Почему называется дифференциал в автомобиле. Планетарная коробка передач подробно. Дифференциал с полной блокировкой

Основная задача трансмиссии в конструкции любого автомобиля – изменение передаточного числа, полученного от силовой установки и передача вращения на ведущие колеса.

Если рассматривать конструкцию заднеприводного автомобиля, то в состав его трансмиссии входит коробка передач (она меняет передаточное число), карданная передача (посредством ее осуществляется передача вращения на заднюю ведущую ось) и редуктор (передает вращение на полуоси, к которым крепятся колеса). Но в этой конструкции есть одна особенность – колеса в определенных случаях должны вращаться с различной скоростью. И чтобы это осуществить, в редуктор добавили еще один узел – дифференциал автомобиля.


1 - коробка сателлитов дифференциала правая;
2 - болт коробки сателлитов;
3 - опорная шайба шестерни;
4, 8 - полуосевые шестерни;
5 - опорная шайба сателлита;
6 - сателлиты;
7 - ось сателлитов;
9 - левая коробка сателлитов дифференциала.

Для чего нужен дифференциал

При прямолинейном передвижении дифференциал, в принципе и не нужен, поскольку ведущие колеса крутятся с одной скоростью. Но ведь часто возникает надобность проходить и повороты. При этом колеса идут по различным радиусам, то есть пройденное расстояние при повороте у колес одной оси отличаются. Движущееся по внутреннему радиусу колесо проходит значительно меньший путь, чем идущее по внешнему.

Если при этом обеспечить равную передачу вращения на каждое из колес, то одно из них начнет пробуксовывать, при этом и возникает большая нагрузка на элементы трансмиссии. В результате происходит повышенный и высока вероятность повреждения приводных элементов.

Чтобы этого не произошло, требуется перераспределение вращения на колеса в соответствии с условиями движения. Другими словами нужно, чтобы при прохождении поворота движущееся по внутреннему радиусу колесо – замедлилось, а идущее по внешнему – ускорилось. Именно это и обеспечивает добавленный в конструкцию трансмиссии авто дифференциал.

Виды и их особенности дифференциалов

Видео: GPS Навигатор — описание и тест

Видов дифференциалов по месту установки – два:

  1. Межколесный.
  2. Межосевой.

Первый используется на всех легковых авто с одной ведущей осью, и в его задачу входит только выполнение своей функции. На заднеприводных авто он располагается в заднем мосту и устанавливается на редуктор. То есть редуктор передает вращение на полуоси не напрямую, а через дифференциал.

Что касается переднеприводных авто, то из-за отсутствия карданной передачи и моста с редуктором, вращение от передается напрямую на дифференциал (они размещены в одном корпусе), а от него уже оно поступает на приводные валы.

Межосевой дифференциал используется на полноприводных авто, у которых обе оси являются ведущими. Там он нужен для того, чтобы правильно распределять получаемое вращение по осям при движении по неровностям. К примеру, авто движется на подъем, в результате чего задняя ось находится в низком положении относительно передней. В результате происходит перераспределение массы авто, она начинает больше давить на задок, и установленный узел в этом случае повышает крутящий момент на задних ведущих колесах. И все выполняется с точностью до наоборот на спусках.

При этом на полноприводных авто также требуется распределение вращения и на колесах, поэтому у них в общей сложности используется 3 дифференциала (1 – межосевой и 2 – межколесных).

Конструкция, принцип работы дифференциала

Дифференциалы, используемые на авто, делаются на основе обычного редуктора планетарного типа. Основными его составными компонентами являются:

  • корпус, он же — чашка (выполняет роль ведущего элемента);
  • сателлиты;
  • ведомые шестеренки;

Видео: Как работает дифференциал / How Differential Steering Works (на русском)

Эта конструкция может использовать разные виды зубчатых передач:

  1. Цилиндрические.
  2. Конические.
  3. Червячные;

Видео: Дифференциал, обзор конструкции, принцип действия

Редуктор состоит из двух шестерён (малой ведущей и большой ведомой). Часто ведомую из-за ее размера называют еще зубчатым колесом. Вот к ней и крепиться чашка при помощи болтового соединения. Внутри чашки сделаны оси для крепления сателлитов. Количество их может варьироваться в зависимости от значения крутящего момента. На легковых авто, где усилия не особо высокие, устанавливается по два сателлита, на внедорожниках же их количество может составлять 4 штуки.

Сателлиты находятся в постоянном зацеплении с правой и левой ведомыми шестернями (вторые получаются зажатыми между первыми). Ведомые шестеренки закрепляются посредством шлицевого соединения на полуосях (в переднеприводных авто они соединены с приводными валами).

Количество зубьев на ведомых шестернях может быть как одинаковым (симметричный дифференциал), так и разным (ассиметричный). Первый тип обеспечивает распределение вращения по полуосям (приводным валам) в равном соотношении, а у второго это выполняется в строго определенных значениях.

