проточной части турбины, по которым протекает поток газа.
Для рассмотрения принципа действия ступени турбины рассечем ее цилиндрической поверхностью а— а и развернем ее на плоскость. Получим плоскостную турбинную решетку, состоящую из сечения СА и РК (рис. 27).
В поперечном сечении лопатки СА и РК представляют со-бой аэродинамические профили.
Газ из камеры сгорания с абсолютной скоростью потока С 3 , давлением Р 3 и температурой Т 3 поступает в каналы соп-лового аппарата. Сопловой аппарат предназначен для преоб-разования потенциальной энергии давления газового потока в кинетическую энергию. С этой целью каналы СА выполне-ны сужающимися по потоку (f 3 ΄< f 3 , где f — площадь сечения канала).

Скорость потока в СА увеличивается от С 3 до С 3 ", а давление и температура газа падают (Р 3 "<Р 3 и Т 3 "<Т 3).
С абсолютной скоростью С3" газ поступает на лопатки ра-бочего колеса, вращающегося с окружной скоростью U. В межлопаточном канале РК газ движется с относительной ско-ростью W 3 ", равной на входе в РК геометрической разности абсолютной С 3 " и окружной скорости U, т.е. W 3 " = C 3 " - U.
План скоростей на входе в РК показан на рис. 27. Для обеспечения безударного входа передние кромки ло-паток РК устанавливаются по направлению относительной скорости W 3 ". В связи с увеличением окружной скорости от основания лопатки к концу и необходимостью обеспечения безударного входа на всех радиусах, лопатка РК подвер-гается «крутке».
В рабочем колесе кинетическая энергия газового потока преобразуется в механическую работу. Абсолютная скорость потока уменьшается в каналах РК от С 3 " до С 4 .
В зависимости от типа турбины газ в межлопаточных ка-налах РК либо продолжает расширяться (давление падает от Р 3 " до Р 4), либо только изменяет направление движения, а давление остается неизменным.
Турбина, в которой происходит расширение газа в межлопаточных каналах РК, называется реактивной. Турбина, в которой осуществляется только поворот потока в РК, назы-вается активной.
В реактивной турбине межлопаточные каналы выполнены сужающимися (f 4 В ТРД применяются только реактивные турбины. Актив-ные турбины используются в турбодетандерах, турбонасосах. Механическая работа на валу турбины получается за счет того, что на лопатках РК, находящихся под действием газодинамических сил, создаются окружные усилия, т. е. си-лы, совпадающие с направлением скорости. Эти силы созда-ют крутящий момент на валу турбины. В реактивной турбине окружное усилие на лопатках РК возникает по двум причинам:

а) активного импульса газа, связанного с возникновением на лопатке, находящейся в потоке, аэродинамической силы Р а (рис. 28);

б) за счет реактивной силы Р р , возникающей при разго-не газовой струи от скорости W 3 " до W 4 > W 3 ". Силы Ра и Рр можно разложить на осевую и окружную составляющие.
Результирующая осевых составляющих активной Р ао и реактивной Р ро сил, равная
ΔР о = Р ао — Р ро, восприни-мается подшипниками ротора двигателя.
Результирующая же окружных составляющих активной Раи и реактивной Рри сил создает окружное усилие Р u = Р аu + Р pu , используемое для получения крутящего момента и полезной мощности на валу турбины.

3.3. ОКРУЖНОЕ УСИЛИЕ, ЭФФЕКТИВНАЯ РАБОТА ГАЗА, КПД И МОЩНОСТЬ ТУРБИНЫ

а). Определение величины окружного усилия Р u .
Величину силы Р u можно получить на основании изве-стной теоремы технической механики: «Изменение количест-ва движения секундной массы газа в направлении вращения рабочего колеса (окружном направлении) равно секундно-му импульсу силы, действующей в этом же направлении».
Для составления уравнения количества движения постро-им совмещенный план скоростей ступени турбины (рис. 29).

