Ось турбины низкого давления авиадвигателя. Турбина низкого давления газотурбинного двигателя. Термодинамические параметры потока в относительном движении на входе в РК

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Самарский государственный аэрокосмический университет

имени академика С.П. Королева

Кафедра теории двигателей летательных аппаратов

Курсовая работа

по курсу: «Теория и расчет лопаточных машин»

Проектирование осевой турбины авиационного двигателя JT 9 D 20

Самара 2008

Задание

Произвести проектный расчет основных параметров турбокомпрессора высокого давления и построить меридиональное сечение турбины высокого давления ТРДД JT9D-70A, произвести термодинамический расчет турбины, кинематический расчет второй ступени турбины и спрофилировать лопатку рабочего колеса в трех сечениях: втулочном, среднем и периферийном сечениях.

Исходные параметры турбины известны из термодинамического расчета двигателя на взлетном режиме (H П =0 и M П =0).

Таблица 1. - Исходные данные для проектирования турбины

Турбина высокого давления

Параметр

Численное значение

Размерность

Т*ТНД = Т*Т

Р*ТНД = Р*Т

Реферат

Курсовая работа по термогазодинамическому проектированию осевой турбины JT9D20.

Пояснительная записка: 32 стр., 1 рис., 2 табл., 3 прил., 4 источника.

ТУРБИНА, КОМПРЕССОР, ПРОТОЧНАЯ ЧАСТЬ, КОЛЕСО РАБОЧЕЕ, АППАРАТ СОПЛОВОЙ, СТУПЕНЬ, УГОЛ ВЫХОДА ПОТОКА, УГОЛ ЭФФЕКТИВНЫЙ, УГОЛ УСТАНОВКИ ПРОФИЛЯ, ШАГ РЕШЕТКИ, ШИРИНА РЕШЕТКИ

В данной курсовой работе был произведен расчет диаметральных размеров турбины высокого давления, построено меридиональное сечение проточной части, выполнен кинематический расчет ступени на среднем диаметре и расчет параметров по высоте лопатки при законе закрутки б=const с построением треугольников скоростей на входе на выходе из РК в трех сечениях (втулочном, периферийном и сечении на среднем диаметре). Рассчитан профиль лопатки рабочего колеса второй ступени с последующим построение контура профиля в решетке в трех сечениях.

Условные обозначения

D - диаметр, м;

Относительный диаметр втулки;

h - высота лопатки, м;

F - площадь сечения, м 2 ;

G - массовый расход газа (воздуха), кг/с;

H - высота полета, км; напор компрессора, кДж/кг;

i - удельная энтальпия, кДж/кг;

k - показатель изоэнтропы;

l - длина, м;

М - число Маха;

n - частота вращения, 1/мин;

Р - давление, кПа;

Приведенная скорость;

с - скорость потока, м/с;

q(), (), () - газодинамические функции от;

R - газовая постоянная, кДж/кгград;

L * к(т) - удельная работа компрессора (турбины);

к(т) - КПД компрессора (турбины);

S - осевая ширина венца, м;

Т - температура, К;

Назначенный ресурс, ч;

V - скорость полета, м/с;

z - число ступеней;

к, т - степень повышения (понижения) полного давления;

Коэффициент восстановления полного давления воздуха (газа) в элементах двигателя; растягивающие напряжения, МПа;

Коэффициент изменения массового расхода;

U - окружная скорость, м/с;

Y т * =U т ср /C * т s - параметр нагруженности турбины;

Величина зазора, м;

U 2 т ср h т вых /D ср вых - параметр напряжений в лопатках турбины, м 2 /с 2 ;

К тк, К тв - параметры согласования газогенератора, турбовентилятора.

Индексы

a - осевая составляющая;

в - воздух сечение на входе в компрессор

вент - вентилятор

взл - взлетный;

вт - втулочное сечение;

г - газы сечение на выходе из турбины

к - компрессор сечение на выходе из компрессора

кр - критический

кс - камера сгорания

н - сечение невозмущенного потока

на - направляющий аппарат;

охл - охлаждение;

п - полетный параметр, периферийный диаметр;

пр - приведенные параметры;

пс - подпорная ступень

s - изоэнтропические параметры;

с - секундный сечение на выходе из сопла

ср - средний параметр;

ст - параметр ступени;

т - топливо турбина сечение на входе в турбину

ч - часовой

* - параметры торможения.

Сокращения

ВД - высокое давление;

НД - низкое давление;

ВНА - входной направляющий аппарат;

ГДФ - газодинамические функции

ГТД - газотурбинный двигатель

КПД - коэффициент полезного действия;

НА - направляющий аппарат;

РК - рабочее колесо;

СА - сопловой аппарат турбины;

САУ - стандартные атмосферные условия

ТРДД - турбореактивный двухконтурный двигатель.

Введение

1. Проектный расчет основных параметров турбины высокого давления

1.1 Расчет геометрических и режимных параметров турбины ВД

1.2 Построение меридионального сечения проточной части турбины ВД

2. Газодинамический расчет турбины ВД

2.1 Распределение теплоперепада по ступеням

2.2 Расчёт ступени по среднему диаметру

2.3 Расчет эффективной работы ступени с учетом потерь на трение диска и в радиальном зазоре

2.4 Расчет параметров потока на различных радиусах

Заключение

Список использованных источников

Введение

Данная работа содержит упрощенный вариант газодинамического расчета осевой турбины, при котором вариантный поиск оптимальных (компромиссных) параметров заменяется надежными статистическими рекомендациями, полученным при систематизации материалов по расчету турбин современных ГТД. Проектирование выполняется по исходным параметрам, полученным в термогазодинамическом расчете двигателя.

Цель проектирования осевой авиационной турбины состоит в определении основных геометрических, кинематических и термодинамических параметров в целом и ее отдельных ступеней, которые обеспечивают расчетные значения удельных и общих параметров двигателя. В этой связи задачи проектирования предполагают: выбор основных геометрических параметров проектируемой турбины при заданных параметрах рабочего тела с учетом целевого назначения ГТД; распределение теплоперепада по ступеням, выполнение расчета параметров потока в зазорах между ступенями; расчет параметров потока в элементах проточной части второй ступени турбины на среднем диаметре; выбор закона закрутки и расчет изменения параметров потока вдоль радиуса (высоты лопатки) проектируемой ступени; выполнение профилирования рабочих лопаток проектируемой ступени.

1. Проектный расчет основных параметров турбины высокого

давления

1.1 Расчет геометрических и режимных параметров турбины ВД

Геометрические параметры турбины, которые необходимо определить, приведены на рисунке 1.

Рисунок 1. - Геометрическая модель осевой турбины

1. Определяется величина отношения D ср /h 2 (h 2 - высота рабочих лопаток на выходе из турбины ВД) по формуле

где е т - параметр напряжений, величина которого обычно располагается в пределах (13…18) 10 3 м 2 /с 2 .

Принимаем е т =15 10 3 м 2 /с 2 . Тогда:

С целью получения высокого КПД желательно иметь. Поэтому выбирается новое значение. Тогда,

2. Задаваясь величиной осевой скорости газа на входе в турбину (С 0 =150 м/с), определяют приведенную осевую скорость л 0 (л 0 =0,20…0,25)

Кольцевая площадь на входе в СА турбины ВД:

3. Вычисляем кольцевую площадь на выходе из турбины. Для этого предварительно оценивают величину осевой составляющей скорости на выходе из турбины. Принимаем, что /= 1,5; . Тогда

4. По выбранной величине, определяется высота рабочей лопатки на выходе из турбины ВД:

5. Средний диаметр на выходе из турбины ВД

6. Периферийный диаметр на выходе из РК:

7. Втулочный диаметр на выходе из РК:

8. Форма проточной части имеет вид: Поэтому:

Высота сопловой лопатки на входе в турбину оценивается следующим образом:

9. Периферийный диаметр соплового аппарата на входе в турбину ВД:

10. Втулочный диаметр на входе в турбину ВД:

11. Частота вращения ротора турбины ВД:

1.2 Построение меридионального сечения проточной части

турбины ВД

Наличие меридиональной формы проточной части необходимо для определения характерных диаметров Di в любом контрольном сечении ступени, а не только в сечениях «0» и «2». Эти диаметры служат основой при выполнении, например, расчета параметров потока на различных радиусах проточной части, а также проектирования профилей контрольных сечений пера лопатки.

