Крутильные колебания в центробежных компрессорах. Крутильные колебания валов

Испытывают деформации сдвига. Имеют место в разл. машинах с вращающимися валами: в поршневых двигателях, турбинах, генераторах, редукторах, трансмиссиях транспортных машин.

К. к. возникают в результате неравномерности периодич. момента как движущих сил, так и сил сопротивления. Неравномерность крутящего момента вызывает неравномерность изменения угловой скорости вала, т. е. то , то замедление вращения. Обычно вал представляет собой чередование участков с малой массой и упругой податливостью с более жёсткими участками, на к-рых закреплены значит. массы. В каждом сечении вала будет своя степень неравномерности вращения, поскольку в одинаковый промежуток времени массы проходят разные углы и, следовательно, движутся с разными скоростями, что создаёт переменное вала и динамич. знакопеременные напряжения, гл. обр. касательные.

При совпадении частот собств. колебаний системы с частотой периодич. крутящего момента движущих сил и сил сопротивления возникают резонансные колебания. В этом случае повышается уровень динамич. переменных напряжений; возрастает акустич. , излучаемый работающей машиной. Динамич. знакопеременные напряжения при неправильно выбранных (заниженных) размерах вала, недостаточной прочности его материала и возникновении резонанса могут превысить предел выносливости, что приведёт к усталости материала вала и его разрушению.

При расчёте К. к. валов машин часто пользуются расчётной схемой с двумя дисками, соединёнными упругим стержнем, работающим на кручение. В этом случае собств. частота

где I 1 - момент инерции 1-го диска, I 2 - момент инерции 2-го диска, С -крутильная стержня, Для круглого стержня диаметром d и длиной l С где G - модуль сдвига. Более сложные расчётные схемы содержат большее число дисков, соединённых стержнями и образующих последоват. цепи, а иногда - разветвлённые и кольцевые цепи. Расчёт собств. частот форм и вынужденных К. к. по этим расчётным схемам производится на .

Др. примером К. к. является крутильный , к-рый представляет собой диск, закреплённый на одном конце стержня, работающего на кручение и жёстко заделанного др. концом. Собств. частота такого маятника где I - момент инерции диска. Приборы с использованием крутильного маятника применяют для определения модуля упругости при сдвиге, коэф. внутр. трения твёрдых материалов при сдвиге, коэф. вязкости жидкости.

К. к. возникают в разнообразных упругих системах; в нек-рых случаях возможны совместные колебания с разл. видами деформации элементов системы, напр. изгибно-крутильные колебания. Так, при определ. условиях полёта под действием аэродинамич. сил иногда возникают самовозбуждающиеся изгибно-крутильные колебания крыла самолёта (т. н. флаттер), к-рые могут вызывать разрушение крыла.

Лит.: Ден-Гартог Д. П., Механические колебания, пер. с англ., М., 1960; Маслов Г. С., Расчёты колебаний валов. Справочник, 2 изд., М., 1980; Вибрации в технике. Справочник, под ред. В. В. Болотина, т. 1, М., 1978; Силовые передачи транспортных машин, Л., 1982. А. В. Синев.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "КРУТИЛЬНЫЕ КОЛЕБАНИЯ" в других словарях:

    Колебания элементов конструкций и машин, выражающиеся в периодически меняющейся деформации кручения (См. Кручение). Пример К. к. гармоническое движение крутильного маятника, представляющего собой упругий стержень, закрепленный одним… …

    Один из видов колебаний упругих систем, при к рых отд. элементы системы испытывают деформации кручения. Пример К. к. движение крутильного маятника, представляющего собой упругий стержень, закреплённый одним концом, с массивным диском на другом.… … Физическая энциклопедия

    крутильные колебания - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN torsional modestorsional oscillations … Справочник технического переводчика

    крутильные колебания - 3.7 крутильные колебания: По ГОСТ Р ИСО 3046 5. Источник: ГОСТ Р 53638 2009: Двигатели внутреннего сгорания поршневые. Общие технические условияСловарь-справочник терминов нормативно-технической документации

    крутильные колебания - sukamieji virpesiai statusas T sritis chemija apibrėžtis Molekulės atomų branduolių kvantuotojo judėjimo rūšis. atitikmenys: angl. torsion oscillations; torsion vibrations; torsional oscillations; torsional vibrations rus. крутильные колебания … Chemijos terminų aiškinamasis žodynas

    крутильные колебания - sukamieji virpesiai statusas T sritis fizika atitikmenys: angl. torsion oscillations; torsional oscillations; torsional vibrations vok. Drillungsschwingungen, f; Torsionsschwingungen, f; Verdrehungsschwingungen, f rus. крутильные колебания, n… … Fizikos terminų žodynas

    крутильные колебания - torsion vibration Колебания, при которых происходит кручение элемента механизма. Шифр IFToMM: 3.9.26 Раздел: КОЛЕБАНИЯ В МЕХАНИЗМАХ … Теория механизмов и машин

