Прибор для тренировки аккумуляторных батарей схемы. Эффективный прибор для восстановления и тренировки аккумуляторов. Тренировка и восстановление аккумуляторов методом постоянного напряжения

Очень мало статей о том как делать контрольно-тренировочный цикл, то есть КТЦ АКБ если сокращённо. Скоро зима и необходимо подготовить свой АКБ, чтобы в первые морозы он не умер… Уделите немного времени и ваш аккумулятор, будет работать ещё не один год…

ОЧЕНЬ ВАЖНО ЗНАТЬ ВСЕМ!

  • 1) Недопустимо оставлять на морозе разряженную батарею. Электролит низкой плотности замерзнет, и кристаллы льда приведут ее в негодность. При плотности электролита 1.2 г/см3 и ниже (это разряд батареи более чем на 60%) температура замерзания электролита составляет около -20°С. А если плотность снизиться до 1,09 г/см3, что приведет к его замерзанию уже при температуре -7°С. Для сравнения –электролит плотностью 1.28 г/см3 замерзает при t=-65°С.
  • 2) Средний срок службы современных АКБ при условии соблюдения правил эксплуатации - а это недопущение глубоких разрядов и перезарядов, в том числе по вине регулятора напряжения - составляет 4-5 лет. Иначе Ваш АКБ выйдет из строя намного быстрее.
  • 3) Опрокидывание аккумуляторной батареи и слив электролита могут привести к замыканию пластин и выходу ее из строя.
  • 4) Перед длительной зимней стоянкой также обслужите батарею, но не храните ее в теплом помещении, а оставьте на автомобиле со снятыми клеммами. Чем ниже температура, тем меньше скорость ее саморазряда.

Одним из важных компонентов нормальной работы любого автомобиля является аккумуляторная батарея (АКБ). Он является залогом комфорта и обеспечение безопасности вашего авто. Частенько долгое время развлекает Вас музыкой. По несколько недель «охраняет ваш автомобиль» обеспечивая питание для вашей сигнализации. Ежедневно по многу раз заводит Ваш двигатель, получая очень большой «стресс».

Но когда аккумулятор измученный жизнью теряет свой заряд и не хочет Вас заводить… Одна половина автомобилистов ищет тех, кто их «прикурит» другая половина просто заводит машину с толкача. И как только машина завелась, большинство сразу забывают про бедный АКБ, который уже был на грани.

Поездив немного или просто дав машине поработать 15 минут думают, что все он зарядился… Но после такого неприятного случая хороший автомобилист зарядит АКБ, а другие просто забудут это до следующего раза, который неизбежно скоро случится. Практически каждый автомобилист был в такой ситуации. Но что ты делаешь для того чтобы АКБ тебя не подводил?

Все знают что за двигателем надо следить и проводить ТО. Менять масло, доливать разные жидкости и т.д. Но мало кто знает, что и за АКБ надо следить и проводить хотя бы один раз в год КТЦ АКБ и в течение эксплуатации следить хотя бы за уровнем электролита.

Но сейчас на рынке существуют множество АКБ самых разнообразных которые делятся на 4 типа: обслуживаемые, малообслуживаемые, гибридные и необслуживаемые.

В данной статье будут рассмотрены малообслуживаемые АКБ . Они установлены у значительного большинства автомобилистов. Если у Вас другой тип АКБ думаю, Вы это знаете, если Вы не уверены какой АКБ у Вас установлен обратитесь к специалистам.

И так мы определились, что КТЦ АКБ необходимо производить хотя бы ежегодно. Если у Вас имеется навык работы с электрооборудованием, то можно попробовать справится своими силами. Если Вы не поняли о чем идет речь, не видели, как выглядит мульти тестер и у Вас отсутствует зарядное устройство. То лучше обратитесь в СТО.

Для проведения КТЦ аккумуляторной батарее необходимо иметь: ареометр, мультитестер, зарядное устройство АКБ, нагрузка для разряда (лампа ближнего света 45-65Вт) и немного метаматематики)))

КТЦ - это операция, позволяющая в большинстве случаев восстановить работоспособность подержанных и сильно разряженных аккумуляторов АКБ, а также определить их пригодность к дальнейшей эксплуатации.

КТЦ включает в себя полный заряд, контрольный разряд и повторный заряд АКБ. Сначала АКБ, снятую с автомобиля, полностью заряжают от внешнего зарядного устройства.

Этап №1 проведения КТЦ (полный заряд АКБ)

На рынке сейчас довольно много автоматических зарядный устройств. Если вы используете его то в несколько раз облегчите эту процедуру. Просто устанавливаете АКБ на заряд и ждете, когда автоматическое зарядное устройство полностью зарядит АКБ. Но все-таки советую после полной зарядки проверить плотность электролита. И убедиться что Ваше устройство полностью зарядило АКБ. Плотность полностью заряженной батареи составляет 1.27- 1.28 г/см3, напряжение - 12.7 В

Как определить, сколько заряжать и как?

Есть формула, по которой можно узнать примерное время заряда АКБ.

Для начала проверяем плотность электролита в АКБ с помощью ареометра. Например, ареометр показал плотность 1,21 г/см^3.

Это означает что АКБ разряжена на половину. Исходя из емкости АКБ например 65Ah мы высчитываем величину потери емкости АКБ.

65Ah * 50% / 100% = 65Ah * 0,5 = 32,5Ah

Значение зарядного тока I (А) не должно превышать 1/10 ёмкости батареи (упрощенно). В нашем случае не более 6,5А.