Из-за этих особенностей симметричный тип используется в качестве межколесного, а ассиметричный – межосевого дифференциалов.

Работает планетарный узел так: во время прямолинейного движения оба колеса ведущей оси получают одинаковое сопротивление от дорожного полотна. Вращение, получаемое от коробки передач передается на ведомое зубчатое колесо редуктора, а вместе с ним и крутиться чашка дифференциала с размещенными в ней сателлитными осями. Поскольку сопротивление одинаково, то сателлиты осуществляют передачу крутящего момента на ведомые шестеренки в одинаковых соотношениях, то есть скорость вращения их, а вместе с ними и полуосей, равна. При этом сателлиты лишь передают вращение, сами же они остаются неподвижными относительно своих осей.

При вхождении в поворот, колеса начинают двигаться по разным радиусам. При этом, идущее по внутреннему радиусу получает большее сопротивление, чем внешнее. Это сопротивление обеспечивает замедление вращения ведомой шестеренки, из-за чего сателлиты начинают крутиться на осях. В результате начала движения сателлитов, скорость вращения полуоси наружного колеса возрастает, то есть происходит изменение угловых скоростей полуосей (приводных валов). Примечательно, что общая скорость вращения обеих полуосей соответствует скорости вращение зубчатого колеса редуктора, но увеличенной вдвое. При этом крутящий момент от разницы угловых скоростей не меняется, и он разделяется на ведущие колеса равномерно.

В результате такой работы узла при прохождении поворотов удается избежать появления пробуксовки и увеличения нагрузки на элементы трансмиссии.

Блокировка дифференциала

Блокировка дифферециала с гидроприводом включения

Но у автомобильного дифференциала есть существенный недостаток, который проявляется в случае, когда сопротивление вращению на одном из колес полностью пропадает (к примеру, оно попало на скользкий участок дороги). В результате особенностей работы, у колеса, потерявшего сопротивление дороги, максимально возрастает угловая скорость. То есть, по сути, все вращение передается только на него, в то время как второе колесо из-за сопротивления останавливается.

В результате автомобиль обездвиживается, поскольку из-за низкого сопротивления на одном колесе падает и крутящий момент на нем. А поскольку дифференциал работает симметрично, то на втором колесе момент тоже очень мал, и его явно недостаточно, чтобы заставить его вращаться. Чтобы решить такую проблему, достаточно лишь замедлить вращение буксующего колеса, тем самым повысив крутящий момент на нем, и соответственно, на втором колесе. И для этого применяются блокировки дифференциала.

Видео: GБлокировки дифференциала для УАЗа, разновидность и принцип работы

Все просто – если обеспечить жесткое соединение одной полуоси с чашкой дифференциала, то она просто не сможет вращаться быстрее, чем шестерня редуктора. Из-за этого не будет происходить перераспределение вращения, крутящий момент на обеих полуосях будет одинаковым, и его хватит, чтобы обеспечить вращение и колеса, на котором имеется сопротивление, то есть автомобиль сможет двигаться даже в случае потери сопротивления на одном из колес.

Блокировки дифференциала различаются по степени блокирования и бывают они с:

  1. Полной.
  2. Частичной блокировкой.

Полная описана выше и указывает она на то, что происходит жесткое соединение элементов дифференциала машины, по сути, он просто прекращает выполнять свои функции и крутящий момент подается равно на обе полуоси.

В частичной же блокировке передача усилия между составными элементами узла ограничена определенной величиной, что обеспечивает повышение крутящего момента на колесе, получающем повышенное сопротивление.

Управление блокировкой

Блокировка может устанавливаться на любой автомобильный дифференциал, как межколесный, так и межосевой. При этом в полноприводных авто передний межколесный дифференциал обычно не оснащают блокировкой, чтобы не оказывать влияние на управляемость авто. Задействование же блокировки, если она имеется, может осуществляться в ручном и автоматическом режиме.

Ручное включение подразумевает принудительное блокирование дифференциала, то есть оно задействуется только когда нужно. При этом водитель задействует привод, в результате чего происходит жесткое соединение составных элементов дифференциала между собой.

Привод блокировки может быть:

  • механический;
  • гидравлический;
  • пневматический;
  • электромеханический;

Основной недостаток ручного управления крыт в надобности соблюдения условий эксплуатации. Так, заблокированный дифференциал может повредить трансмиссию в случае, когда оба колеса окажутся на дороге с хорошими сцепными свойствами. Такое может произойти, к примеру, когда водитель забыл разблокировать дифференциал в авто после преодоления бездорожья.

Виды самоблокирующихся дифференциалов

Дифференциалы, у которых блокирование происходит в автоматическом режиме, называются самоблокирующимися. В них, при определенных условиях происходит самостоятельная блокировка, без какого-либо участия водителя. Точно также он и разблокируется.