1. Ширина венца соплового аппарата первой ступени:

принимаем кСА = 0,06

2. Ширина венца рабочего колеса первой ступени:

принимаем кРК = 0,045

3. Ширина венца соплового аппарата второй ступени:

4. Ширина венца рабочего колеса второй ступени:

5. Осевой зазор между сопловым аппаратом и рабочим колесом обычно определяется из соотношения:

Осевой зазор между сопловым аппаратом и рабочим колесом первой ступени:

6. Осевой зазор между рабочим колесом первой ступени и сопловым аппаратом второй ступени:

7. Осевой зазор между сопловым аппаратом и рабочим колесом второй ступени:

8. Радиальный зазор между торцами перьев лопаток и корпусом обычно принимается в диапазоне 0,8…1,5 мм. В нашем случае принимаем:

2 . Г азодинамический расчет турбины ВД

2.1 Распреде ление теплоперепада по ступеням

Термодинамические параметры рабочего тела на входе и выходе из ступеней.

1. Найдем среднее значение теплоперепада на ступень

.

Теплоперепад последней ступени принимают равным:

Принимаем:

кДж/кг

Тогда: кДж/кг

2. Определим степень реактивности (для второй ступени)

м

; ; .

3. Определим параметры термодинамического состояния газа на входе во вторую ступень

; ;

; ; .

4. Вычислим величину изоэнтропической работы в ступени при расширении газа до давления.

Принимаем:

.

5. Определим параметры термодинамического состояния газа на выходе из ступени при условии изоэнтропического расширения от давления до:

; .

6. Вычислим степень понижения газа в ступени:

.

7. Определим полное давление на входе в ступень:

,

8. Угол выхода потока из РК принимаем.

9. Газодинамические функции на выходе из ступени

; .

10. Статическое давление за ступенью

.

11. Термодинамические параметры потока на выходе из ступени при условии изоэнтропического расширения от давления до

; .

12. Величина изоэнтропической работы в ступени при расширении газа от давления до

.

2.2 Расчёт ступени по среднем у диаметр у

Параметры потока за сопловым аппаратом

1. Определим изоэнтропическую скорость истечения газа из СА:

.

2. Определим приведенную изоэнтропическую скорость потока на выходе из СА:

;

3. Коэффициент скорости СА принимаем:

.

4. Газодинамические функции потока на выходе из СА:

; .

5. Определим по таблице коэффициент восстановления полного давления:

.

6. Угол выхода потока из сопловых лопаток:

;

Где.

7. Угол отклонения потока в косом срезе СА:

.

8. Эффективный угол на выходе из сопловой решетки

.

9. Угол установки профиля в решетке находим по графику в зависимости от.

Принимаем: ;

;

.

10. Хорда профиля лопатки СА

.

11. Значение оптимального относительного шага определяется по графику в зависимости от и:

12. Оптимальный шаг решетки СА в первом приближении

.

13. Оптимальное число лопаток СА

.

Принимаем.

14. Окончательное значение оптимального шага лопаток СА

.

15. Величина горла канала СА

.

16. Параметры термодинамического состояния газа на выходе из СА при условии изоэнтропического расширения в сопловой решетке

; .

17. Статическое давление в зазоре между СА и РК

.

18. Действительная скорость газа на выходе из СА

.

19. Термодинамические параметры потока на выходе из СА

;

; .

20. Плотность газа на выходе из СА

.

21. Осевая и окружная составляющие абсолютной скорости потока на выходе из СА

;

.

22. Окружная составляющая относительной скорости потока на входе в РК

.

23. Угол входа потока в РК в относительном движении

.

24. Относительная скорость потока на входе в РК

.

25. Термодинамические параметры газа на входе в РК

;

; .

26. Приведенная скорость потока в относительном движении

.

27. Полное давление в относительном движении воздуха

.

Параметры потока на выходе из РК

28. Термодинамические параметры потока

;

;.

29. Изоэнтропическая скорость потока в относительном движении

.

30. Приведенная изоэнтропическая скорость потока в относительном движении:

.

Принимаем, т.к. относительное движение - энергоизолированное движение.

31. Приведенная скорость потока в относительном движении

Примем:

,

Тогда:

; .

32. С помощью графика определяем коэффициент восстановления полного давления:

.

33. Угол выхода потока из РК в относительном движении (15є<в 2 <45є)

Вычислим:

;

.

34. Определим по таблице угол отклонения потока в косом срезе рабочих лопаток:

.

35. Эффективный угол на выходе из РК

.

36. Определим по таблице угол установки профиля в рабочей лопатке:

Вычислим:;

.

37. Хорда профиля лопатки РК

.

38. Значение оптимального относительного шага решетки РК определяем по таблицам:

.

39. Относительный шаг решетки РК в первом приближении

.

40. Оптимальное число лопаток РК

.

Принимаем.

41. Окончательное значение оптимального шага лопаток РК

.

42. Величина горла канала рабочих лопаток

.

43. Относительная скорость на выходе из РК

44. Энтальпия и температура газа на выходе из РК

; .

45. Плотность газа на выходе из РК

46. Осевая и окружная составляющие относительной скорости на выходе из РК

;

.

47. Окружная составляющая абсолютной скорости потока за РК

48. Абсолютная скорость газа за РК

.

49. Угол выхода потока из РК в абсолютном движении

50. Полная энтальпия газа за РК

.

2.3 Расчет эффективной работы ступени с учетом потерь на трение

диска и в радиальном зазоре

Чтобы определить эффективную работу ступени, необходимо учесть потери энергии, связанные с утечками рабочего тела в радиальный зазор и трением диска ступени о газ. Для этого определяем:

51. Удельная работа газа на лопатках РК

52. Потери на утечку, которые зависят от конструктивных особенностей ступени.

В конструкциях современных турбин ГТД для снижения утечек обычно на рабочих колесах применяются бандажи с лабиринтными уплотнениями. Утечки через такие уплотнения вычисляются по формуле:

Принимаем коэффициент расхода лабиринтного уплотнения:

Площадь зазора определяется из выражения:

Для определения давления сначала находятся изоэнтропическая приведенная скорость потока на выходе в РК на периферийном диаметре и соответствующая газодинамическая функция:

; .

Давление на периферии

Отношение давлений на уплотнении

Принимаем число гребешков:

Потери на утечки

53. Потери энергии на трение диска ступени о газ

,

где D 1вт берется по чертежу проточной части

54. Суммарная потеря энергии на утечки и трение диска

55. Полная энтальпия газа на выходе из РК с учетом потерь на утечки и трение диска

;

56. Энтальпия газа по статическим параметрам на выходе из РК с учетом потерь на утечки и трение диска

57. Полное давление газа на выходе из РК с учетом потерь на утечки и трение диска

58. Действительная эффективная работа ступени

59. Действительный к.п.д. ступени

60. Отличие действительной эффективной работы от заданной

что составляет 0,78%.