Теперь просто подставляем все значения в нужную формулу и примерное время заряда известно:

t = 2 * 32,5Ah / 6,5А = 10h (часов)

Заряжал током в 4А

Но все же это примерное время заряда. И нельзя утверждать, что за это время АКБ полностью зарядиться. Во время всего процесса заряда необходимо проверять АКБ. И так как только АКБ показывает 12.7 В проверяем плотность она должна быть 1.27- 1.28 г/см3. АКБ полностью заряжена и можно приступить к следующему этапу КТЦ.

Этап №2 проведения КТЦ (разряд АКБ)

Полностью заряженный аккумулятор подключают к устройству, состоящему из мощного реостата, вольтметра и амперметра и разряжают током так называемого 10-часового режима, величина которого составляет 9%-10% от емкости АКБ в нашем случае это 6.5А.

Но где же взять это устройство не у Всех есть реостат))). Можно пойти другим более простым путем. Купить обычную автомобильную лампочку. Но что бы все было как можно правильнее необходимо чтобы лампочка была давала нагрузку 6.5А. Как это посчитать.

I = P / U, где P – мощность измеряется в Вт, U напряжение 12 Вольт.
P = I * U = 6,5A * 12v = 78 Вт.

Теперь необходимо купить лампу, которая максимально приближенна к этой мощности. У меня была лампа на 65 Вт, потому покупать ничего не стал. Подключает лампочку к АБК и начинаем разряд.

Разряд АКБ

Периодически проверяем вольтаж АКБ. Первое измерение проводят в начале разряда, второе -через 4 часа. Когда напряжение на клеммах снизится до 11 В, измерения проводят через каждые 15 минут и чаще, чтобы уловить момент окончания разряда.

Уменьшенное время разряда говорит о том, что параметры АКБ ухудшились. Например, если время разряда батареи емкостью 65 Ач током 5,4 А составило 6 часов 20 мин (6,3 часа), то количество электричества, отданного в нагрузку, равно: Q = 5,4 х 6,3 = 34,0 Ач. Это и есть реальная величина емкости аккумулятора, которая в данном случае заметно меньше паспортной (65 Ач).

НЕЛЬЗЯ! на долго оставлять разряженный АКБ. Рассчитайте время так чтобы хотя бы немного зарядить его.
Теперь мы полностью разрядили АКБ и снова заряжаем его как в Этапе №1.

После повторного заряда КТЦ законченно, но в лучшем случае проводить 2-3 раза весь цикл. Но хотя бы попробовать сделать это один раз. Что это вам даст:

1) Вы полностью и грамотно зарядите АКБ.
2) сможете узнать в каком состоянии у вас АКБ.

На весь процесс у меня ушло два дня первый день дозарядил АКБ и разрядил на следующий день зарядил. Никогда не оставляйте АКБ во время заряда или разряда. Вы можете испортить его. НЕЛЬЗЯ сильно разряжать АКБ. И так же нельзя заряжать большим током АКБ будет кипеть. Все это может привести к разрушению АКБ.

Уважаемые читатели также важно знать что тема аккумуляторные батареи очень обширна и описать её очень трудно в данной статье затронута только тема проведения КТЦ.

Всего Вам доброго…

Автоматическое зарядное устройство предназначено для зарядки и десульфатации 12-ти вольтовых АКБ ёмкостью от 5 до 100 Ач и оценки уровня их заряда. Зарядное имеет защиту от переполюсовки и от короткого замыкания клемм. В нём применено микроконтроллерное управление, благодаря чему осуществляются безопасные и оптимальные алгоритмы зарядки: IUoU или IUIoU, с последующей дозарядкой до полного уровня зарядки. Параметры зарядки можно подстроить под конкретный аккумулятор вручную или выбрать уже заложенные в управляющей программе.

Основные режимы работы устройства для заложенных в программу предустановок.

>>
Режим зарядки - меню «Заряд». Для аккумуляторов емкостью от 7Ач до 12Ач по умолчанию задан алгоритм IUoU. Это значит:

- первый этап - зарядка стабильным током 0.1С до достижения напряжения14.6В

- второй этап -зарядка стабильным напряжением 14.6В, пока ток не упадет до 0,02С

- третий этап - поддержание стабильного напряжения 13.8В, пока ток не упадет до 0.01С. Здесь С - ёмкость батареи в Ач.

- четвёртый этап - дозарядка. На этом этапе отслеживается напряжение на АКБ. Если оно падает ниже 12.7В, включается заряд с самого начала.

Для стартерных АКБ применяем алгоритм IUIoU. Вместо третьего этапа включается стабилизация тока на уровне 0.02C до достижения напряжения на АКБ 16В или по прошествии времени около 2-х часов. По окончанию этого этапа зарядка прекращается и начинается дозарядка.

>> Режим десульфатации - меню «Тренировка». Здесь осуществляется тренировочный цикл: 10 секунд - разряд током 0,01С, 5 секунд - заряд током 0.1С. Зарядно-разрядный цикл продолжается, пока напряжение на АКБ не поднимется до 14.6В. Далее - обычный заряд.

>>
Режим теста батареи позволяет оценить степень разряда АКБ. Батарея нагружается током 0,01С на 15 секунд, затем включается режим измерения напряжения на АКБ.