Видео: Кардан Главная передача Дифференциал

Самый простой самоблокирующийся дифференциал – дисковый, имеющий в своей конструкции дополнительный элемент – пакет фрикционных дисков, одна часть которого жестко соединена с чашкой дифференциала, а вторая – с одной из осей. При этом диски прижаты друг к другу.

Действует такая блокировка очень просто: при прямолинейном движении машины чашка и полуось вращаются с одной скоростью, а вместе с ними и фрикционный пакет.

В случае повышения угловой скорости на одной из полуосей, она начинает вращаться быстрее чашки. При этом одна часть фрикционного пакета (закрепленная на оси) ускоряется относительно второй. А поскольку они прижаты, то между ними возникает сила трения, которая и препятствует повышению угловой скорости, соответственно крутящий момент на колесе с большим сопротивлением повышается.

Примерно так же действует и вязкостная муфта, она же вискомуфта, которая сейчас является достаточно распространенным способом заблокировать дифференциал в автоматическом режиме. Но из-за больших габаритных размеров ее в качестве межколесной блокировки не используют. Муфта устанавливается только на межосном дифференциале, как вспомогательное устройство, а в некоторых случаях она полностью его заменяет.

Конструкция этой муфты такая: имеется герметичный корпус, с помещенным в нее пакетом дисков, одна половина которого жестко связана с ведущим валом (от которого подается вращения) а вторая – с ведомым.

Вискомуфта в разобраном состоянии

Все пространство между дисками заполнено дилатантной жидкостью, особенность которой заключается в повышаемой вязкости при перемешивании.

Действует вискомуфта примерно также же, как и дисковая блокировка. Пока валы вращаются с одной скоростью, перемешивание жидкости, расположенной между дисками, не происходит. Но как только появляется разница в скоростях вращения, диски начинают мешать жидкость из-за чего она становиться более вязкой. В результате повышения вязкости жидкости, которая при большой разнице скоростей может стать практически твердой, выравнивается угловая скорость на валах.

Существует также электронная блокировка дифференциала, которая используется на межколесном дифференциале автомобиля. Причем в качестве основного рабочего элемента в ней выступает антиблокировочная система тормозов.

Такая блокировка имеет свое обозначение – , суть работы которой сводится к тому, что в случае увеличения угловой скорости на одном ведущем колесе, тормозная система притормаживает его, тем самым повышая крутящий момент на другом колесе.

Дифференциал предназначен для передачи, изменения и распределения крутящего момента между двумя потребителями и обеспечения, при необходимости, их вращения с разными угловыми скоростями.

Дифференциал является одним из основных конструктивных элементов трансмиссии . Расположение дифференциала в трансмиссии автомобиля:

Дифференциалы, используемые для привода ведущих колес, называются межколесными. Межосевой дифференциал устанавливается между ведущими мостами полноприводного автомобиля.

Конструктивно дифференциал построен на основе планетарного редуктора. В зависимости от вида зубчатой передач, используемой в редукторе, различают следующие виды дифференциалов: конический, цилиндрический и червячный.

Конический дифференциал применяется в основном в качестве межколесного дифференциала. Цилиндрический дифференциал устанавливается чаще между осями полноприводных автомобилей. Червячный дифференциал, ввиду своей универсальности, может устанавливаться как между колесами, так и между осями.

Устройство дифференциала рассмотрено на примере самого распространенного конического дифференциала. Составные части дифференциала являются характерными и для других видов дифференциалов. Конический дифференциал представляет собой планетарный редуктор и включает полуосевые шестерни с сателлитами, помещенные в корпус.

Корпус (другое наименование – чашка дифференциала) воспринимает крутящий момент от главной передачи и передает его через сателлиты на полуосевые шестерни. На корпусе жестко закреплена ведомая шестерня главной передачи. Внутри корпуса установлены оси, на которых вращаются сателлиты.

Сателлиты, играющие роль планетарной шестерни, обеспечивают соединение корпуса и полуосевых шестерен. В зависимости от величины передаваемого крутящего момента в конструкции дифференциала используется два или четыре сателлита. В легковых автомобилях применяется, как правило, два сателлита.

Полуосевые шестерни (солнечные шестерни) передают крутящий момент на ведущие колеса через полуоси, с которыми имеют шлицевое соединение. Правая и левая полуосевые шестерни могут иметь равное или различное число зубьев. Шестерни с равным числом зубьев образуют симметричный дифференциал, тогда как неравное количество зубьев характерно для несимметричного дифференциала.

Симметричный дифференциал распределяет крутящий момент по осям в равных соотношениях, независимо от величины угловых скоростей ведущих колес. Благодаря этим свойствам симметричный дифференциал используется в качестве межколесного дифференциала.

Несимметричный дифференциал делит крутящий момент в определенном соотношении, поэтому устанавливается между ведущими осями автомобиля.