2.4 Расчет параметров потока на различных радиусах

турбина давление лопатка колесо

При значениях D ср /h л < 12 по высоте лопатки возникает переменность параметров потока, определяемая влиянием центробежных сил и изменением окружной скорости. В этом случае для снижения потерь энергии лопатки необходимо выполнять закрученными. Применение закона закрутки dб/dr = 0 позволяет повысить технологическое качество лопаток. Применение закона б 1 =const позволяет выполнять сопловые венцы с б 1л =const, а закон б 2 =const позволяет улучшить технологичность лопаток соплового венца последующей ступени.

Определение параметров для втулочного сечения лопатки

1. Относительный диаметр втулки

2. Угол выхода потока в абсолютном движении

3. Коэффициент скорости

4. Абсолютная скорость потока на выходе из СА

5. Окружная составляющая абсолютной скорости

6. Осевая составляющая абсолютной скорости

7. Изоэнтропическая скорость истечения газа из СА

8. Термодинамические параметры на выходе из СА

; ;

;

; .

9. Статическое давление

.

10. Плотность газа

11. Окружная скорость во втулочном сечении на входе в РК

12. Окружная составляющая относительной скорости на входе в РК

13. Угол входа потока в РК в относительном движении

.

14. Относительная скорость у втулки

15. Термодинамические параметры на входе в РК в относительном движении

,

,

16. Полное давление на входе в РК в относительном движении

17. Приведенная относительная скорость на входе в РК

Параметры в периферийном сечении

18. Относит. диаметр периферийного сечения

19. Угол выхода потока из СА в абсолютном движении

20. Коэффициент скорости

21. Абсолютная скорость на выходе из СА

22. Окружная и осевая составляющие абсолютной скорости

23. Изоэнтропическая скорость истечения газа из СА

24. Термодинамические параметры потока на выходе из СА

;

, ; .

25. Статическое давление

26. Плотность газа

27. Окружная скорость вращения колеса на периферии

28. Окружная составляющая относительной скорости на входе в РК

29. Угол входа потока в РК в относительном движении

.

30. Относительная скорость потока на периферии

31. Термодинамические параметры потока в относительном движении на входе в РК

,

32. Полное давление на входе в РК в относительном движении

.

33. Приведенная относительная скорость на входе в РК

Расчет параметров потока на выходе из РК

34. Относительный диаметр втулки

35. Угол потока в абсолютном движении

36. Окружная скорость во втулочном сечении на выходе из РК

37. Статическое давление на выходе из РК

38. Термодинамические параметры в РК

,

39. Изоэнтропическая скорость потока на выходе из РК

40. Приведенная изоэнтропическая скорость

41. Скорость потока за РК в относительном движении.

, где

коэффициент скорости.

42. Термодинамические параметры потока на выходе из РК

;

43. Плотность газа за рабочим венцом

44. Угол выхода потока в относительном движении

45. Окружная и осевая составляющие относительной скорости потока

46. Абсолютная скорость на выходе из рабочего венца

47. Окружная составляющая абсолютной скорости

48. Полная энтальпия и температура потока на выходе из РК

49. Газодинамические функции на выходе из РК

;

50. Полное давление потока в абсолютном движении на выходе из РК

Расчет параметров в периферийном сечении на выходе из РК

51. Относительный диаметр периферийного сечения

52. Угол потока в абсолютном движении

53. Окружная скорость в периферийном сечении на выходе из РК

54. Статическое давление на выходе из РК

55. Термодинамические параметры при изоэнтропическом расширении в РК

;

56. Изоэнтропическая скорость потока на выходе из РК

57. Приведенная изоэнтропическая скорость

58. Скорость потока за РК в относительном движении

Коэффициент скорости;

59. Термодинамические параметры потока на выходе из РК

;

60. Плотность газа за рабочим венцом

61. Угол выхода потока в относительном движении

62. Окружная и осевая составляющие относительной скорости потока

63. Абсолютная скорость выхода из РК

64. Окружная составляющая абсолютной скорости

65. Полная энтальпия и температура потока на выходе из РК

66. Газодинамические функции на выходе из РК

;

67. Полное давление потока в абсолютном движении на выходе из РК

3. Профилирование лопатки рабочего колеса

Таблица 2. - Исходные данные для профилирования лопаток РК

Исходный параметр и расчетная формула

Размерность

Контрольные сечения

D (по чертежу проточной части ступени)

Таблица 3. - Рассчитанные величины для профилирования лопаток РК

Величина

Средний диаметр

Периферия

Заключение

В курсовой работе была рассчитана и построена проточная часть турбины высокого давления, произведен кинематический расчет второй ступени турбины высокого давления на среднем диаметре, расчет эффективной работы с учетом потерь на трение диска и в радиальном зазоре, расчет параметров по высоте лопатки при законе закрутки б=const с построением треугольников скоростей. Было выполнено профилирование лопатки рабочего колеса в трех сечениях.

Список использованных источников

1. Термогазодинамическое проектирование осевых турбин авиационных ГТД с помощью р-i-T функций: Учеб. пособие / Н.Т. Тихонов, Н.Ф. Мусаткин, В.Н. Матвеев, В.С. Кузьмичев; Самар. гос. аэрокосм. ун-т. - Самара, 2000. - 92. с.

2. Мамаев Б.И., Мусаткин Н.Ф., Аронов Б.М. Газодинамическое проектирование осевых турбин авиационных ГТД: Учебное пособие. - Куйбышев: КуАИ, 1984 - 70 с.

3. Проектный расчет основных параметров турбокомпрессоров авиационных ГТД: Учеб. пособие / В.С. Кузьмичев, А.А. Трофимов; КуАИ. - Куйбышев, 1990. - 72 с.

4. Термогазодинамический расчет газотурбинных силовых установок. / Дорофеев В.М., Маслов В.Г., Первышин Н.В., Сватенко С.А., Фишбейн Б.Д. - М., «Машиностроение», 1973 - 144 с.

Размещено на Allbest.ru

Подобные документы

    Расчет параметров потока и построение решеток профилей ступени компрессора и турбины. Профилирование камеры сгорания, реактивного сопла проектируемого двигателя и решеток профилей рабочего колеса турбины высокого давления. Построение профилей лопаток.

    курсовая работа , добавлен 27.02.2012

    Определение основных геометрических размеров меридионального сечения ступени турбины. Расчет параметров потока в сопловом аппарате ступени на среднем диаметре. Установление параметров потока по радиусу проточной части при профилировании лопаток.

    курсовая работа , добавлен 14.11.2017

    Профилирование лопатки первой ступени турбины высокого давления. Расчет и построение решеток профилей дозвукового осевого компрессора. Профилирование решеток профилей рабочего колеса по радиусу. Расчет и построение решеток профилей РК турбины на ПЭВМ.

    курсовая работа , добавлен 04.02.2012

    Проектирование центробежного компрессора в транспортном газотурбинном двигателе: расчет параметров потока на выходе, геометрических параметров выходного сечения рабочего колеса, профилирование меридионального отвода, оценка максимальной нагрузки лопатки.

    курсовая работа , добавлен 05.04.2010

    Термогазодинамический расчет двигателя, выбор и обоснование параметров. Согласование параметров компрессора и турбины. Газодинамический расчет турбины и профилирование лопаток РК первой ступени турбины на ЭВМ. Расчет замка лопатки турбины на прочность.

    дипломная работа , добавлен 12.03.2012

    Расчет и профилирование элементов конструкции двигателя: рабочей лопатки первой ступени осевого компрессора, турбины. Методика расчета треугольников скоростей. Порядок определения параметров камеры сгорания, геометрических параметров проточной части.