>> Контрольно-тренировочный цикл. Если предварительно подключить дополнительную нагрузку и включить режим «Заряд» или «Тренировка», то в этом случае, сначала будет выполнена разрядка АКБ до напряжения 10.8В, а затем включится соответствующий выбранный режим. При этом измеряются ток и время разряда, таким образом, подсчитывается примерная емкость АКБ. Эти параметры отображаются на дисплее после окончания зарядки (когда появится надпись «Батарея заряжена») при нажатии на кнопку «выбор». В качестве дополнительной нагрузки можно применить автомобильную лампу накаливания. Ее мощность выбирается, исходя из требуемого тока разряда. Обычно его задают равным 0.1С - 0.05С (ток 10-ти или 20-ти часового разряда).

Схема зарядного автомата для 12В АКБ

Принципиальная схема автоматического автомобильного ЗУ



Рисунок платы автоматического автомобильного ЗУ

Основа схемы - микроконтроллер AtMega16. Перемещение по меню осуществляется кнопками «влево », «вправо », «выбор ». Кнопкой «ресет» осуществляется выход из любого режима работы ЗУ в главное меню. Основные параметры зарядных алгоритмов можно настроить под конкретный аккумулятор, для этого в меню есть два настраиваемых профиля. Настроенные параметры сохраняются в энергонезависимой памяти.

Чтобы попасть в меню настроек нужно выбрать любой из профилей, нажать кнопку «выбор », выбрать «установки », «параметры профиля », профиль П1 или П2. Выбрав нужный параметр, нажимаем «выбор ». Стрелки «влево » или «вправо » сменятся на стрелки «вверх » или «вниз », что означает готовность параметра к изменению. Выбираем нужное значение кнопками «влево» или «вправо», подтверждаем кнопкой «выбор ». На дисплее появится надпись «Сохранено», что обозначает запись значения в EEPROM. Более подробно о настройке читайте на форуме.

Управление основными процессами возложено на микроконтроллер. В его память записывается управляющая программа , в которой и заложены все алгоритмы. Управление блоком питания осуществляется с помощью ШИМ с вывода PD7 МК и простейшего ЦАП на элементах R4, C9, R7, C11. Измерение напряжения АКБ и зарядного тока осуществляется средствами самого микроконтроллера - встроенным АЦП и управляемым дифференциальным усилителем. Напряжение АКБ на вход АЦП подается с делителя R10 R11.


Зарядный и разрядный ток измеряются следующим образом. Падение напряжения с измерительного резистора R8 через делители R5 R6 R10 R11 подается на усилительный каскад, который находится внутри МК и подключен к выводам PA2, PA3. Коэффициент его усиления устанавливается программно, в зависимости от измеряемого тока. Для токов меньше 1А коэффициент усиления (КУ) задается равным 200, для токов выше 1А КУ=10. Вся информация выводится на ЖКИ, подключенный к портам РВ1-РВ7 по четырёхпроводной шине.

Защита от переполюсовки выполнена на транзисторе Т1, сигнализация неправильного подключения - на элементах VD1, EP1, R13. При включении зарядного устройства в сеть транзистор Т1 закрыт низким уровнем с порта РС5, и АКБ отключена от зарядного устройства. Подключается она только при выборе в меню типа АКБ и режима работы ЗУ. Этим обеспечивается также отсутствие искрения при подключении батареи. При попытке подключить аккумулятор в неправильной полярности сработает зуммер ЕР1 и красный светодиод VD1, сигнализируя о возможной аварии.

В процессе заряда постоянно контролируется зарядный ток. Если он станет равным нулю (сняли клеммы с АКБ), устройство автоматически переходит в главное меню, останавливая заряд и отключая батарею. Транзистор Т2 и резистор R12 образуют разрядную цепь, которая участвует в зарядно-разрядном цикле десульфатирующего заряда и в режиме теста АКБ. Ток разряда 0.01С задается с помощью ШИМ с порта PD5. Кулер автоматически выключается, когда ток заряда падает ниже 1,8А. Управляет кулером порт PD4 и транзистор VT1.

Резистор R8 – керамический или проволочный, мощностью не менее 10 Вт, R12 - тоже 10Вт. Остальные - 0.125Вт. Резисторы R5, R6, R10 и R11 нужно применять с допустимым отклонением не хуже 0.5%. От этого будет зависеть точность измерений. Транзисторы T1 и Т1 желательно применять такие, как указаны на схеме. Но если придется подбирать замену, то необходимо учитывать, что они должны открываться напряжением на затворе 5В и, конечно же, должны выдерживать ток не ниже 10А. Подойдут, например, транзисторы с маркировкой 40N03GР , которые иногда используются в тех же БП формата АТХ, в цепи стабилизации 3.3В.


Диод Шоттки D2 можно взять из того же БП, из цепи +5В, которая у нас не используется. Элементы D2,Т1 иТ2 через изолирующие прокладки размещаются на одном радиаторе площадью 40 квадратных сантиметров. Звукоизлучатель - со встроенным генератором, на напряжение 8-12 В, громкость звучания можно подрегулировать резистором R13.

ЖКИ – WH1602 или аналогичный, на контроллере HD44780 , KS0066 или совместимых с ними. К сожалению, эти индикаторы могут иметь разное расположение выводов, так что, возможно, придется разрабатывать печатную плату под свой экземпляр


Налаживание заключается в проверке и калибровке измерительной части. Подключаем к клеммам аккумулятор, либо блок питания напряжением 12-15В и вольтметр. Заходим в меню «Калибровка». Сверяем показания напряжения на индикаторе с показаниями вольтметра, при необходимости, корректируем кнопками «<» и «>». Нажимаем «Выбор».