Работа дифференциала

В работе симметричного межколесного дифференциала можно выделить три характерных режима:

  1. прямолинейное движение;
  2. движение в повороте;
  3. движение по скользкой дороге.

При прямолинейном движении колеса встречают равное сопротивление дороги. Крутящий момент от главной передачи передается на корпус дифференциала, вместе с которым перемещаются сателлиты. Сателлиты, обегая полуосевые шестерни, передают крутящий момент на ведущие колеса в равном соотношении. Так как сателлиты на осях не вращаются, полуосевые шестерни движутся с равной угловой скоростью. При этом частота вращения каждой из шестерен равна частоте вращения ведомой шестерни главной передачи.

При движении в повороте внутреннее ведущее колесо (расположенное ближе к центру поворота) встречает большее сопротивление, чем наружное колесо. Внутренняя полуосевая шестерня замедляется и заставляет сателлиты вращаться вокруг своей оси, которые в свою очередь увеличивают частоту вращения наружной полуосевой шестерни. Движение ведущих колес с разными угловыми скоростями позволяет проходить поворот без пробуксовки. При этом, в сумме частоты вращения внутренней и наружной полуосевых шестерен всегда равна удвоенной частоте вращения ведомой шестерни главной передачи. Крутящий момент, независимо от разных угловых скоростей, распределяется на ведущие колеса в равном соотношении.

При движении по скользкой дороге одно из колес встречает большее сопротивление, тогда как другое проскальзывает - буксует. Дифференциал, в силу своей конструкции, заставляет вращаться буксующее колесо с увеличивающейся скоростью. Другое колесо при этом останавливается. Сила тяги на буксующем колесе, по причине низкой силы сцепления, мала, поэтому и крутящий момент на этом колесе тоже мал. А так как дифференциал у нас симметричный, то на другом колесе крутящий момент тоже будет небольшим. Тупиковая ситуация – автомобиль не может сдвинуться с места.

Для продолжения движения необходимо увеличить крутящий момент на свободном колесе. Это осуществляется с помощью

Планетарной называется коробка передач с подвижными осями. Любая планетарная коробка передач (ПКП) состоит из нескольких планетарных рядов, каждый из которых в отдельности или в сочетании с соседними обеспечивает требуемое передаточное число.

Наиболее широкое распространение получили планетарные передачи с внутренним и внешним зацеплениями зубьев. Чтобы разобраться в устройстве и работе сложной планетарной коробки передач, необходимо хорошо знать свойства элементарного планетарного ряда.

Для обеспечения работы планетарного ряда необходимо наличие в нем ведущего, ведомого и тормозного элементов. Любой из трех элементов (солнечная шестерня, водило, эпициклическая шестерня) может выполнять роль ведущего, ведомого или тормозного элемента.

В планетарных передачах бывает планетарный ряд с двумя ведущими и одним ведомым элементами (двухпоточные механизмы) или с одним ведущим и двумя ведомыми элементами (дифференциалы). Тормозные элементы в таких случаях отсутствуют.

Планетарные передачи находят широкое применение в трансмиссиях ТС: в коробках передач, раздаточных коробках, дифференциалах, механизмах поворота и колесных (бортовых) передачах.

На рисунке представлена схема планетарной коробки передач, используемой в трансмиссии некоторых четырехосных полноприводных колесных машин совместно с комплексной гидропередачей (КГП), вал турбинного колеса которой является ведущим для планетарной коробки передач. Планетарная коробка передач включает в себя два взаимно связанных планетарных ряда с внешним и внутренним зацеплениями, три тормоза Т1 Т2, Тзх и фрикцион Ф3. Указанные элементы позволяют получить три передачи для движения вперед и одну передачу для ЗХ. На валу турбинного колеса Т комплексной гидропередачи установлена шестерня 1

Рис. Схемы планетарной коробки передач в гидромеханической трансмиссии четырехосной полноприводной колесной машины (а) и зацепления шестерен (б):
1 - солнечная шестерня; 2 - водило; 3, 7 - сателлиты; 4 - эпициклическая шестерня первого ряда; 5 - эпициклическая шестерня второго ряда; 6 - солнечная шестерня второго ряда; Аь Ап - реакторы; Н, Т - насосное и турбинное колеса; Т1, Т2 - тормоза I и II передач; Тзх - тормоз ЗХ; Вм - ведомый вал гидромеханической трансмиссии; Ф3 - фрикцион III передачи; Фг - фрикцион комплексной гидропередачи; n1, n2 - частота вращения солнечных шестерен, n’1, n’2 - частота вращения эпициклических шестерен; nв1, nв2 — частота вращения сателлитов; Wвщ - угловая скорость ведущего вала первого планетарного ряда

Сателлиты 3 (длинные) находятся в постоянном зацеплении с солнечной шестерней 7, эпициклической шестерней первого ряда 4 и сателлитами 7 (короткими) второго планетарного ряда, которые в свою очередь находятся в постоянном зацеплении с солнечной 6 и эпициклической 5 шестернями второго планетарного ряда. Водило 2 у обоих планетарных рядов общее. В нем закреплены оси сателлитов 3 и 7(длинных и коротких). Водило соединено с ведомым валом Вм гидромеханической трансмиссии.