    курсовая работа , добавлен 22.02.2012

    Расчёт и профилирование рабочей лопатки ступени компрессора, газовой турбины высокого давления, кольцевой камеры сгорания и выходного устройства. Определение компонентов треугольников скоростей и геометрических параметры решеток профилей на трех радиусах.

    курсовая работа , добавлен 17.02.2012

    Термогазодинамический расчет двигателя. Согласование работы компрессора и турбины. Газодинамический расчет осевой турбины на ЭВМ. Профилирование рабочих лопаток турбины высокого давления. Описание конструкции двигателя, расчет на прочность диска турбины.

    дипломная работа , добавлен 22.01.2012

    Выбор и обоснование мощности и частоты вращения газотурбинного привода: термогазодинамический расчет двигателя, давления в компрессоре, согласование параметров компрессора и турбины. Расчет и профилирование решеток профилей рабочего колеса турбины.

    курсовая работа , добавлен 26.12.2011

    Профилирование лопатки первой ступени компрессора высокого давления. Компьютерный расчет лопатки турбины. Проектирование камеры сгорания. Газодинамический расчет сопла. Формирование исходных данных. Компьютерное профилирование эжекторного сопла.

Изобретение относится к области авиационных газотурбинных двигателей, в частности к узлу, расположенному между турбиной высокого давления и турбиной низкого давления внутреннего контура двухконтурного авиационного двигателя. Безотрывный кольцевой переходный канал между турбиной высокого давления и турбиной низкого давления со степенью расширения более 1,6 и эквивалентным углом раскрытия плоского диффузора более 12° содержит перфорированные внешнюю и внутреннюю стенки. Закрутка потока, имеющаяся за рабочим колесом турбины высокого давления, преобразована в направлении ее усиления у стенок и ослабления в центре. Закрутка преобразована за счет профилирования ступени турбины высокого давления и за счет закручивающего устройства, расположенного за рабочим колесом турбины высокого давления высотой 10% от высоты канала по 5% высоты на внутренней и внешней стенках канала, или за счет подкручивающе-раскручиваюшего устройства полной высоты. Изобретение позволяет снизить потери в переходном канале между турбинами высокого и низкого давления. 2 з.п. ф-лы, 6 ил.

Область техники, к которой относится изобретение

Изобретение относится к области авиационных газотурбинных двигателей, в частности к узлу, расположенному между турбиной высокого давления и турбиной низкого давления внутреннего контура двухконтурного авиационного двигателя.

Уровень техники

Авиационные газовые турбины двухконтурных двигателей предназначены для привода компрессоров. Турбина высокого давления предназначена для привода компрессора высокого давления, а турбина низкого давления предназначена для привода компрессора низкого давления и вентилятора. В авиационных двигателях пятого поколения массовый расход рабочего тела через внутренний контур в несколько раз меньше расхода через внешний контур. Поэтому турбина низкого давления по своей мощности и радиальным размерам в несколько раз превышает турбину высокого давления, а частота ее вращения в несколько раз меньше частоты вращения турбины высокого давления.

Такая особенность современных авиационных двигателей конструктивно воплощается в необходимости выполнения переходного канала между турбиной высокого давления и турбиной низкого давления, который является кольцевым диффузором.

Жесткие ограничения по габаритным и массовым характеристикам авиационного двигателя применительно к переходному каналу выражаются в необходимости выполнять канал относительно короткой длины, с высокой степенью диффузорности и явно отрывным эквивалентным углом раскрытия плоского диффузора. Под степенью диффузорности понимается отношение выходной площади поперечного сечения ко входной. Для современных и перспективных двигателей степень диффузорности имеет значение, близкое к 2. Под эквивалентным углом раскрытия плоского диффузора понимается угол раскрытия плоского диффузора, имеющего такую же длину, как и кольцевой конический диффузор, и такую же степень диффузорности. В современных авиационных ГТД эквивалентный угол раскрытия плоского диффузора превышает 10°, в то время как безотрывное течение в плоском диффузоре наблюдается только при угле раскрытия не более 6°.

Поэтому все выполненные конструкции переходных каналов характеризуются высоким коэффициентом потерь, из-за отрыва пограничного слоя от стенки диффузора. На фигуре 1 приведена эволюция основных параметров переходного канала фирмы Дженерал Электрик. На фигуре 1 по горизонтальной оси отложена степень диффузорности переходного канала, по вертикальной оси эквивалентный угол раскрытия плоского диффузора. Из фигуры 1 видно, что первоначально высокие значения эффективного угла раскрытия (≈12°) эволюционируют к значительно более низким значениям, что связано только лишь с высоким уровнем потерь. По результатам исследований кольцевого диффузора со степенью раскрытия 1,6 и эффективным углом раскрытия плоского диффузора 13,5° коэффициент потерь менялся в пределах от 15% до 24% в зависимости от закона распределения закрутки по высоте канала .

Аналоги изобретения

Отдаленными аналогами изобретения являются диффузоры, описанные в патентах US 2007/0089422 A1, DAS 1054791. В этих конструкциях для предотвращения отрыва потока от стенки диффузора используется отсос пограничного слоя из сечения, расположенного посередине канала с выбросом отсасываемого газа в сопло. Однако указанные диффузоры не являются переходными каналами между турбиной высокого давления и турбиной низкого давления.

Краткое описание чертежей

Не являющиеся ограничивающими примеры осуществления настоящего изобретения, его дополнительные особенности и преимущества будут подробнее описаны ниже со ссылками на прилагаемые чертежи, на которых:

фиг.1 изображает эволюцию проточной части межтурбинного переходного канала у ТРДД фирмы General Electric,

фиг.2 изображает зависимость потерь кинетической энергии потока в канале от интегрального параметра закрутки потока Ф ¯ С Т в виде линейной аппроксимации, где ν=0 - равномерная по высоте закрутка потока; ν=-1 - увеличивающаяся по высоте закрутка потока; ν=1 - уменьшающаяся по высоте закрутка потока; у=-1,36Ф ст +0,38 - аппроксимационная зависимость, соответствующая коэффициенту достоверности R=0,76,

фиг.3 изображает экстраполяцию потерь отрыва в кольцевом диффузоре от величины пристеночной закрутки,

фиг.4 изображает схему переходного канала,

фиг.5 изображает схему перфорации,

фиг.6 изображает схему устройства силовой стойки с подводящим каналом.

Раскрытие изобретения

Задача, на решение которой направлено настоящее изобретение, заключается в создании переходного канала со степенью раскрытия более чем 1,6 и с эквивалентным углом раскрытия плоского диффузора, превышающего 12°, течение в котором было бы безотрывным, а уровень потерь соответственно минимально возможным. Предлагается возможным снизить коэффициент потерь с 20-30% до 5-6%.

Поставленная задача решается:

1. На основе трансформации имеющейся закрутки за турбиной высокого давления на входе в кольцевой диффузор в направлении ее усиления на внутренней и внешней стенке канала и ослабления в середине канала.

2. На основе переменной по длине перфорации внутренних и внешних стенок кольцевого диффузора, адаптированной к местной структуре турбулентности.

3. На основе отсоса пограничного слоя из зоны возможного отрыва потока от стенок диффузора.

В связи с чем предлагается безотрывный кольцевой переходный канал между турбиной высокого давления (ТВД) и турбиной низкого давления (ТНД) со степенью расширения более 1,6 и эквивалентным углом раскрытия плоского диффузора более 12°, содержащий внешнюю стенку и внутреннюю стенку. Внешняя и внутренняя стенка перфорированы, а имеющаяся за рабочим колесом турбины высокого давления (ТВД) закрутка преобразована в направлении ее усиления у стенок и ослабления в центре. Закрутка преобразована за счет профилирования ступени турбины высокого давления (ТВД) и за счет закручивающего устройства, расположенного за рабочим колесом турбины высокого давления (ТВД) высотой 10% от высоты канала по 5% высоты на внутренней и внешней стенках канала, или за счет подкручивающе-раскручивающего устройства полной высоты.