Далее идет калибровка по току при КУ=10. Теми же кнопками «<» и «>» нужно выставить нулевые показания тока. Нагрузка (аккумулятор) при этом автоматически отключается, так что ток заряда отсутствует. В идеальном случае там должны быть нули или очень близкие к нулю значения. Если это так, это говорит о точности резисторов R5, R6, R10, R11, R8 и хорошем качестве дифференциального усилителя. Нажимаем «Выбор». Аналогично - калибровка для КУ=200. «Выбор». На дисплее отобразится «Готово» и через 3 секунды устройство перейдет в главное меню. Поправочные коэффициенты хранятся в энергонезависимой памяти. Здесь стоит отметить, что если при самой первой калибровке значение напряжения на ЖКИ сильно отличается от показаний вольтметра, а токи при каком - либо КУ сильно отличаются от нуля, нужно подобрать другие резисторы делителя R5, R6, R10, R11, R8, иначе в работе устройства возможны сбои. При точных резисторах поправочные коэффициенты равны нулю или минимальны. На этом наладка заканчивается. И в заключение. Если же напряжение или ток зарядного устройства на каком-то этапе не возрастает до положенного уровня или устройство «выскакивает» в меню, нужно ещё раз внимательно проверить правильность доработки блока питания. Возможно, срабатывает защита.

Переделка БП АТХ под зарядное устройство

Схема электрическая доработки стандартного ATX

В схеме управления лучше использовать прецизионные резисторы, как указано в описании. При использовании подстроечников параметры не стабильные. проверено на собственном опыте. При тестировании данного ЗУ проводил полный цикл разрядки и зарядки АКБ (разряд до 10,8В и заряд в режиме тренировки, потребовалось около суток). Нагревание ATX БП компьютера не более 60 градусов, а модуля МК еще меньще.


Проблем в настройке не было, запустилось сразу, только нужна подстройка под максимально точные показания. После демострации работы другу-автолюбителю этого зарядного автомата, сразу заявка поступила на изготовление еще одного экземпляра. Автор схемы - Slon , сборка и тестирование - sterc .

Обсудить статью АВТОМАТИЧЕСКОЕ ЗАРЯДНОЕ УСТРОЙСТВО АВТОМОБИЛЬНОЕ

Метод базируется на восстановлении аккумуляторов "ассимметричным" током. При этом соотношение тока заряда и разряда выбрано 10:1 (оптимальный вариант). Этот режим позволяет с легкостью восстановить засульфатированные аккумуляторные батареи, но и осуществить профилактическую процедуру исправным АКБ.

Для восстановления и тренировки аккумуляторных батарей лучше всего задавать импульсный ток заряда на уровне 5 А. При этом разрядный ток составит около 0,5 А. Он в первую очередь определен номиналом сопротивления резистора R4. Схема построена так, что заряд АКБ происходит токовыми импульсами в течение одной половины периода сетевого напряжения, в тот момент, когда напряжение на выходе устройства превысит уровень потенциала на аккумуляторе. В течение другого полупериода диоды VD1, VD2 заперты и батарея разряжается через сопротивление нагрузки R4.

Значение тока заряда настраивается переменным резистором R2 по аналоговому амперметру. Учитывая, что во время заряда часть тока идет и через сопротивление R4 (10%), то показания амперметра должны быть 1,8 А (для импульсного зарядного тока в районе 5 А), так как аналоговый амперметр показывает среднее значение тока за период времени, а заряд происходит в течение половины периода.

В схеме имеется защита батареи от неконтролируемого разряда в случае случайного пропадания сетевого напряжения. В этом варианте развития события, реле К1 своими контактами разорвет цепь подсоединения аккумуляторной батареи.

Реле К1 взял старое советское типа РПУ-0 с рабочим напряжением обмотки на 24 В, последовательно с обмоткой включил ограничительное сопротивление. Для этой схемы подойдет практически любой трансформатор мощностью не ниже 150 Вт с напряжением во вторичной обмотке примерно 22-25 В.

Технология восстановления автомобильных аккумуляторов переменным током позволяет достаточно быстро снизить внутреннее сопротивление практически до заводского уровня, при минимальном нагреве электролита. Положительный полупериод тока задействован полностью при зарядке автомобильных батарей с минимальной рабочей сульфатацией, когда мощности импульсного тока заряда хватает для восстановления пластин АКБ.

При восстановлении АКБ с длительным сроком эксплуатации рекомендуется использовать оба полупериода переменного тока в соизмеримых величинах: при зарядном токе величиной в 0,05С (С - емкость), ток разряда выбирается в диапазоне 1/10-1/20 оттока заряда. Интервал времени тока заряда не должен быть более 5 мс, т. о процесс восстановление должен происходить на максимальном уровне напряжения положительной части синусоиды, при которой энергии импульса хватает для химического перехода сульфата свинца в аморфное состояние. Освободившийся остаток SO4 повышает плотность электролита до тех пор, пока все кристаллы сульфата свинца не восстановятся, при этом из-за происходящего электролиза напряжение на аккумуляторной батареи возрастет.