Из совмещенного плана скоростей видно, что
W 3"u = С 3"u — u
W 4 u = u — С 4 u
Δ С u = С 3"u - С 4 u
При составлении уравнения изменения количества движения положительным направлением считаем направление враще-ния (направление окружной скорости u).
Окончательно окружное усилие равно
Р u = [кг];
б). Эффективная работа газа.
Работа окружного усилия 1 кГ газа Lu равна

гдеG г — секундный расход газа [кГ/сек].
Подставиввеличину окружного усилия, полу-чим формулу работы окружного усилия

Работа 1 кГ газа, переданная на вал турбины, называет-ся эффективной работой газа
Lэ - Эта работа меньше работы окружного усилия на величину потерь: трение газа, перетекание газа в зазорах, трение в подшипниках, вихреобразование. Перечисленные потери невелики и составляют у мощ-ных турбин 2—3 % от общей мощности. Поэтому с достаточ-ной для практических целей точностью считают, что Lэ Lu. Тогда эффективная работа газа равна

Таким образом, эффективная работа газа тем больше, чем больше закрутка газа в рабочем колесе и окружная ско-рость или обороты ротора турбины,

в). К п д турбины.

На пути преобразования адиабатической работы расши-рения газа в турбине в механическую работу на ее валу име-ются потери. Величина потерь учитывается эффективным кпд турбины, который равен отношению эффективной рабо-ты Lэ к адиабатической работе расширения газа в турбине L ад расш т.е.

Эффективный кпд турбины η T учитывает как внутренние (гидравлические) потери, так и потери энергии с выходной скоростью . Потеря с выходной скоростью является относительной, так как кинетическая энергия , недоисполь-зованная для создания мощности на валу турбины, в после-дующем используется для создания реактивной тяги двига-теля.
У современных одноступенчатых ТРД ве-личина кпд равна η T = 0,7 — 0,86.
г). Мощность, развиваемая турбиной.
Мощность турбины — это работа, совершаемая газом в течение одной секунды и переданная на вал турбины.
Из определений мощность турбины равна;
N T =
Мощность турбины определяется вели-чинами секундного весового расхода газа G г , температуры газа перед турбиной Т 3 *, степенью расширения газа в турби-не π T и кпд турбины η T . Мощность турбины тем больше, чем больше величина указанных параметров.
В современных ТРД мощность, развиваемая турбиной, достигает больших значений NT=10000—50000 л. с. и более.
Эта мощность расходуется в основном на вращение ком-прессора двигателя и только 2—3 % на привод обслуживаю-щих агрегатов.

3.4. ОСНОВНЫЕ ПАРАМЕТРЫ, ОПРЕДЕЛЯЮЩИЕ МОЩНОСТЬ ТУРБИНЫ

Основными параметрами, определяющими мощность тур-бины являются:
— секундный весовой расход газа G г ;
— обороты ротора турбины n ;
— температура газа перед турбиной Тз* ;
— степень реактивности турбины ρ .

а). Секундный весовой расход газа G г.
Величину секундного расхода газа можно определить из уравнения неразрывности учитывая, что в сопловом ап-парате обычно устанавливается критический перепад дав-лений или близкий к нему.
Это означает, что в узком (критическом) сечении СА (f кр) устанавливается критическая скорость Скр, рав-ная местной скорости звука а. Уравнение для этого слу-чая запишется в виде:

где γкр —удельный вес газа в критическом сечении СА [кГ/м3].
Известно, что
, а

Так как давление и температура газа в критическом сечении СА Ркр и Ткр пропорциональны давлению Рз и темпе-ратуре газа Тз на входе в турбину, то можно написать:
или

.
Таким образом, при постоянной температуре газа перед турбиной Тз расход газа G г определяется величиной давления газа Рз перед нею. Увеличение давления газа Рз ведет к увеличению расхода газа и мощности турбины;

б). Обороты ротора турбины n .