Преобразованная закрутка ограничена достижением интегрального параметра закрутки до уровня Ф ст =0,3-0,35. Секция перфорации, расположенная на расстоянии 0,6-0,7 длины переходного канала от входного сечения, соединена с полостью в силовых стойках, имеющих щели на 80% высоты стоек симметрично геометрической середины канала, а щели расположены вблизи входной кромки.

Как известно, газ движется в диффузоре по инерции в сторону роста давления, а отрыв (отслоение) потока от стенок физически обусловлен недостаточной инерционностью внутренних пристеночных слоев пограничного слоя. Пункты 1, 2 призваны увеличить инерционность движения пристеночного потока газа за счет увеличения скорости движения, а соответственно его кинетической энергии.

Наличие закрутки в пристеночном потоке газа увеличивает скорость движения, а значит и его кинетическую энергию. В результате увеличивается устойчивость потока к отрыву (отслоению от стенок), а потери снижаются. На фигуре 2 приведены результаты опытного исследования кольцевого диффузора со степенью раскрытия 1,6 и эквивалентным углом раскрытия плоского диффузора 13,5°. По вертикальной оси представлен коэффициент потерь, определяемый традиционным образом: отношение потерь механической энергии в диффузоре к кинетической энергии газового потока на входе в диффузор. По горизонтальной оси представлен интегральный параметр закрутки, определяемый следующим образом:

Ф с т = Ф в т + Ф п е р Ф. ,

где Ф. = 2 π ∫ R R + H ρ w u r 2 d r 2 π ∫ R R + H ρ w 2 r d r (R + H 2)

Интегральный параметр закрутки на входе в канал, ρ - плотность, w - осевая скорость, u - окружная скорость, r - текущий радиус, R - радиус с внутренней образующей диффузора, Н - высота канала, Ф вт - интегральный параметр закрутки, рассмотренный в диапазоне высот от 0% до 5% от втулочного сечения, т.е.

Ф в т = 2 π ∫ R R + 0,05 H ρ w u r 2 d r 2 π ∫ R R + H ρ w 2 r d r (R + H 2) ;

Ф пер - тот же параметр, но в диапазоне высот от 95% до 100% от втулочного сечения, т.е.

Ф п е р = 2 π ∫ R + 0,95 H R + H ρ w u r 2 d r 2 π ∫ R R + H ρ w 2 r d r (R + H 2) .

Как видно из фигуры 2, потери в переходном канале снижаются по мере увеличения доли пристеночной закрутки.

На фигуре 3 представлена линейная экстраполяция зависимости ξ (Ф ст) до уровня потерь трения в эквивалентном канале постоянного сечения. В этом случае на долю пристеночной закрутки (10% от высоты канала) должно приходиться примерно 30% закрутки потока.

Как известно, при турбулентном режиме течения в каналах, непосредственно вблизи стенки имеет место ламинарный режим течения из-за невозможности поперечного пульсационного движения. Толщина ламинарного подслоя составляет примерно 10 μ ρ τ с т. В последнем выражении µ - динамическая вязкость, τ ст - напряжение трения на стенке. Как известно, напряжение трения быстро убывает вдоль диффузора, а в точке отрыва оно вообще равно нулю. Поэтому толщина ламинарного подслоя в переходном канале со сплошной стенкой стремительно нарастает по ходу потока. Соответственно увеличивается толщина пристеночного слоя течения с малым уровнем кинетической энергии.

Перфорация внутренней и внешней стенок переходного канала делает возможным поперечное пульсационное движение на любом расстоянии от перфорированной стенки. Поскольку в турбулентном течении продольное пульсационное течение статистически связано с поперечным, то перфорация позволяет увеличить зону собственно турбулентного течения. Чем выше степень перфорации стенки, тем тоньше ламинарный подслой, тем выше скорость движения газа в пристеночном слое, тем выше кинетическая энергия пристенного потока и его стойкость к отрыву (отслоению от стенки).

Описание конструкции переходного канала между турбиной высокого давления и турбиной низкого давления

Переходный канал между турбиной высокого давления (ТВД) и турбиной низкого давления (ТНД) внутреннего контура двухконтурного турбореактивного двигателя (Фиг.4) является кольцевым диффузором, имеющим внутреннюю стенку 1 и внешнюю стенку 2. Внутренняя и внешняя стенки на стыке с ТВД и ТНД имеют определенные радиусы сопряжения.

Через переходный канал проходят силовые стойки 3, которые обеспечивают смазку, суфлирование и охлаждение опор роторов ТВД и ТНД. Стойки 3 имеют в поперечном сечении несимметричный аэродинамический профиль, обеспечивающий раскрутку потока в центре канала и подкрутку потока у стенок канала до уровня Ф ст =0,3-0,35.

Стенки 1 и 2 перфорированы (Фиг.5). Во избежание перетекания рабочего тела в перфорациях, части перфорации 4 изолированы друг от друга поперечными стенками 5.

Из секции перфорации 9, расположенной на расстоянии 0,6-0,7 от входа в диффузор, организован отсос и удаление через подводящий канал 6 в щели 7 стоек 3. Удаление отсосанной части пограничного слоя производится через щели, расположенные вблизи кромки профиля стоек в зоне минимума местного статического давления. В канале, соединяющем полость 9 с полостью стоек 3, установлены мерные шайбы 8, регулирующие расход газа.

За рабочим колесом ТВД 11 установлен подкручивающий аппарат 12, увеличивающий закрутку потока у стенок. Высота лопаток аппарата 12 составляет 10% от высоты канала на входе. При необходимости подкручивающий аппарат 12 может быть преобразован в раскручивающе-подкручивающий аппарат, расположенный по всей высоте канала. Центральная часть аппарата раскручивает поток, а пристеночная подкручивает, так что в результате закрутки потока на входе в диффузор составляет Ф ст =0,3-0,35.

В том случае, если безотрывное течение в диффузоре достигается только лишь за счет профилирования соплового аппарата 10 и рабочего колеса 11 ТВД и закручивающе-раскручивающего воздействия силовых стоек 3, закручивающее устройство 12 и щели 7 с каналом 6 отсутствуют.

Осуществление изобретения

Безотрывный режим течения в переходном канале достигается закруткой потока в пристеночных зонах течения, раскруткой потока в центре, перфорацией меридиональных образующих переходного канала, отсосом пограничного слоя.

Особенности организации рабочего процесса в современных ГТД таковы, что за турбиной высокого давления имеет место закрутка потока порядка 30-40°. Высокий уровень закрутки у внутренней и наружной стенки (на расстоянии 5% от высоты канала) следует сохранить, а если это необходимо - усилить за счет профилирования ступени и если необходимо - за счет установки закручивающего лопаточного аппарата на входе в переходный канал. Закрутку потока на высотах от 5% от втулочного сечения до 95% от того же сечения следует уменьшить как за счет профилирования ступени, так и за счет раскручивания потока силовыми стойками, конструктивно проходящими через канал. При необходимости, добиться нужной раскрутки потока следует установкой дополнительного раскручивающего лопаточного аппарата на входе в переходный канал. Раскрутка потока в центральной части канала призвана снизить радиальный градиент статического давления и уменьшить интенсивность вторичных течений, утолщающих пограничный слой и уменьшающих его стойкость к отрыву. Величина относительной пристеночной закрутки должна быть по возможности приближена к значению 0,3-0,35.