При зарядно-восстановительных процедурах требуется использовать максимальную токовую амплитуду при минимуме времени его действия. Крутой передний фронт токового импульса расплавляет кристаллы сульфата, когда другие методы не приносят ощутимых результатов. Время между зарядом и разрядом требуется также для охлаждения пластин и рекомбинацию электронов в кислотном электролите. Плавное падение тока во второй полуволне синусоиды создает необходимые условия для торможения электронов при переходе тока в отрицательную полуволну синусоиды через точку нуля. Для создания необходимых условий восстановления используется тиристорно-диодная схема регулирования тока. Тиристор во время своего переключения вырабатывает достаточно крутой передний токовый фронт и практически не подвержен нагреву во время работы, в отличии от возможного транзисторного исполнения. Синхронизация импульса тока заряда с питающим напряжением снижает вероятный уровень помех.

Момент роста уровня напряжения на батареи контролируется добавлением в схему отрицательной обратной связи по напряжению, с батареи на ждущий мультивибратор на микросхеме таймере DA1. Также в конструкции используется температурный датчик для защиты от перегрева основных силовых компонентов. Токовый регулятор заряда позволяет задать начальный уровень тока восстановления, исходя от параметров емкости аккумулятора. Контроль среднего тока заряда осуществляется по аналоговому амперметру с линейной шкалой и внутренним шунтом. В его оказаниях токи суммируются, поэтому показания среднего зарядного тока будут занижены.

Не следует долгое время подавать на батарею только отрицательную токовую полуволну - это приводит к разряду батареи с переполюсовкой пластин. В заряженной батареи всегда идет саморазряд из-за разного уровня плотности верхнего и нижнего уровня электролита в банке и других факторов.

В состав принципиальной схемы входит ждущий мультивибратор - генератор синхронизированных импульсов на широко распространенном таймере КР1006ВИ1, усилитель амплитуды токового импульса выполнен на биполярном транзисторе VT1, температурный датчик и усилитель напряжения отрицательной обратной связи на VT2 Напряжение синхронизации идет с двухполупериодного выпрямителя на диодах VD3, VD4 и поступает через резисторный делитель напряжения R13, R14 на второй вход нижнего компаратора микросборки DA1.

Частота импульсов ждущего мультивибратора определяется параметрами резисторов R1, R2 и емкости С1. В начальный момент на третьем выходе DA1 имеется высокий уровень напряжения при отсутствии на втором входе DA1 напряжения выше 1/3 U п, после его появления микросборка срабатывает с порогом, заданным резистором R14, на выходе генерируется импульс с периодом 10 мс и длительностью, зависящей от положения регулятора переменного сопротивления R2, - времени заряда емкости конденсатора С1. Сопротивление R1 задает минимальную длительность импульсов на выходе. Пятый вывод микросборки имеет прямой доступ к точке 2/3 U n внутреннего делителя напряжения. С ростом напряжения на батареи в конце заряда отпирается биполярный транзистор VT2 цепи отрицательной обратной связи и падает напряжение на пятом выводе DA1, с длительность импульса сокращается, время работы открытого тиристора падает. Импульс с третьего пина таймера через резистор R5 следует на вход усилителя на VT1.

Усиленный импульс через оптопару поступает на управляющий электрод тиристора, тиристор открывается и подает в цепь восстановления автомобильного аккумулятора импульс двухполупериодного тока заряда с продолжительностью, зависящей от положения движка переменного сопротивления R2. Резисторы R9, R10 защищают оптопару от возможных перегрузок. Температура силовых компонентов контролируется терморезистором R11, установленного в делителе цепи отрицательной ОС. С ростом температуры сопротивления терморезистора падает и шунтирование транзистором VT2 пятого вывода микросхемы, длительность импульса падает - ток тоже.

Питание таймера в схеме стабилизировано стабилитроном VD1. Электронная конструкция питается от вторичной обмотки трансформатора через VD2-VD4, пульсации сглаживаются емкостью С3. Тиристор питается от двухполупериодного пульсирующего напряжением и выполняет функцию ключа с регулируемым временем включения положительных токовых импульсов, отрицательный импульс следует в автомобильный аккумулятор с однополупериодного выпрямителя VD5.

В гелевых аккумуляторах нет газа – гелия, в них электролит просто находится в состоянии геля. Поэтому, не стоит опасаться за разгерметизацию, данный тип необслуживаемых аккумуляторов вполне можно открыть, при условии, что его не получается зарядить, и напряжение на нём просело ниже уровня в 10 В.

В гелевых аккумуляторах обязательно имеется электролит на основе воды, которая является типовым расходным материалом АКБ, так как она, при восстановлении с помощью электролиза разрушается на гидроксильную группу и водород. А утечку самого легкого элемента в окружающий воздух, прекратить практически невозможно, т.к водород просачивается через резиновые колпачки-клапаны, находящиеся под внешней пластмассовой крышкой.

Для восстановления гелевого аккумулятора необхожимо сорвать приклеенную верхнюю крышку, и вытащить все колпачки-клапаны. Воды надо долить совсем немного – залитая жидкость будет впитываться в фильтровальную бумагу, поэтому через полчаса проверьте – сколько дистиллированной воды осталось в каждой секции батареи. Ее уровень должен слегка покрывать поверхность пластин, поэтому лишнюю воду рекомендуется откачать с помощью резиновой груши.

Для этого закрываем все отсеки АКБ на колпачки-клапаны. А также не забываем накрыть их внешней крышкой, и придавливаем ее грузом (приклеим чуть позже). Во время заряда через колпачки будет скидываться избыточное давление, из-за образования водорода, а крышка будет служить для них препятствием.