При постоянной температуре газа перед турбиной Тз* = Со nst , увеличение оборотов ротора турбины n ведет к увеличению мощности турбины NT .
Это объясняется следующим. Увеличение оборотов рото-ра турбины n (ротора двигателя) ведет к увеличению рас-хода воздуха G в и степени повышения давления воздуха в компрессоре двигателя πК . Увеличение πК приводит к увеличению давления на выходе из компрессора Р2* и на входе а турбину Р3*= σКСР2*.
Увеличение давления Рз*, с одной стороны, увеличивает расход газа через турбину Gг, с другой стороны увеличивается степень расширения газа в турбине π Т . Таким образом, при увеличении оборотов ротора турбины мощ-ность турбины N т растет из-за увеличения расхода газа Gг и степени расширения газа в турбине πТ .
Известно, что при Тз*=Const мощность турбины NT, про-порциональна числу оборотов турбины n в степени2,5, т. е.
NT = f (n2,5)

в). Температура газа перед турбиной Тз*
При заданных и постоянных оборотах ротора турбины n = Const увеличение температуры газов перед турбиной Тз* ведет к увеличению мощности турбины NT , так как при этом адиабатическая работа расширения газа в турбине L адрасш увеличивается, в первой степени, а расход газа через турбину G г уменьшается в степени 1/2.

Величина температуры газа перед турбиной ограничи-вается прочностью лопаток турбины. В современных двигате-лях она равна Тз* = 1100—1300°К.

г). Степень реактивности турбины ρ .

Степень реактивности турбины характеризует распреде-ление работы расширения газа между сопловым аппаратом и рабочим колесом турбины.
Степенью реактивности турбины называется отношение адиабатической работы расширения газа в рабочем колесе L адрк к адиабатической работе расширения газа в ступени турбины L адрасш.
.
Величина степени реактивности турбины может изме-няться от 0 до 1, т. е.
0< ρ <1.
Приρ = 0 расширение газа происходит только в сопло-вом аппарате, турбина чисто активная, а при р = 1 турбина чисто реактивная.
Величина степени реактивности турбины влияет на кпд турбины, а следовательно, и ее мощность. Зависимость η T = f (ρ ) показана на рис. 30. Характер зависимости таков, что имеется оптимальная величина ρ ≈ 0,5, при кото-рой кпд турбины принимает максимальное значение. Объяс-няется это следующим. Степень расширения газа в турбине π Т = Р3*/Р4 можно рассматривать как произведение степеней расширения газа в СА π СА =Р3*/Рз" на степень расширения газа в РК π РК = Р"3 / Р4, т.е. π Т = π СА · π РК . При заданной сте-пени расширения газа в турбине π T увеличение степени ре-активности ρ означает увеличение расширения газа в РК, т. е. увеличение π РК . Это возможно за счет увеличения дав-ления газа перед РК Рз". Увеличение Рз" сопровождается

уменьшением абсолютной С" 3 и относительной W з " скоростей перед РК. Уменьшение скорости W з " приводит к уменьшению гидравлических (внутренних) потерь, а следовательно, к уве-личению кпд турбины η т. С другой стороны, увеличение расширения газа в РК с увеличением степени реактивности турбины ρ ведет к увеличению потерь с выходной скоростью (увеличивается кинетическая энергия ), что при-водит к уменьшению кпд турбины η т.