Включение той или иной передачи осуществляется блокировкой одного из четырех фрикционных узлов, три из которых неподвижные (тормоза), а четвертый вращающийся (фрикцион Ф3).

Движение на I передаче обеспечивается включением тормоза Ть который затормаживает эпициклическую шестерню 4 первого планетарного ряда, в результате чего длинные сателлиты 3 обкатываются по этой шестерне, и водило, скрепленное с ведомым валом гидромеханической трансмиссии, вращается в несколько раз медленнее вала турбинного колеса комплексной гидропередачи.

При включении II передачи блокируется тормоз Т2, затормаживающий солнечную шестерню 6 второго планетарного ряда. Получая вращение от солнечной шестерни 1 через длинные сателлиты 3, короткие сателлиты 7 обкатывают неподвижную солнечную шестерню 6 и заставляют водило 2 вращаться с определенной частотой, большей, чем на I передаче.

Включение III передачи осуществляется блокировкой фрикциона Ф3, соединяющего в одно целое солнечную б и эпициклическую 5 шестерни второго планетарного ряда. Короткие сателлиты 7 заклиниваются между этими шестернями, и вся планетарная передача вращается как единое целое с частотой турбинного вала комплексной гидропередачи - получаем так называемую прямую передачу с передаточным числом, равным единице.

При включении передачи ЗХ блокируется тормоз Тзх, затормаживающий эпициклическую шестерню 5 второго планетарного ряда. В этом случае короткие сателлиты 7, обкатываясь по неподвижной шестерне 5, заставляют водило 2 вращаться с определенной частотой в направлении, противоположном вращению турбинного вала комплексной гидропередачи.

Рис. Конструкция планетарной коробки передач в гидромеханической трансмиссии четырехосной полноприводной колесной машины:
1 - вал привода насосного колеса КГП; 2 - корпус фрикциона блокировки КГП; 3 - поршень фрикциона блокировки КГП; 4 - ведомый диск фрикциона блокировки КГП; 5 - турбинное колесо; 6 - кожух КГП; 7 - насосное колесо; 8 - реакторы КГП; 9 - муфты свободного хода реакторов; 10 - кожух КГП; II - вал турбинного колеса; 12 - поршень тормоза II передачи; 13 - поршень тормоза передачи ЗХ; 14 - поршень фрикциона III передачи; 15 - ось короткого сателлита; 16 — эпициклическая шестерня второго планетарного ряда; 17 - короткий сателлит; 18 - солнечная шестерня второго планетарного ряда; 19 - длинный сателлит; 20 - солнечная шестерня первого планетарного ряда; 21 - пружина; 22 - толкатель; 23 - эпициклическая шестерня первого планетарного ряда; 24 - водило; 25 - шестерня привода заднего насоса; 26 - ведомый вал ПКП; 27 - шестерни заднего насоса; 28 - поршень тормоза I передачи; 29 - картер ПКП; 30 - корпус маслозаборника; 31 - ось длинного сателлита; 32 - промежуточный картер; 33 - шестерня переднего насоса; 34 - шестерня привода насосов; Т1, Т2, Тзх - тормоза I, II передач и передачи ЗХ; Ф3 - фрикцион третьей (прямой) передачи

При размыкании всех фрикционных узлов водило не вращается, т.е. обеспечивается нейтральное положение в коробке передач.

Для управления гидромеханической трансмиссией применяется гидравлическая система, обеспечивающая дистанционное переключение передач, а также блокировку фрикциона Фг комплексной гидропередачи.

Планетарные коробки передач обладают следующими достоинствами:

  • простота и легкость управления
  • приспособленность ддя применения автоматических систем переключения передач
  • безударность, бесшумность и плавность переключения передач
  • высокая надежность
  • разгруженность валов от изгибающих моментов
  • возможность обеспечения больших передаточных чисел при малых размерах
  • высокий КПД

К недостаткам планетарной коробки передач следует отнести сложность конструкции и высокую стоимость. Конструкция такой планетарной коробки передач показана на рисунке.