Поскольку установка дополнительного лопаточного аппарата связана с появлением потерь в этом аппарате, то его следует устанавливать только в том случае, если уменьшение коэффициента потерь в переходном канале заметно превышает величину потерь в дополнительном закручивающем и раскручивающем устройстве. Как вариант возможна установка дополнительного закручивающего аппарата на втулке и периферии ограниченного высотами от 5% до 10% Н (Фиг.4).

Перфорация меридиональных образующих переходного канала изменяет режим течения в ламинарном подслое на турбулентный. Экстраполяция логарифмического профиля скорости на область ламинарного подслоя до расстояния от твердой стенки, равного 8% толщины ламинарного подслоя, дает для величины скорости значение τ с т ρ 6,5 , что всего лишь в 2 раза меньше скорости на границе ламинарного подслоя, в то время как как скорость течения собственно в ламинарном подслое (на этом расстоянии) в 4 раза меньше, а удельная кинетическая энергия в 16 раз меньше.

Экстраполяция логарифмического закона распределения скоростей, характерного сугубо для турбулентного режима течения на область ламинарного подслоя, предполагает полную свободу для перемещения турбулентных вихрей. Такая возможность существует при двух условиях: 1) степень перфорации твердой поверхности близка к 100%;

2) турбулентные вихри всех размеров в данном сечении имеют полную свободу для перемещений в поперечном направлении.

Реально эти условия недостижимы в полном объеме, но практически можно близко к ним подойти. В результате скорость движения у перфорированной поверхности будет в разы выше скорости движения на том же расстоянии от стенки у сплошной поверхности. При этом плотность расположения элементов перфорации и ее структура должны быть согласованы с максимумом энергетического спектра турбулентных пульсаций в отношении их линейного размера для данного сечения переходного канала.

Плотность перфорации (отношение площади перфорации к общей площади) следует выдерживать максимально возможной по конструктивным и жесткостным соображениям.

Структура перфорации адаптирована к линейному размеру энергосодержащих вихрей местной турбулентности, определяемому высотой переходного канала и его средним радиусом в данном сечении. В качестве модели структуры перфорации может быть принята следующая модель:

d min =(0,2-0,5)l э (R, II);

d max =(1,5-2)l э (R, II);

d ¯ = (0,6 − 0,8) ;

d min ¯ = (0,2 − 0,3) ;

d max ¯ = (0,1 − 0,2) ;

d min - минимальный диаметр перфорации; d=l э (R, II) - основной диаметр перфорации, равный линейному размеру энергосодержащих вихрей турбулентной структуры; d max - максимальный диаметр перфорации; d ¯ = S d S - доля основного размера перфорации; S d - площадь перфорации, выполненная по размеру d=(l э (R, II); S - общая площадь перфорации; d min ¯ = S d min S - доля минимального размера перфорации; S dmin - площадь перфорации, выполненная по размеру d min ; d max ¯ = S d max S - доля максимального размера перфорации; S dmax - площадь перфорации, выполненная по размеру d max (Фиг.5).

Размер энергосодержащих вихрей l э (R, II) определяется расчетным путем в зависимости от принятой модели турбулентности.

В переходных каналах с очень большой степенью расширения (n>2) и очень большим эквивалентным углом раскрытия плоского диффузора (α экв >17°) максимально достижимой пристеночной закруткой (Ф ст ≈0,3) и максимально достижимой и должным образом структурированной перфорации (S ¯ ≈ 0,8 , где S ¯ = S п е р S , S пер - общая площадь перфорированной поверхности, S - суммарная площадь меридиональных обводов) может не хватить для организации безотрывного течения по всей длине переходного канала. В этом случае возможный отрыв на последней трети длины диффузора следует предотвратить путем отсоса пограничного слоя через часть перфорации. Удаление отсасываемого газа следует организовать в центральную часть канала через соответствующие отверстия в силовых стоках, которые расположены вблизи входной кромки профиля стенок, т.е. там, где местное статическое давление минимально. Площадь части перфорации 9, работающей на отсос, и площади проходных сечений в стойках 7 должны быть согласованны между собой.

Полость в силовых стойках имеет щели, расположенные вблизи входной кромки, вертикальная протяженность которых может достигать 0,8 от высоты стоек. Щели расположены симметрично относительно середины канала. Совокупность полостей и каналов, связанная с перфорацией и щелями в силовых стойках, организует отсос пограничного слоя в переходном канале.

Организация отсоса пограничного слоя целесообразна только в том случае, если потери смешения при вдуве отсосанного газа на вход в переходный канал меньше величины уменьшения потерь в диффузоре в связи с отсосом.

Список использованной литературы

1. Гладков Ю.И. Исследование переменной по радиусу входной закрутки потока на эффективность межтурбинных переходных каналов ГТД [Текст]: автореферат диссертации на соискание ученой степени кандидата технических наук 05.07.05 / Ю.И.Гладков - Рыбинская государственная авиационная технологическая академия имени П.А.Соловьева. - 2009 - 16 с.

2. Шлихтинг, Г. Теория пограничного слоя [Текст] / Г.Шлихтинг. - М.: Наука, 1974. - 724 с.

1. Безотрывный кольцевой переходный канал между турбиной высокого давления (ТВД) и турбиной низкого давления (ТНД) со степенью расширения более 1,6 и эквивалентным углом раскрытия плоского диффузора более 12°, содержащий внешнюю стенку и внутреннюю стенку, отличающийся тем, что внешняя и внутренняя стенка перфорированы, а имеющиеся за рабочим колесом турбины высокого давления (ТВД) закрутка преобразована в направлении ее усиления у стенок и ослабления в центре за счет профилирования ступени турбины высокого давления (ТВД) и за счет закручивающего устройства, расположенного за рабочим колесом турбины высокого давления (ТВД) высотой 10% от высоты канала по 5% высоты на внутренней и внешней стенках канала, или за счет подкручивающе-раскручивающего устройства полной высоты.

2. Канал по п.1, отличающийся тем, что преобразованная закрутка ограничена достижением интегрального параметра закрутки до уровня Ф ст =0,3-0,35.

3. Канал по п.1, отличающийся тем, что секция перфорации, расположенная на расстоянии 0,6-0,7 длины переходного канала от входного сечения, соединена с полостью в силовых стойках, имеющих щели на 80% высоты стоек симметрично геометрической середины канала, а щели расположены вблизи входной кромки.

Похожие патенты:

Изобретение относится к области энергетики, преимущественно для сбросных систем пара тепловых электрических станций, например, выбросам пара при срабатывании главных предохранительных клапанов котлов, продувок пароперегревателей, растолок котлов и котлов-утилизаторов при расходах сбрасываемого пара более 30 т/ч и степени нерасчетности недорасширенной струи пара n=pa/pc>1, где pa - давление атмосферного воздуха, pc - статическое давление пара на срезе выхлопного трубопровода

Выхлопное устройство турбомашины содержит корпус с входным отверстием, расположенным вокруг оси вращения турбины, диффузор, расположенное в наружной стенке корпуса выходное отверстие и дополнительную перегородку. Диффузор включает осевую и радиальную части, образованные соответственно внутренней и наружной трактовыми стенками, расположенными внутри корпуса вокруг оси вращения турбины. Дополнительная перегородка выполнена внутри корпуса устройства в плоскости, перпендикулярной оси вращения турбины, с периметром равным периметру параллельных ей стенок корпуса устройства. В дополнительной перегородке выполнено коаксиально оси вращения турбины отверстие, диаметр которого равен максимальному диаметру наружной трактовой стенки радиальной части диффузора. В нижней части дополнительной перегородки выполнены симметрично и «зеркально», относительно вертикальной оси указанной перегородки сквозные пазы. По периметру сквозных пазов неподвижно и герметично установлены полые короба, выполненные в виде усеченных пирамид с двумя криволинейными гранями. Меньшие по площади основания указанных усеченных пирамид направлены в сторону турбины устройства, пространство от верхней кромки дополнительной перегородки до верхней кромки стенки корпуса, содержащей входное отверстие устройства, закрыто герметичной плоской стенкой. Изобретение позволяет повысить эффективность устройства и к.п.д. газотурбинной установки. 3 ил.