3.5. СОВМЕСТНАЯ РАБОТА ТУРБИНЫ И КОМПРЕССОРА В ТРД

Так как в системе ТРД компрессор и турбина соединены общим валом, то их работа взаимозависима. Взаимозависи-мость их работы, кроме механической связи, обусловлена общим расходом воздуха через компрессор и газа через турби-ну, определяющих их мощности.
Мощность, развиваемая турбиной Nт, является распола-гаемой мощностью. Она может быть равна, больше или мень-ше потребной мощности для вращения компрессора NК;
В зависимости от этого различают следующие режимы совместной работы турбины и компрессора:
1. Равновесный режим, когда Nт = NК;
2. Режим разгона (увеличения оборотов двигателя), ког-да NТ > NК;
3. Режим торможения уменьшения оборотов двигателя), когда Nт < NК.
Очевидно, что изменить режим работы двигателя (управ-лять двигателем) можно путем изменения мощности турби-ны.
Наиболее удобным параметром, с помощью которого мож-но изменять мощность турбины является температура газа перед турбиной Тз*. Изменение Тз* достигается изменением количества топлива Gт, подаваемого в камеру сгорания двигателя.
Ранее было показано, что мощность, потребная для вра-щения компрессора NК пропорциональна числу оборотов двигателя n в третьей степени, т. е.
NК = f (n3),
а мощность, развиваемая турбиной Nт, при заданной и по-стоянной температуре газов перед ней Тз*=Const, пропорциональна числу оборотов n в степени 2,5, т. е.
NT= f (n2,5).
Совмещенные графики зависимостей NК = f (n) и NT= f (n) показаны на рис. 31. Из графика видно, что при увеличении числа оборотов двигателя мощность компрессора NК растет быстрее, чем мощность турбины Nт.

Мощность турбины пропорциональна температуре газов Тз*.
Кривая 1 на графике показывает зависимость NT= f (n) при Тз*max =Соnst, а кривые 2, 3, 4... при меньших, но по-стоянных температурах Тз*.
В точках пересечения кривых 1, 2, 3, 4... с кривой NК = f (n) мощности компрессора и турбины равны, т.е. N T = N К. Эти точки определяют равновес-ные режимы. Минимальные nmin и максимальные nmax обо-роты двигателя достигаются при Т3*=Т3*max. Обороты мень-шие nmin или большие nmax могут быть получены только путем повышения температуры выше предельно-допустимой Т 3*ma x, что может привести к выходу из строя турбины.
При увеличении оборотов от nmin до nmax температура газа перед турбиной Т3* сначала уменьшается от Т 3 *max до Т 3 *min на средних оборотах (рис. 31), а затем снова увели-чивается до Т3*max при n = nmax. Такой характер изменения температуры Т3* объясняется условиями совместной работы компрессора и турбины в системе ТРД и обусловлен разным законом изменения NК и NT по числу оборотов.
Высокое значение Тз* на nmax и nmin свидетельствует о большой теплонапряженности двигателя на этих режимах. Поэтому работа двигателя на максимальных оборотах nmaxдопускается ограниченное время (5—10 мин), а обороты ма-лого газа nмг обычно на 1000—1500 об/мин превышают nmin т. е.
nмг = (1000—1500) об/мин + nmin .
При запуске двигателя на участке оборотов, где NT < NК раскрутка ротора турбокомпрессора производится с по-мощью пусковых двигателей (электростартеров, турбодетандеров и др.). Сначала в раскрутке ротора принимает участие только пусковой двигатель, затем в работу вступает турбина и раскрутка ротора до оборотов nмг продолжается совмест-но пусковым двигателем и турбиной. На оборотах nмг или несколько меньших, но больших nmin пусковой двигатель автоматически отключается.
Время непрерывной работы на nмг также ограничивает-ся, так как Т3* относительно велика, а эффективность охлаж-дения деталей турбины на этом режиме недостаточна.
Для увеличения оборотов двигателя выше nмг необхо-димо увеличить мощность турбины, что достигается увеличе-нием подачи топлива в камеру сгорания. При этом возрастает температура газа Тз*, появляется избыток мощности турбины Nт и происходит раскрутка ротора двигателя до оборотов, на которых N T = N К (кривые а и б на рис. 31). Уменьшение оборотов ротора до-стигается уменьшением пода-чи топлива в камеру сгорания, уменьшением Тз* и Nт. Обо-роты падают до величины, на которой снова N T = N К (кри-вая в на рис. 31).