    КОЛЕБАНИЯ В МЕХАНИЗМАХ - см. также о словаре автоколебания автоколебательная система автономная колебательная система амплитуда … Теория механизмов и машин

    Число колебаний в единицу времени, быстрота или частота колебаний, зависит от размеров, формы и природы тел. Высота звука, обуславливаемая числом колебаний звучащего тела в единицу времени, может быть определена различными способами (см. Звук).… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Многократно повторяющееся возвратно поступательное или возвратно вращательное движение элементов конструкций вследствие их упругих деформаций под действием сил, достаточно быстро меняющихся во времени. При К. к. элементы конструкций… … Большая советская энциклопедия

Книги

  • Крутильные колебания коленчатых валов , Нейман И.Ш. Крутильные колебания коленчатых валов Воспроизведено в оригинальной авторской орфографии издания 1935 года (издательство`Академия`). В…

В валах поршневых машин (в двигателях внутреннего сгорания, поршневых компрессорах и т. п.) часто возникают крутильные колебания, связанные с неравномерностью (по времени) вращающего момента или момента, сопротивления.

Рис. 12.24. Конструктивная схема, коленчатого вала двигателя внутреннего сгорания - (автомобильные и тракторные двигатели, дизели и т. п.) и динамическая модель крутильных колебаний

Крутильные колебания могут возникать и в других машинах, если крутящий момент, передаваемый валом, не является постоянным. В качестве динамической модели при крутильных колебаниях обычно используется вал с дисками. Моменты инерции масс дисков рассматриваются как приведенные моменты инерции. Например, в поршневых машинах инерционные массы связаны с движением поршней, шатунов и других элементов и приводятся к дискам с эквивалентными моментами инерции. Жесткость участков валов, соединяющих диски принимается как эквивалентная для участков с непрямой осью (коленчатые валы и др.), при шлицевых соединениях и т. п. На рис. 12.24 показаны конструктивная схема коленчатого вала двигателя внутреннего сгорания и динамическая модель крутильных колебаний. Существуют более сложные модели крутильных колебаний с несколькими ветвями, что определяется конструктивными особенностями машин; остановимся на схеме «цепочной системы» (рис. 12.25).

Выведем уравнение крутильных колебаний v для системы из дисков. Рассмотрим уравнение движения диска (рис. 12.26), Обозначая угол поворота диска получим

где - крутящие моменты, действующие на диск со стороны валов правого и левого участков. Угол поворота диска зависит от времени.

Если обозначить жесткость участка , то

здесь - углы поворота конечных сечений участка; - упругий угол поворота вала на участке

где U - длина участка, - эквивалентная жесткость вала на кручение, G - модуль сдвига.

Рис. 12.25. Динамическая модель крутильных колебаний в машинах

Рис. 12.26. К выводу уравнений крутильных колебаний

Подобным образом получаем

Теперь из уравнения (155) находим

Пренебрегая моментами инерции участков вала, можем считать, уравнение (157) при дифференциальным уравнением крутильных колебаний цепочной системы. Полагая

(158)

где - амплитудное значение угла поворота, - круговая частота крутильных колебаний, из уравнения (157) получим

Это и есть уравнение амплитудных углов поворота при крутильных колебаниях цепочной системы.

Рис. 12.27. Крутильные колебания свютемы из двух дисков и вала

Пример. Рассмотрим крутильные колебания - динамической модели, состоящей из двух дисков, соединенных валом (рис. 12.27), Применяя уравнение (159) при находим

Вынужденные колебания возбуждаются внешними периодически изменяющимися силами. Особенно опасными являются резонансные колебания, возникающие при совпадении собственной частоты и частоты внешних сил.

В расчетах силовых установок с поршневыми двигателями учитывают нижеследующие внешние возбудители .

Моменты от сил давления газов в цилиндрах двигателя или компрессора (главные возбудители крутильных колебаний)

где радиус кривошипа; тангенциальная сила, направленная перпендикулярно кривошипу, для одного цилиндра, отнесенного к единице площади поршня; площадь поршня.

Гармонические составляющие силы могут быть определены по справочные данным, приведенным на рис. 10 и 11 (при можно экстраполировать данные, продолжив кривые прямыми).

Гармоники тангенциальных сил 3-го порядка и выше для четырехтактного бензинового двигателя могут быть определены по формуле

где среднее индикаторное значение давления, степень сжатия двигателя; порядок гармоники (начиная с 3-й и выше).

Для гармоник порядков можно пользоваться следующими данными:

Здесь и в формуле (17) значения представляют собой гармоники тангенциальных газовых сил на единицу площади поршия одного цилиндра.

Для определения амплитудного значения гармонической силы, приложенной к колену вала, в случае действия на него многих цилиидров векторно складывают гармоники газовых сил всех цилиндров в предположении постоянства значений для всех цилиндров.