Изобретение относится к конструкции опорных или установочных устройств выходного устройства турбины. Выходное устройство турбины содержит полые аэродинамические профилированные стойки, размещенные за рабочим колесом последней ступени турбины, а также аэродинамические профилированные контура. Контура образованы передними и задними лопатками, размещенными между стойками со смещением относительно друг друга. Средние линии входных участков контуров и входных участков профилированных стоек повернуты в направлении вращения рабочего колеса последней ступени турбины на угол 20-40° к ее продольной оси. Средние линии выходных участков контуров направлены вдоль продольной оси турбины. Лопатки установлены со смещением относительно друг друга на расстояние равное 0,03÷0,15 длины хорды передней лопатки. По длине хорды контура лопатки установлены в положение совмещения фронта выходной кромки передней лопатки и фронта входной кромки задней лопатки или смещены относительно него. Количество контуров установленных между стойками определено зависимостью защищаемой настоящим изобретением. Изобретение позволяет повысить коэффициент полезного действия последней ступени турбины, а также уменьшить закрутку выходящего потока. 3 ил.

Изобретение относится к выхлопным устройствам и может использоваться в составе газоперекачивающего агрегата с газотурбинной установкой. Выхлопное устройство содержит диффузор, переходник с разделяющими поток ребрами и шумоглушитель кассетного типа, размещенный под углом 30-60° к оси переходника. Каждая из кассет шумоглушителя состоит из силового каркаса, обшитого листами, полость между которыми заполнена звукопоглощающим материалом. Со стороны наклоненной к диффузору кассеты обшиты перфорированным листом, а с противоположной стороны - цельным. Изобретение позволяет повысить эффективность снижения шума в выходном устройстве за счет обеспечения равномерного движения потока. 2 ил.

Изобретение относится к машиностроению и может быть использовано в выхлопном тракте газоперекачивающего агрегата или газотурбинной электростанции. Диффузор выхлопного тракта газотурбинной установки содержит обечайку с фланцами, кожух, охватывающий обечайку и звукоизоляцию, размещенную между обечайкой и кожухом. Обечайка выполнена из подвижных, телескопически соединенных частей с ограничителями перемещений. Кожух образован эластичным материалом, например тканью «Атом», закрепленным на обечайке. Изобретение позволит повысить надежность работы конструкции диффузора, а также снизить его металлоемкость. 3 ил.

Выпускной патрубок для использования с турбиной, включающей множество ступеней, выполнен с возможностью направления пара из турбины в конденсатор и содержит опорный конус, окружающий ротор турбины, направляющую и колпак направляющей. Направляющая расположена радиально снаружи опорного конуса, при этом направляющая и опорный конус выполнены с возможностью направления текучей среды из турбины. Колпак направляющей проходит от края и задней поверхности направляющей к турбине и содействует предотвращению образования вихрей текучей среды в выпускном патрубке. Другое изобретение группы относится к паровой турбине, включающей указанный выше выпускной патрубок. Группа изобретений позволяет увеличить производительность турбины. 2 н. и 6 з.п. ф-лы, 5 ил.

Изобретение относится к энергетике. Часть низкого давления паровой турбины, включающая регулирующий орган на входе, группу ступеней с промежуточными камерами и выхлопной патрубок, соединенный с конденсатором, разделенным трубной системой на входной и выходной объемы, при этом выходной объем конденсатора соединен с промежуточной камерой, например, перед последней ступенью, посредством перепускной трубы с клапаном. Заявляемое техническое решение основано на особенности работы последней ступени низкого давления при малых расходах пара, когда ее рабочее колесо не вырабатывает мощности, а получает ее от ротора, затрачивая на перекачку пара в сторону выхлопа. При таком «компрессорном» режиме работы давление перед последней ступенью оказывается ниже, чем в конденсаторе. Это позволяет направить в камеру перед последней ступенью пар, охлажденный трубной системой конденсатора при протекании из его входного объема в выходной объем. Заявленное изобретение позволяет повысить надежность и экономичность паровой турбины при малых расходах пара через группу ступеней части низкого давления за счет снижения вентиляционного нагрева проточной части и устранения его последствий без использования охлаждающих впрысков влаги, усиливающих эрозию, и без увеличения расхода рабочего пара, сокращающего отпуск тепла и электроэнергии. 1 ил.

Изобретение относится к области авиационных газотурбинных двигателей, в частности к узлу, расположенному между турбиной высокого давления и турбиной низкого давления внутреннего контура двухконтурного авиационного двигателя

В 2006 году руководством Пермского моторостроительного комплекса и ОАО «Территориальная генерирующая компания № 9» (Пермский филиал) подписан договор на изготовление и поставку газотурбинной электростанции ГТЭС-16ПА на базе ГТЭ-16ПА с двигателем ПС-90ЭУ-16А.

Об основных отличиях нового двигателя от существующего ПС-90АГП-2 мы попросили рассказать заместителя генерального конструктора-главного конструктора энергетических газотурбинных установок и электростанций ОАО «Авиадвигатель» Даниила СУЛИМОВА.

Основным отличием установки ГТЭ-16ПА от существующей ГТУ-16ПЭР является применение силовой турбины с частотой вращения 3000 об./мин (вместо 5300 об./мин). Уменьшение частоты вращения дает возможность отказаться от дорогостоящего редуктора и повысить надежность газотурбинной установки в целом.

Технические характеристики двигателей ГТУ-16ПЭР и ГТЭ-16ПА (в условиях ISO)

Оптимизация основных параметров силовой турбины

Базовые параметры свободной турбины (СТ): диаметр, проточная часть, количество ступеней, аэродинамическая эффективность - оптимизированы с целью минимизации прямых эксплуатационных расходов.

Эксплуатационные расходы включают затраты на приобретение СТ и расходы за определенный (приемлемый для заказчика в качестве срока окупаемости) период эксплуатации. Выбор вполне обозримого для заказчика (не более 3 лет) срока окупаемости позволил реализовать экономически обоснованную конструкцию.

Выбор оптимального варианта свободной турбины для конкретного применения в составе ГТЭ-16ПА производился в системе двигателя в целом на основе сравнения прямых эксплуатационных расходов для каждого варианта.

С использованием одномерного моделирования СТ по среднему диаметру определялся достижимый уровень аэродинамической эффективности СТ для дискретно заданного количества ступеней. Выбиралась оптимальная для данного варианта проточная часть. Количество лопаток, учитывая их значительное влияние на себестоимость, выбиралось из условия обеспечения коэффициента аэродинамической нагрузки Цвайфеля равным единице.

На основе выбранной проточной части оценивалась масса СТ и производственная себестоимость. Затем проводилось сравнение вариантов турбины в системе двигателя по прямым эксплуатационным расходам.

При выборе количества ступеней для СТ учитывается изменение кпд, затрат на приобретение и эксплуатацию (стоимость топлива).

Стоимость приобретения равномерно возрастает с ростом себестоимости при увеличении количества ступеней. Подобным же образом растет и реализуемый кпд - как следствие снижения аэродинамической нагрузки на ступень. Затраты на эксплуатацию (топливная составляющая) падают с ростом кпд. Однако суммарные затраты имеют четкий минимум при четырех ступенях в силовой турбине.

При расчетах учитывался как опыт собственных разработок, так и опыт других фирм (реализованный в конкретных конструкциях), который позволил обеспечить объективность оценок.