3.6. МНОГОСТУПЕНЧАТЫЕ ТУРБИНЫ И ОСОБЕННО-СТИ РАБОТЫ ТУРБИН ДВУХВАЛЬНЫХ ДВИГАТЕЛЕЙ
1. Многоступенчатые турбины


Возможности одноступенчатой турбины ограничиваются максимальным (критическим) перепадом давления в сопло-вом аппарате, когда на выходе из него (критическое сече-ние косого среза) скорость потока достигает скорости звука. Этот перепад давлений (он равен примерно 2) обеспечивает получение адиабатической работы расширения газа
L ад расш ≤ 25000—30000 кг·м/кГ при температурегаза навходе в турбину 850 - 9б0 °C и окружной скорости на среднем радиусе, равной U =350—370м/сек.
Когда в турбине нужно сработать больший перепад дав-лений с целью получения большей величины мощности, применяют двух или многоступенчатые турбины.
Многоступенчатая турбина в сравнении с одноступенча-той имеет следующие преимущества:
а) меньшие потери энергии газа в проточной части, что обусловлено меньшими скоростями потока по причине мень-ших перепадов давлений в каждой ступени;
б) использование эффекта возврата тепла. Вследствие трения газа выделяется тепло, которое в одноступенчатой турбине является потерей, а в многоступенчатой частично ис-пользуется в последующей ступени;
в) лучшее использование выходной скорости газаиз пре-дыдущих в последующих ступенях, что снижает потери с вы-ходной скоростью и повышает кпд турбины.
Недостатками многоступенчатых турбин являются:
а) Конструктивная сложность;
б) Увеличение длины и веса (правда, в диаметре много-ступенчатая турбина меньше одноступенчатой);
в) Высокий температурный режим лопаток первой ступе-ни и хуже условия охлаждения лопаток второй и последую-щих ступеней.
В современных ТРД широкое распространение получили двух и трехступенчатые турбины.

2. Особенности работы турбин двухвальных двигателей


Турбина двухвального двигателя двухступенчатая, но между ступенями имеется только газодинамическая связь. Рабочее колесо турбины первой ступени приводит во враще-ние ротор компрессора высокого давления (РВД), а рабочее колесо второй ступени ротор компрессора низкого давления (РНД). Схема роторов высокого и низкого давления пока-заны на рис. 32.
Первая ступень турбины (РВД) и вторая ступень турби-ны (РНД) выполнены так, чтобы на расчетном и близком от него режимах в сопловых аппаратах устанавливались кри-тические (или близкие к нему) перепады давлений. Распре-деление работы расширения газа между ступенями при из-менении режимов работы двигателя происходит автоматиче-ски.Это обусловлено следующими основными причинами.

а). При изменении оборотов двигателя степени расшире-ния газа на ступенях турбины в некотором диапазоне режи-мов, когда перепад давления в выходном сопле двигателя близок к критическому, остаются практически постоянными, т. е.
π ТРВД и π ТРНД = Соnst, а следовательно,
π = π ТРВД · π ТРНД = Const;
б). При постоянстве степени расширения газа в турбине остается неизменным и кпд турбины, т. е.
η ТРВД и η ТРНД = Соnst;
в). Так как эффективная работа турбины
L ЭТ = ,
то Lэтрнд и Lэтрвд пропорциональнытолько температуре газа перед ступенью турбины Тз*рн д и Тз*рвд соответствен-но. При изменении режима работы двигателя происходит пропорциональное изменение Тз*рнд и Тз* рвд.
Поэтому распределение располагаемой эффективной работы между ступенями остается неизменным, т. е.
LЭТРНД / LЭТ РВД = Const .
Известно, что дросселирование двигателя при-водит к увеличению потребной работы для вращения комп-рессора низкого давления (ступени «затяжеляются») и уменьшению потребной работы для вращения компрессора высокого давления (ступени «облегчаются»). При неизмен-ном распределении располагаемой работы между ступенями турбины это ведет к более интенсивному снижению оборотов РНД, чем РВД;
г). При значительном дросселировании двигателя, когда на выходе устанавливается докритический перепад давления, происходит снижение общей степени расширения
газа в турбине π , главным образом, за счет падения π ТРНД и LЭТРНД, а π ТРВД почти не меняется. Это приводит к еще более интенсивному падению оборотов РНД в сравнении с РВД, что способствует обеспечению устойчивой работы двухкаскадного компрессора.