На некоторых многоосных полноприводных колесных машинах в составе гидромеханической трансмиссии применяется модернизированная коробка передач, которая имеет четыре передачи переднего и две передачи заднего хода. В отличие от рассмотренной планетарной коробки передач модернизированная планетарная коробка передач включает в себя три планетарных ряда и пять фрикционных элементов, работающих в масле. Левый и средний планетарные ряды имеют общее водило, на шлицах которого установлена солнечная шестерня третьего (правого) планетарного ряда. Эпициклическая шестерня этого ряда является одновременно ступицей тормоза, а солнечная шестерня и водило могут соединяться между собой фрикционом. В среднем планетарном ряду отсутствует эпициклическая шестерня и связанный с ней тормоз. Остальные элементы аналогичны рассмотренным. Модернизированная планетарная коробка передач является механизмом с тремя степенями свободы и для получения каждой передачи нужно одновременно включить два фрикционных элемента. Выходным валом в этой коробке передач является вал водила правого (третьего) планетарного ряда.

28 января 2018

Крутящий момент, создаваемый двигателем внутреннего сгорания, передается колесам с помощью различных механизмов – валов, шлицевых и шестеренчатых передач, дифференциалов. Последние вызывают наибольший интерес у любителей экстремальной езды по бездорожью, поскольку принимают участие в распределении мощности. Многие автолюбители слабо представляют работу данного узла, поэтому стоит рассмотреть вопрос, что такое дифференциал в автомобиле, объяснить его устройство и принцип действия.

Назначение механизма

Чтобы понять роль дифференциала, применяющегося в транспортных средствах всех типов, нужно рассмотреть конструкцию обычного планетарного редуктора, передающего усилие от карданного вала двум полуосям. Алгоритм работы агрегата прост:

  1. Кардан вращает хвостовик с косозубой шестеренкой на конце.
  2. От хвостовика крутится большая планетарная шестерня, соединенная с двумя полуосями.
  3. Крутящий момент передается от планетарной шестерни полуосям и закрепленным на концах колесам.

Без дифференциала редуктор поровну распределяет крутящий момент на 2 оси, в результате колеса вертятся с одинаковой скоростью. Такое разделение вполне годится для прямолинейного движения, которое в реальности встречается довольно редко – даже при езде по ровным участкам трассы автомобиль отклоняется от прямой линии.

Чтобы машина идеально прошла поворот, колеса одного моста должны вращаться с разными скоростями, поскольку внешнее катится по более широкой дуге. Простой редуктор, обеспечивающий одинаковое вращение обеих полуосей, на повороте заставит одну шину скользить, вторую – буксовать, что заметно ухудшает маневренность авто.

Справка. Проблема весьма актуальна для внедорожников с постоянным полным приводом. В данном случае крутящий момент делится не только между колесами, но и между осями, вращающими редукторы переднего и заднего моста.

Совмещенный с планетарным редуктором дифференциал нужен для изменения угловых скоростей правого и левого колеса в зависимости от крутизны поворота. Механизм автоматически распределяет крутящий момент на полуоси, позволяя колесным покрышкам совершать разное число оборотов при движении автомобиля по дуге. Без дифференциала нормальная эксплуатация транспортного средства невозможна по таким причинам:

  • недостаточная управляемость;
  • быстрое истирание шин;
  • ускоренный износ деталей редуктора, валов и полуосей.

Как работает свободный дифференциал?

Механизмами данного типа оснащается подавляющее большинство машин с приводом на переднюю либо заднюю ось. В первом случае узел размещается внутри коробки передач, во втором является частью планетарного редуктора заднего моста.

Конструкция планетарной передачи подразумевает использование шестеренок конической формы. Существуют и другие разновидности автомобильных редукторов – цилиндрические, конусно-цилиндрические и червячные.

Устройство дифференциала свободного типа предусматривает совмещение с главной передачей. Механизм заднего моста включает следующие детали:

  • хвостовик с конической ведущей шестерней, соединенный с карданным валом;
  • ведомая планетарная шестеренка;
  • корпус ведомой шестерни оборудован двумя проушинами, куда вставляются оси сателлитов;
  • сателлитные шестеренки конической формы;
  • ведомые шестерни полуосей;
  • подшипники;
  • корпус редуктора.

В легковых авто устанавливается 2 сателлита, на грузовиках – четыре.

Изучить принцип работы свободного дифференциалапредлагается на примере:

  1. Пока машина едет прямо, колеса крутятся с одинаковой скоростью. Хвостовик вращает «планетарку» вместе с закрепленными на ней сателлитами, причем последние остаются неподвижными и передают равный крутящий момент обеим осям за счет давления на зубья.
  2. Автомобиль входит в поворот. Крутящиеся вместе с большой шестерней сателлиты начинают вращаться вокруг собственной оси, причем в разные стороны.
  3. Мощность на валу делится не пополам, а в зависимости от крутизны дуги. Благодаря комбинированному вращению сателлитов полуоси и колеса совершают разное число оборотов, машина успешно преодолевает поворот без проскальзывания и пробуксовки резины.

Дифференциал получил название свободного, поскольку передает больший крутящий момент на колесо, которое вращается легче. Понятно, что на повороте шина внутри дуги сопротивляется вращению, поэтому дифференциал отдает больше мощности другой оси – противоположное колесо крутится быстрее.