Потерявшая ёмкость батарея из-за высыхания электролита, н начальный момент заряда не будет потреблять ток от ЗУ, поэтому напряжение следует выбрать в районе 15 В.

Заряжать придётся довольно долго – пока батарея не начнёт потреблять ток. Но если через 15 часов она не "кушает Амперы", то не ждите от моря погоды, а повышайте напряжение зарядного устройства до 20 В и не оставляйте аккумулятор без присмотра, до момента начала потребления тока.

Хорошо «раскачивает» нежелающий заряжаться аккумулятор метод, при котором сначала дают АКБ зарядиться, а потом разряжают её – и так поочерёдно, небольшими временными интервалами. Первые циклы, должны осуществляться под высоким напряжением – в районе 30 В, а в последующих напряжение зарядки нужно плавно снижать до 14 В.

Разряжать подзарядившейся аккумулятор нужно совсем маленькой нагрузкой например лампочкой или резистором на 5 или 10 Вт при этом следите за напряжением на АКБ, чтобы оно не стало ниже 10,5 В.

После того как вам удалось заставить «проблемный» аккумулятор потреблять ток, продолжайте восстанавливать его до полного заряда длительным заряжанием малым током где-то на уровне 0,05 от ёмкости.


Содержание:

Основные методы восстановления и тренировки аккумуляторных батарей

Восстановление аккумуляторов методом длительного заряда малыми токами

Этот метод успешно используется при небольшой и не застарелой сульфатации аккумуляторных пластин. АКБ подключают на зарядку током нормальной величины (10 % от общей ёмкости АКБ). Зарядка производится до момента начала образования газов. После чего делается перерыв на 20 минут. На втором этапе проводят заряд АКБ, уменьшая значение тока до 1 % от ёмкости. Затем делают перерыв на 20 мин. Циклы заряда повторяет несколько раз

Восстановление аккумуляторов методом глубоких разрядов малыми токами

Для восстановления аккумулятора с признаками застарелой сульфатации используется метод заряда АКБ с перезарядом токами обычной величины и последующим длительным глубоким разрядом с малыми значениями тока. Путём осуществления нескольких циклов сильного разряда токами малых величин и обычного заряда аккумулятор может быть успешно восстановлен.

Восстановление аккумуляторов методом заряда циклическими токами

Проводится АКБ, измеряется внутреннее сопротивление батареи. В случае превышения фактического сопротивления над установленным заводским значением батарею подвергают заряду малым током, после этого делают перерыв 5 минут и начинают разряд аккумулятора. Вновь делают перерыв и повторяют циклы «заряд - перерыв - разряд - перерыв» многократно.

Восстановление аккумуляторов импульсными токами

Суть метода состоит в подаче для заряда АКБ тока импульсной формы. Амплитуда значения тока в импульсах выше обычных значений в 5 раз. Максимальные значения амплитуды кратковременно могут достигать 50 Ампер. Длительность импульса при этом мала - несколько микросекунд. При таком режиме заряда происходит расплавление кристаллов сульфата свинца и восстановление батареи

Восстановление аккумуляторов методом постоянного напряжения

Суть метода состоит в заряде АКБ током постоянного напряжения, при этом сила тока меняется (обычно уменьшается). При этом на первом этапе процесса заряда сила тока составлять 150 % от ёмкости АКБ и с течением времени постепенно снижаться до малых значений

- профессиональный прибор для восстановления и тренировки аккумуляторов

SKAT-UTTV - это современный автоматический прибор для проведения тестирования, тренировки, восстановления, заряда и реанимации свинцово-кислотных аккумуляторных батарей различного типа (герметичных и открытого типа). Прибор даёт возможность определить, как долго может прослужить в дальнейшем АКБ, провести его заряд, восстановление аккумулятор с пониженной ёмкостью. Прибор имеет удобный пользовательский интерфейс, все режимы работы и параметры заряда и разряда выводятся на цифровой дисплей

Возможности прибора по восстановлению и тренировке аккумуляторов

  • Прибор осуществляет определение остаточной ёмкости батареи способом контрольного разряда, обычный заряд батареи, ускоренный заряд батареи, восстановление аккумуляторов, имеющих сульфатирование пластин, тренировку батарей с помощью чередования циклов заряда и разряда, принудительный заряд сильно разряженной батареи.
  • Прибор имеет эффективную защиту от короткого замыкания в цепи, электронную защиту от ошибочного подключения к клеммам батареи, надёжную защиту от процесса перегревания элементов прибора, понятную световую индикацию режимов работы устройства, вывод параметров батареи и режимов работы прибора.

Методы восстановления и тренировки аккумуляторов устройства SKAT-UTTV

Прибор использует следующие методы заряда, тренировки и восстановления аккумуляторов:

  • заряд постоянным током значения 10 % от емкости АКБ до достижения порога по напряжению;
  • заряд постоянным током значения 5 % от емкости АКБ до достижения порога по напряжению;
  • заряд постоянным напряжением с автоматическим выбор значения тока;
  • заряд постоянным током значения 20 % от емкости АКБ до достижения порога по напряжению;
  • заряд постоянным напряжением до достижения порога по значению емкости батареи;
  • заряд асимметричным током с чередованием импульсов оптимального заряда, подбираемых автоматически до достижения порога по значению напряжения батареи разряд постоянным током малого значения от 5 % от ёмкости АКБ до достижения минимального порога по напряжению.