  1. Сжатие воздуха в компрессорах ТРД.

1.1. Требования, предъявляемые к компрессорам ТРД и типы компрессоров.

1.2. Сжатие воздуха в центробежных компрессорах.

1.3. Неустойчивая работа центробежного компрессора и меры борьбы с ней.

1.4. Сжатие воздуха в осевых компрессорах.

1.5. Неустойчивая работа осевого компрессора и борьба с ней.

2. Организация процесса горения в камерах сгорания ТРД.

2.1 Назначение камер сгорания.

2.2 Основные требования к камерам сгорания и оценка их выполнения.

2.3. Типы камер сгорания и их устройство.

2.4. Принцип действия и рабочий процесс камеры сгорания.

2.5. Зависимость полноты и устойчивости сгорания от условий эксплуатации.

3. Процесс расширения газа в турбине.

3.2 Схема и принцип действия ступени осевой .

3.3.Окружное усилие, эффективная работа газа, КПД и мощность турбины.

3.4. Основные параметры, определяющие мощность турбины

3.5 Совместная работа турбины и компрессора в ТРД.

3.6. Многоступенчатые турбины и особенности работы турбин двухвальных двигателей.

Методическое пособие составил мастер п/о Заболотный В.А.

Прежде чем задать вопрос прочитайте: FAQ
  • Далее

Турбина

Турбина предназначена для привода компрессора и вспомогательных агрегатов двигателя. Турбина двигателя - осевая, реактивная, двухступенчатая, охлаждаемая, двухроторная.

Узел турбины включает последовательно расположенные одноступенчатые осевые турбины высокого и низкого давления, а также опору турбины. Опора - элемент силовой схемы двигателя.

Турбина высокого давления

СА ТВД состоит из наружного кольца, внутреннего кольца, крышки, аппарата закрутки, блоков сопловых лопаток, лабиринтных уплотнений, уплотнений стыков сопловых лопаток, проставок с сотовыми вставками и крепёжных деталей.

Наружное кольцо имеет фланец для соединений с фланцем обода соплового аппарата ТНД и корпуса ВВТ. Кольцо телескопически соединено с корпусом ВВТ и имеет полость для подвода вторичного воздуха из ОКС на охлаждение наружных полок сопловых лопаток.

Внутреннее кольцо имеет фланец для соединения с крышкой и внутренним корпусом ОКС.

СА ТВД имеет сорок пять лопаток, объединенные в пятнадцать литых трёхлопаточных блоков. Блочная конструкция лопаток СА позволяет уменьшить число стыков и перетекания газа.

Сопловая лопатка - пустотелая, охлаждаемая двуполостная. Каждая лопатка имеет перо, наружную и внутреннюю полки, образующие с пером и полками соседних лопаток проточную часть СА ТВД.

Ротор ТВД предназначен для преобразования энергии газового потока в механическую работу на валу ротора. Ротор состоит из диска, цапфы с лабиринтными и маслоуплотнительными кольцами. Диск имеет девяносто три паза для крепления рабочих лопаток ТВД в “ёлочных” замках, отверстия для призонных болтов стягивающих диск, цапфу и вал ТВД, а также наклонные отверстия для подвода охлаждающего воздуха к рабочим лопаткам.