Примечание. Полноприводные авто и внедорожники оснащаются тремя дифференциальными разделителями мощности – межосевым (ставится в раздаточной коробке) и двумя межколесными.

Свободный механизм решает главную проблему, но создает побочную. Когда одна покрышка начинает контактировать со скользким покрытием – льдом, укатанным снегом, грязью, начинается пробуксовка. Причина – дифференциальный механизм, отдающий максимум мощности в сторону наименьшего сопротивления. Для предотвращения подобных ситуаций на многих автомобилях задействована временная блокировка дифференциала.

Разновидности механизмов

Чтобы избавиться от пробуксовок на скользком дорожном покрытии либо в условиях бездорожья, производители комплектуют транспортные средства дифференциальными устройствами следующих конструкций:

В первом варианте применяется рассмотренный выше шестеренчатый узел, дополнительно оснащенный блокировочным устройством. Система функционирует просто: в случае необходимости водитель активирует привод, фиксирующий сателлиты в неподвижном состоянии. Крутящий момент начинает делиться ровно пополам, оси вращаются с одинаковой скоростью и транспортное средство успешно преодолевает проблемное место.

Принудительная блокировка межосевого дифференциала включается с помощью различных приводов:

  • механический – от рычага раздаточной коробки;
  • электрический;
  • пневматический;
  • гидравлический.

Аналогичные приводные элементы применяются для остановки и удержания сателлитов переднего либо заднего моста.

Автомобили дорогой комплектации производители оснащают антипробуксовочной системой. Она «обманывает» дифференциальное устройство другим способом: по сигналу датчика, фиксирующего быстрое вращение одного колеса, электроника отдает команду его притормозить. Тогда сателлитные шестеренки начинают передавать больше мощности на другую ось и авто прекращает «грестись» на месте.

Устройство повышенного сопротивления

Помимо сателлитов, ведущих и ведомых шестерен, дифференциал повышенного трения включает такие элементы:

  • корпус, жестко прикрепленный к планетарной шестеренке;
  • пакет фрикционных дисков, установленных на каждой полуоси;
  • стальные диски, чьи выступы зафиксированы в корпусе;
  • распорная пружина, вставленная между коническими шестернями полуосей.

Стальные и фрикционные диски (похожие применяются в сцеплении) установлены поочередно, первые вращаются вместе с корпусом, вторые – с осями. Конусообразная шестеренка надета на шлицы оси и способна смещаться на определенное расстояние. Пружина поддавливает 2 противоположных осевых шестерни.

Частичная блокировка дифференциала происходит следующим образом:

  1. На прямолинейном сухом участке дороги сателлиты неподвижны, а диски вращаются друг относительно друга.
  2. При попадании одной шины на скользкий участок начинается пробуксовка. Благодаря конусной форме зубьев шестеренки со стороны остановившегося колеса начнут взаимно отталкиваться.
  3. Шестерня полуоси сдвинется и сожмет пакет дисков. Возникнет сила трения, заставляющая ось вращаться вместе с корпусом напрямую от «планетарки» в обход сателлитов.

Подобное устройство самостоятельно регулирует степень блокировки – чем медленнее крутится покрышка с хорошим сцеплением, тем сильнее сжимаются диски и подается больше крутящего момента.

Самоблокирующиеся передачи Torsen

Принцип работы данных механизмов базируется на одной особенности червячной пары: шестеренка способна передавать вращение сателлиту, но обратное действие невозможно. Все шестерни, включая сателлитные, сделаны в виде цилиндров с косыми дугообразными зубьями. Всего в механизме применяется 3 пары червячных сателлитов, установленных вокруг шестеренок полуосей.

Самоблокирующийся дифференциал работает так:

  1. Во время прямолинейного движения червячные сателлиты ведут себя аналогично конусным – не крутятся сами, но вращают оси от главной передачи.
  2. На повороте число оборотов одной полуоси вырастет и она придаст вращение парам сателлитов – мощность начнет распределяться по-разному.
  3. Поскольку каждая пара сателлитов связана между собой прямозубой передачей, пробуксовка одного колеса исключается. Ось способна крутить свой сателлит, тот вращает соседний, который уже не может поворачивать вторую полуось. Механизм блокируется автоматически.

Устройство Torsen – самое надежное и передовое, но слишком дорогое, поэтому ставится на машины максимальной комплектации. В остальных применяются более доступные механизмы повышенного трения.

В среде любителей экстремальной езды по бездорожью известен простейший способ избежать пробуксовок – блокировка заднего дифференциала с помощью сварки. Сателлиты намертво привариваются к осям и всегда находятся в неподвижном состоянии. Правда, подобные автомобили предназначены только для езды по грунту и снегу – эксплуатировать их на твердом покрытии чересчур неудобно и дорого.