Если колено воспринимает силу от нескольких цилиндров, то при сложении моментов следует принять во внимание сдвиг по времени между кривыми тангенциальной силы от этих цилиндров, соответствующий интервалу между вспышками.

В табл. 4 приведены справочные данные для звездообразных двигателей с разным числом цилиндров.

Моменты от сил инерции движущихся масс кривошипно-шатунного механизма (следует учитывать только при определении гармоник низших порядков - от 1-й

где масса поступательно движущихся частей кривошипно-шатунного механизма одною цилиндра; - угловая скорость вала; отношение радиуса кривошипа к длине шатуна.

4. Гармоники крутящего момента в от среднего крутящего момента однорядного звездообразного двигателя (с учетом сил инерции)

(см. скан)

Моменты от сил тяжести кривошипно-шатунного механизма имеют малую величину и учитываются только для тяжелых тихоходных двигателей. Эги моменты слагаются из крутящего момента, вызываемого силой тяжести поступательно движущейся части (поршневой комплект и часть шатуна)

и крутящего момента, вызываемого силами тяжести вращающейся части кривошипно-шатунного механизма (часть шатуна, цапфа и щеки колена),

Суммарный возбуждающий крутящий момент любого порядка, определяется векторным сложением с учетом фаз гармонических моментов от газовых и инерционных сил данного порядка, действующих на кривошип цилиндра двигателя. Моментами от сил тяжести пренебрегают из-за их малости.

В табл. 5 приведены величины фазовых углов, необходимых для сложения гармоник газовых и инерционных моментов.

5. Величины фазовых углов сил и

(см. скан)

Если возмущающий крутящий момент порядка, приложенный к первому кривошипу, а угол между первым и кривошипом то гармонический момент, приложенный к кривошипу, Величина векторной суммы амплитуд крутящих момешов определяет развитие колебаний вала.

Зубчатые колеса редукторов могут быть возбудителями крутильных колебаний из-за погрешностей при их изготовлении. Частота крутильных возмущений зависит от числа зубьев делительного колеса станка, на котором обрабатывается колесо. Число зубьев соответствует числу волн ошибки на колесе. Следовательно, частота возмущения

Число оборотов зубчатого колеса.

Максимальная частота крутильных колебаний

где число зубьев зубчатого колеса.

Кроме того, могут иметь место низкочастотные составляющие спектра крутильных колебаний от накопленных погрешностей окружного шага. Частота этих колебаний где

Интенсивность крутильных колебаний зависит от точности изготовления колес и сборки редуктора.

Если динамический крутящий момент превысит средний, то будет двусторонний удар зубьев. Амплитуда таких колебаний не может быть определена расчетом. Схематизация зубчатых передач приведена в работе .

Вынужденные нерезонансные колебания возникают при условии Амплитуды их, как правило, малы. Дифференциальное уравнение вынужденных колебаний для массы имеет вид

Решения линейных дифференциальных уравнений типа (20) общеизвестны . Для упрощения расчета разветвленную систему превращают в цепочную, используя метод приведения масс приведены данные для двухмассной системы - пренебрежение трением вне интервала частот ±10% резонансной частоты при логарифмическом декременте колебании и вне интервала ±20% при приводит к ошибкам в вычислении упругого момента на 10%.

2. При малом трении в системе форма резонансных колебаний близка к форме свободных колебаний на резонирующей собственной частоте. Если трение велико, отличие может быть существенным (см. пространстренное изображение формы колебаний на рис. 13), особенно в случаях, когда демпфирующие элементы расположены на массах с большими относительными амплитудами. В этом случае максимумы амплитуд колебаний разных масс достигаются на различных частотах внешних сил и на частотах, меньших собственных частот системы.

3. При изменении трения в каком-либо месте системы в широких пределах все резонансные кривые проходят через узкие области изменения частот и амплитуд.

4. Если к некоторой массе системы присоединен контур, на который не действуют внешние моменты (инертная часть системы), то амплитуда ее колебаний имеет

минимумы на частотах, равных собственным частотам этого контура при условии заделки указанной массы. Такое явление называется эффектом линейного антивибратора.

Приближенный расчет нелинейных вынужденных колебаний. В настоящее время имеются алгоритмы расчетов на ЭВМ, конкурирующие с расчетами на АВМ. Если заранее известно, что в искомом решении основную роль играют одна или две гармоники, то приближенное решение может быть получено методом Галеркинэ. Результаты при гармоническом приближении полностью совпадают с результатами, полученными методом гармонической линеаризации. Последовательность расчета соответствует приведенной ниже схеме:

1) задают вид искомого решения на нелинейном участке

где частота колебаний более высокой гармоники; целое число;

2) раскладывают упругий момент после подстановки (24) в ряд Фурье на периоде и удерживают только первую и гармоники:

Графический способ решения этой задачи описан в работе }