Рабочая лопатка ТВД - литая, полая, охлаждаемая. Во внутренней полости лопатки для организации процесса охлаждения имеются продольная перегородка, турбулизирующие штырьки и рёбра. Хвостовик лопатки имеет удлинённую ножку и замок “ёлочного” типа. В хвостовике имеются каналы для подвода охлаждающего воздуха к перу лопатки, а в выходной кромке - щель для выхода воздуха.

В хвостовике цапфы размещены масляное уплотнение и обойма радиального роликового подшипника задней опоры ротора высокого давления.

Турбина низкого давления

СА ТНД состоит из обода, блоков сопловых лопаток, внутреннего кольца, диафрагмы, сотовых вставок.

Обод имеет фланец для соединения с корпусом ВВТ и наружным кольцом ТВД, а также фланец для соединения с корпусом опоры турбины.

СА ТНД имеет пятьдесят одну лопатку спаянные в двенадцать четырёхлопаточные блоки и один трёхлопаточный блок. Сопловая лопатка - литая, полая, охлаждаемая. Перо, наружная и внутренняя полки образуют с пером и полками соседних лопаток проточную часть СА.

Во внутренней части полости пера лопатки размещён перфорированный дефлектор. На внутренней поверхности пера имеется поперечные рёбра и турбулизирующие штырьки.

Диафрагма предназначена для разделения полостей между рабочими колёсами ТВД и ТНД.

Ротор ТНД состоит из диска с рабочими лопатками, цапфы, вала и напорного диска.

Диск ТНД имеет пятьдесят девять паза для крепления рабочих лопаток и наклонные отверстия для подвода охлаждающего воздуха к ним.

Рабочая лопатка ТНД - литая, полая, охлаждаемая. На периферийной части лопатка имеет бандажную полку с гребешком лабиринтного уплотнения, обеспечивающим уплотнение радиального зазора между статором и ротором.

От осевых перемещений в диске лопатки зафиксированы разрезным кольцом со вставкой, которая, в свою очередь, зафиксирована штифтом на ободе диска.

Цапфа имеет в передней части внутренние шлицы, для передачи крутящего момента на вал ТНД. На наружной поверхности передней части цапфы установлена внутренняя обойма роликового подшипника задней опоры ТВД, лабиринт и набор уплотнительных колец, образующей вместе с крышкой, установленной в цапфе, переднее уплотнение масляной полости опоры ТВД.

На цилиндрическом поясе в задней части установлен набор уплотнительных колец, образующих вместе с крышкой уплотнение масляной полости опоры ТНД.

Вал ТНД состоит из трёх частей. Соединение частей вала между собой - вильчатое. Крутящий момент в местах соединения передаётся радиальными штифтами. В задней части вала имеется откачивающий маслонасос опоры турбины.

В передней части ТНД имеются шлицы, передающие крутящий момент на ротор компрессора низкого давления через рессору.

Напорный диск предназначен для создания дополнительного подпора и обеспечивает увеличение давление охлаждающего воздуха на входе в рабочие лопатки ТНД.

Опора турбины включает в себя корпус опоры и корпус подшипника. Корпус опоры состоит из наружного корпуса и внутреннего кольца, соединённых силовыми стойками и образующие силовую схему опоры турбины. В состав опоры входят также экран с обтекателями, пеногасящая сетка и крепёжные детали. Внутри стоек размещены трубопроводы подвода и откачки масла, суфлирования масляных полостей и слива масла. Через полости стоек подводится воздух на охлаждение ТНД и отводится воздух из предмасляной полости опоры. Стойки закрыты обтекателями. На корпусе подшипника установленымаслооткачивающий насос и масляный коллектор. Между наружной обоймой роликоподшипника ротора ТНД и корпусом подшипника размещён упруго-масляный демпфер.

На опоре турбины закреплён конус-обтекатель, профиль которого обеспечивает вход газа в форсажную камеру сгорания с минимальными потерями.