В процессе выполнения заряда, тренировки и восстановления аккумулятора прибор выбирает автоматически программы использования всех методов на различных циклах.
Есть возможность программировать пользовательские программы заряда, тренировки и восстановления аккумуляторов путём установки следующих параметров режимов работы: выбор метода, количество циклов работы, значения электрических параметров, значения пределов срабатывания.

Прибор предназначен для профессионального восстановления аккумуляторов различных типов, в том числе автомобильных аккумуляторов и АКБ для источников бесперебойного питания. Использование устройства даёт возможность существенно увеличить сроки использования аккумуляторов в различных устройствах.

Многие владельцы автомобилей полагают, что "жизнь" аккумулятора зависит только от качества его изготов­ления, поэтому покупают импортные аккумуляторы. В некоторых автомо­бильных журналах даже высказывает­ся мнение о том, что срок службы ак­кумулятора должен быть не более грда. Это, конечно, очень выгодно ком паниям - производителям.

Практика показывает, что если сле­дить за уровнем электролита и раз в 3 месяца производить тренировочный цикл (полный разряд с последующим полным зарядом), то срок службы ак­кумулятора можно увеличить до 9 лет при сохранении достаточно высоких параметров (емкости и максимально­го разрядного тока). Проведение тре­нировочных циклов не только продле­вает срок эксплуатации аккумулятора, но и увеличивает максимальный раз­рядный ток (уменьшает внутреннее сопротивление).

Но тренировочные циклы (тем бо­лее, устранение сульфатации) отни­мают много времени. Поэтому в ра­диолюбительской литературе опуб­ликовано много описаний автомати­ческих зарядных устройств , каж­дое из которых имеет как достоин­ства, так и недостатки.

Предлагаю еще одно устройство, которое при простой схеме облада­ет широкими функциональными возможностями.

Схема состо ит из стабилизатора напряжения (микро­схема DA 1), триггера Шмитта (эле­менты DD 1.1, DD 1.2), счетчика цик­лов разряда-заряда (микросхема DD 2) с узлом индикации состояния этого счетчика (R 8. . .. R 1 3, VT 1 . ... VT 6, VD 4.... VD 9), двух ключей (VT 7, VD 2, К1 и VT 8, VD 3, К2), инвертора DD 1.3, силового выпрямителя (HL 2, Т1, VD 10.... VD 1 3) и нагрузочного сопротивления, роль которого вы­полняет лампа HL 1 .

Стабилизатор на­пряжения на микро­схеме DA 1 служит для питания микро­схем DD 1, DD 2, а также источником опорного напряже­ния при контроле напряжения на аккумуляторе. Триг­гер Шмитта управляет ключом VT 7, VD 2, К1. Счетчик на микросхеме DD 2 подсчитывает количество разрядно- зарядных циклов и управляет ключом VT 8, VD 3, К2, который отключает на­грузку HL 1 от аккумулятора.

Работает прибор следующим обра­зом. Сначала нужно подключить к ус­тройству аккумулятор GB 1. При этом на выходе стабилизатора DA 1 появ­ляется напряжение +5 В, а на резис­торе R 15 образуется короткий поло­жительный импульс напряжения, ус­танавливающий счетчик DD 2 в нуле­вое состояние. При этом на его вы­ходе 0 высокий уровень, который от­крывает транзистор VT 1. Загорается светодиод VD 4. Если напряжение подключенного аккумулятора мень­ше 15 В, то на выходе триггера (вы­воде 3 DD 1.1) - "1", транзистор VT 7 открыт, а реле К1 включено. Реле К2 также включено, поскольку на выво­де 5 DD 2 - "О", соот­ветственно, на выходе (выводе 10) DD 1.3 - "1", и VT 8 открыт.

Устройство подклю­чается к сети 220 В. При этом начинается зарядка аккумулятора GB 1. Зарядный ток про­текает по цепи: диоды VD 10....VD 13, замкну­тые контакты К1.1, ак­кумулятор GB 1. Вели­чина зарядного тока ог­раничивается сопро­тивлением лампы накаливания HL 2, включенной в разрыв первичной об­мотки трансформатора Т1. По мере зарядки аккумулятора напряжение на нем и на резисторе R 2 увеличивает­ся. Когда напряжение на GB 1 дости­гает 15 В, триггер Шмитта переклю­чается, на выводе 3 DD 1.1 - "0", и транзистор VT 7 закрывается. Реле К1 отпускает, и его контакты К1.1 пе­реключают аккумулятор на разрядку (подключают нагрузку - лампу HL 1). Ток разрядки аккумулятора опреде­ляется сопротивлением лампы HL1.

При этом перепад напряжения с вы­хода триггера (вывода 4 DD 1.2) по­ступает на вывод 14 счетчика DD 2 и переключает его в следующее состо­яние, т.е. "1" на выходе 1. Тогда от­крывается транзистор VT 2, и загора­ется светодиод VD 5.

По мере разрядки аккумулятора напряжение на нем (и на резисторе R 2) уменьшается. Когда напряжение GB 1 уменьшается до 10,7 В, триггер опять переключается, транзистор VT 7 открывается. Срабатывает реле К1 и переключает аккумулятор на за­рядку. Через несколько циклов заряда - разряда при очередном срабаты­вании счетчика DD 2 на его выводе 5 появляется "1", соответственно, на выходе DD 1.3 - "0". Транзистор VT 8 закрывается, реле К2 отпускает, и лампа HL 1 отключается от аккуму­лятора. На этом тренировка аккуму­лятора заканчивается. Дальше оба реле выключены, а аккумулятор разряжается небольшим током, равным общему току потребления микросхем DDI , DD 2, DA 1 (всего около 4 мА).