Его основное предназначение заключается в распределении, изменении и передачи крутящего момента, а при необходимости, для обеспечения вращения двух потребителей с различными угловыми скоростями.

Межколесный дифференциал – это дифференциал, предназначенный для привода ведущих колес, если же он установлен между ведущими мостами в полноприводном автомобиле – межосевой интервал.

Как правило, дифференциал автомобиля располагается в следующим местах:

  • Привод ведущих мостов в полноприводном автомобиле – в раздаточной коробке
  • Привод ведущих колес в полноприводном автомобиле – в картере заднего и переднего моста
  • Привод ведущих колес в переднеприводном автомобиле — в коробке передач
  • Привод ведущих колес в заднеприводном автомобиле – картер заднего моста

В основе дифференциала лежит планетарный редуктор. Используемый в редукторе вид зубчатой передачи условно делит дифференциал на три следующих вида:

  • Червячный
  • Цилиндрический
  • Конический

Червячный – самый универсальный дифференциал и может быть установлен как между осями, так и между колесами. Цилиндрический тип, как правило, располагается в автомобилях между осями. Конический тип применяется в основном как межколесный.

Различают также несимметричный и симметричный дифференциалы автомобиля. Несимметричный тип устанавливается между двумя приводными осями и позволяет передавать крутящий момент в различных пропорциях. Симметричный тип, как правило, устанавливается на главных передачах и позволяет передает на два колеса равный по значению крутящий момент.

Устройство автомобильного дифференциала

Основными элементами дифференциала являются:

  • Полуосевые шестерни
  • Шестерни сателлитов
  • Корпус

Схема дифференциала переднеприводного автомобиля:
1 — ведомая шестерня главной передачи; 2 — фрагмент ведущей шестерни главной передачи; 3 — ось сателлитов; 4 — сателлит; 5 — корпус дифференциала; 6 — правый фланцевый вал; 7 — сальник; 8 — конический роликовый подшипник; 9 — полуосевая шестерня; 10 — левый фланцевый вал; 11 — фрагмент картера коробки передач.

Шестерни сателлитов по своему принципу работы напоминают планетарный редуктор и служат для соединения между собой корпуса и полуосевой шестерни. Последние в свою очередь соединяются с помощью шлицов с ведущими колесами. В различных конструкциях используются четыре или два сателлита, в легковых автомобилей чаще используется второй вариант.

Чашка дифференциала или корпус – ее основное предназначение заключается в том, чтобы передавать через сателлиты крутящий момент от главной передачи к полуосевым шестерням. Внутри него располагаются оси для вращения сателлит.

Солнечные или полуосевые шестерни – предназначены для передачи крутящего момента с помощью полуосей на ведущие колеса. Левая и правая шестерни могут иметь как одинаковое, так и различное между собой число зубцов. В свою очередь шестерни с различным число зубов используются для образование несимметричного дифференциала, а с одинаковым количеством – для симметричного.

Принцип работы автомобильного дифференциала

Работает дифференциал следующим образом: вращая одно из ведущих колес автомобиля, второе начнет вращаться в противоположном направлении, но при этом должно выполняться условие неподвижности карданного вала. В данном случае стеллиты вращаются в свих осях, играя роль шестерни.

Если завести двигатель и включить сцепление и любую из передач, начнет свое вращение карданный вал, передающий свой крутящий момент через цилиндрические и конические шестерни коробке дифференциала.

Таким образом, во время движения автомобиля по кривой траектории одно колесо замедляет свой ход, второе наоборот увеличивает его. В результате устраняется пробуксовка и скольжение колес и каждое из них вращается с той скоростью, которая необходима для безопасного движения.

Во время движения автомобиля по прямой, ничего особенного не происходи и дифференциал передает крутящий момент на оба колеса в одинаковом соотношении. Шестерни полуосевые вращаются с одинаковой угловой скоростью, так как сателлиты в этом случае находятся в неподвижном состоянии.

При движении на скользких покрытиях дифференциал обладает одним существенным недостатком – он может вызвать боковой занос машины, так как на буксующем колесе низкая сила сцепления с покрытием и оно начинает вращаться в холостую.

Самые простейшие дифференциалы автомобиля обладают еще одним недостатком. При попадании грязи или прочих сторонних элементов между шлицами крутящий момент может передаваться в различном соотношении, даже 0 к 100. Таким образом, одно колесо останется в абсолютно статичном положение.

Современные модели практически лишены данного недостатка. Их устройство отличается ручной или автоматической более жесткой . Более того, во многих легковых современных машинах устанавливаются системы стабилизации и курсовой устойчивости, позволяющие оптимизировать в зависимости от траектории движения автомобиля распределение крутящего момента.

Как работает дифференциал — видео:

На этом всё, теперь вы знаете устройство дифференциала.