Количество циклов тренировки аккумулятора можно изменять, под­ключая входы (выводы 8 и 9) эле­мента DD 1.3 к разным выходам мик­росхемы DD 2. Зарядный и разряд­ный ток аккумулятора регулируется подбором ламп HL 1 и HL 2 (HL 1 дол­жна быть рассчитана на напряже­ние 12 В, a HL 2 - на 220 В). При помощи резисторов R 2 и R 3 можно в широких пределах регулировать пороги напряжения на аккумулято­ре, при которых происходят пере­ключения триггера. При этом R 3 ре­гулирует ширину гистерезиса харак­теристики триггера, a R 2 одновре­менно и пропорционально изменя­ет оба пороговых напряжения сра­батывания.

Описанный способ тренировки ак­кумулятора, когда он полностью раз­ряжается (до напряжения 10,7 В), а затем полностью заряжается (до 15 В), является "классическим". В специальной литературе рекоменду­ются и другие способы тренировки, например, такой режим. Аккумулятор полностью заряжают до напряжения 15 В и отключают от зарядного уст­ройства. При снижении напряжения на нем до 12,8 В аккумулятор опять подключают к зарядному устройству и доводят его напряжение до 15 В. Процесс повторяют несколько раз. Предлагаемый прибор позволяет реализовать и этот режим. Для этого лампа HL 1 из схемы исключается, а HL 2 подбирается такой мощности, чтобы зарядный ток аккумулятора был около 0,05 от его номинальной емкости. В перерывах между заряда­ми аккумулятор будет разряжаться током примерно 4 мА.

Конденсатор С1 подавляет пуль­сации напряжения на входе тригге­ра, что повышает четкость его ра­боты. Диод VD 1 ограничивает на­пряжение на С1 в пределах 0...5 В (в принципе, VD 1 можно исклю­чить). Напряжения, при которых срабатывает триггер, достаточно стабильны, т.к. микросхема DD 1 пи­тается стабилизированным напря­жением.

Замена деталей должна произ­водиться в соответствии с их элект­рическими характеристиками. Мик­росхемы серии К561 желательно за­менить на микросхемы серии 564, т.к. последние имеют более широкий температурный диапазон. В каче­стве К1 и К2 использованы реле включения фар (90.3747-01) от ав­томобиля "УАЗ". Мощность транс­форматора Т1 должна быть не ме­нее 150 Вт (для зарядки током 6 А 12-вольтового аккумулятора). Для того, чтобы лампа HL 2 эффективно ограничивала и стабилизировала зарядный ток, на ней должна выде­ляться достаточная мощность, по­этому напряжение холостого хода трансформатора должно быть в пре­делах 19....30 В. Пампу HL 2 можно заменить конденсатором большой емкости, но практически это неудоб­но, т.к. трудно подобрать нужный конденсатор, и не будет стабилизи­роваться ток зарядки.

Для удобства пользования в схему можно добавить переключатель, из­меняющий количество циклов заряда-разряда. Он должен поочередно подключать входы DD 1.3 к выходам DD 2. Для повышения экономичнос­ти прибора в отключенном состоянии можно установить тумблеры, отклю­чающие светодиоды (VD 6....VD 9).

Например, если подключить входы DD 1.3 к выводу 7 DD 2, то светодиод VD 7 нужно отключить, иначе ток по­требления увеличится с 4 до 15 мА. Для уменьшения потребляемого тока можно также увеличить сопротивле­ние R 7 до 3 кОм, но при этом умень­шится яркость свечения светодиодов. Исходное (нулевое) положение стрелки амперметра РА1 должно быть в середине шкалы, а диапазон измерения тока - 1.0...10 А.

Устройство размещено в двух ме­таллических корпусах. В одном нахо­дится узел питания (VD 10 ...VD 13, Т1, FU 1), в другом - все остальные элементы (кроме лампы HL 1). Со­единение элементов, а также под­ключение лампы HL 1 и аккумулято­ра осуществляется при помощи стан­дартных вилок и розеток (220-воль- товых), закрепленных на корпусах.

Налаживание правильно со­бранного устройства заключается, в основном, в установке пороговых напряжений срабатывания тригге­ра. Для этого прибор отключается от сети, отсоединяется лампа HL 1, а вместо аккумулятора к прибору подключается регулируемый ис­точник постоянного напряжения. Изменяя сопротивления R 2 и R 3, устанавливаются нужные напряже­ния срабатывания (моменты сра­батывания определяются по щел­чкам реле К1).

Литература

1. К.Казьмин. Автоматическое за­рядное устройство. В помощь радио­любителю. Вып. 87. - M .: ДОСААФ, 1978.

2. В.Сосницкий. Зарядное устрой­ство-автомат. В помощь радиолюби­телю. Вып. 92. - M .: ДОСААФ, 1986.

3. А.Коробков. Прибор для автома­тической тренировки аккумуляторов. В помощь радиолюбителю. Вып. 96. - M .: ДОСААФ.1987.

4. А.Коробков. Приставка-автомат к зарядному устройству. В помощь радиолюбителю. Вып. 100. - M .: ДОСААФ, 1988.

5. Н.Дробница. Автоматическое за­рядное устройство. В помощь радио­любителю. Вып. 77. - M .: ДОСААФ, 1982.