В окончательной конструкции за счет увеличения нагрузки на ступень и снижение кпд СТ от максимально достижимой величины примерно на 1% удалось снизить суммарные затраты заказчика почти на 20%. Это было достигнуто за счет снижения себестоимости и цены турбины на 26% относительно варианта с максимальным кпд.

Аэродинамическое проектирование СТ

Высокая аэродинамическая эффективность новой СТ при достаточно высокой нагрузке достигнута за счет использования опыта ОАО «Авиадвигатель» в разработке турбин низкого давления и силовых турбин, а также применения многоступенчатых пространственных аэродинамических моделей, использующих уравнения Эйлера (без учета вязкости) и Навье-Стокса (учитывающих вязкость).

Сравнение параметров силовых турбин ГТЭ-16ПА и ТНД Rolls-Royce

Сравнение параметров СТ ГТЭ-16ПА и наиболее современных ТНД Rolls-Royce семейства Trent (диаграмма Смита) показывает, что по уровню угла поворота потока в лопатках (примерно 1050) новая СТ находится на уровне турбин Rolls-Royce. Отсутствие жесткого ограничения по массе, свойственного авиационным конструкциям, позволило несколько снизить коэффициент нагрузки dH/U2 за счет увеличения диаметра и окружной скорости. Величина выходной скорости (свойственная наземным конструкциям) позволила уменьшить относительную осевую скорость. В целом, потенциал спроектированной СТ для реализации кпд находится на уровне, характерном для ступеней семейства Trent.

Особенностью аэродинамики спроектированной СТ является также обеспечение оптимального значения кпд турбины на режимах частичной мощности, характерных для эксплуатации в базовом режиме.

При сохранении частоты вращения изменение (снижение) нагрузки на СТ приводит к возрастанию углов атаки (отклонению направления течения газа на входе в лопатки от расчетной величины) на входе в лопаточные венцы. Появляются отрицательные углы атаки, наиболее значительные в последних ступенях турбины.

Проектирование лопаточных венцов СТ с высокой устойчивостью к изменению углов атаки обеспечено специальным профилированием венцов с дополнительной проверкой стабильности аэродинамических потерь (по 2D/3D аэродинамическим моделям Навье-Стокса) при больших углах потока на входе.

Аналитические характеристики новой СТ показали в результате значительную устойчивость к отрицательным углам атаки, а также и возможность применения СТ и для привода генераторов, вырабатывающих ток с частотой 60 Гц (с частотой вращения 3600 об./мин), то есть возможность увеличения частоты вращения на 20% без заметных потерь кпд. Однако в этом случае практически неизбежны потери кпд на режимах пониженной мощности (приводящих к дополни-тельному увеличению отрицательных углов атаки).
Особенности конструкции СТ
Для снижения материалоемкости и веса СТ использовались проверенные авиационные подходы к конструированию турбины. В результате масса ротора, несмотря на увеличение диаметра и количества ступеней, оказа-лась равной массе ротора силовой турбины ГТУ-16ПЭР. Это обеспечило значительную унификацию трансмиссий, унифицированы также масляная система, система наддува опор и охлаждения СТ.
Увеличено количество и улучшено качество воздуха, применяемого для наддува опор трансмиссионных подшипников, включая его очистку и охлаждение. Улучшено также качество смазки трансмиссионных подшипников путем применения фильтроэлементов с тонкостью фильтрации до 6 мкм.
С целью повышения эксплуатационной привлекательности новой ГТЭ внедрена специально разработанная система управления, которая позволяет заказчику воспользоваться турбодетандерным (воздушным и газовым) и гидравлическим типами запуска.
Массогабаритные характеристики двигателя позволяют использовать для его размещения серийные конструкции блочно-комплектной электростанции ГТЭС-16П.
Шумо- и теплоизолирующий кожух (при размещении в капитальных помещениях) обеспечивает акустические характеристики ГТЭС на уровне, предусмотренном санитарными нормами.
В настоящее время первый двигатель проходит серию специальных испытаний. Газогенератор двигателя уже прошел первый этап эквивалентно-циклических испытаний и начал второй этап после ревизии технического состояния, который завершится весной 2007 года.

Силовая турбина в составе полноразмерного двигателя прошла первое специальное испытание, в ходе которого были сняты показатели по 7 дроссельным характеристикам и другие экспериментальные данные.
По результатам испытаний сделан вывод о работоспособности СТ и ее соответствии заявленным параметрам.
Кроме этого по результатам испытаний в конструкцию СТ внесены некоторые корректировки, в том числе изменена система охлаждения корпусов для снижения тепловыделения в помещение станции и обеспечения пожарной безопасности, а также для оптимизации радиальных зазоров повышения кпд, настройка осевой силы.
Очередное испытание силовой турбины планируется провести летом 2007 года.

Газотурбинная установка ГТЭ-16ПА
накануне специальных испытаний

0

Воздушно-реактивные двигатели по способу предварительного сжатия воздуха перед поступлением в камеру сгорания разделяются на компрессорные и бескомпрессорные. В бескомпрессорных воздушно-реактивных двигателях используется скоростной напор воздушного потока. В компрессорных двигателях воздух сжимается компрессором. Компрессорным воздушно-реактивным двигателем является турбореактивный двигатель (ТРД). В группу, получившую название смешанных или комбинированных двигателей, входят турбовинтовые двигатели (ТВД) и двухконтурные турбореактивные двигатели (ДТРД). Однако конструкция и принцип работы этих двигателей во многом схожи с турбореактивными двигателями. Часто все типы указанных двигателей объединяют под общим названием газотурбинных двигателей (ГТД). В качестве топлива в газотурбинных двигателях используется керосин.

Турбореактивные двигатели

Конструктивные схемы. Турбореактивный двигатель (рис. 100) состоит из входного устройства, компрессора, камеры сгорания, газовой турбины и выходного устройства.

Входное устройство предназначено для подвода воздуха к компрессору двигателя. В зависимости от расположения двигателя на самолете оно может входить в конструкцию самолета или в конструкцию двигателя. Входное устройство способствует повышению давления воздуха перед компрессором.

Дальнейшее повышение давления воздуха происходит в компрессоре. В турбореактивных двигателях применяются компрессоры центробежные (рис. 101) и осевые (см. рис. 100).

В осевом компрессоре при вращении ротора рабочие лопатки, воздействуя на воздух, закручивают его и заставляют двигаться вдоль оси в сторону выхода из компрессора.

В центробежном компрессоре при вращении рабочего колеса воздух увлекается лопатками и под действием центробежных сил движется к периферии. Наиболее широкое применение в современной авиации нашли двигатели с осевым компрессором.





Осевой компрессор включает в себя ротор (вращающаяся часть) и статор (неподвижная часть), к которому крепится входное устройство. Иногда во входных устройствах устанавливаются защитные сетки, предотвращающие попадание в компрессор посторонних предметов, которые могут привести к повреждению лопаток.

Ротор компрессора состоит из нескольких рядов профилированных рабочих лопаток, расположенных по окружности и последовательно чередующихся вдоль оси вращения. Роторы подразделяют на барабанные (рис. 102, а), дисковые (рис. 102, б) и барабаннодисковые (рис. 102, в).

Статор компрессора состоит из кольцевого набора профилированных лопаток, закрепленных в корпусе. Ряд неподвижных лопаток, называемых спрямляющим аппаратом, в совокупности с рядом рабочих лопаток называется ступенью компрессора.

В современных авиационных турбореактивных двигателях применяются многоступенчатые компрессоры, увеличивающие эффективность процесса сжатия воздуха. Ступени компрессора согласуются между собой таким образом, чтобы воздух на выходе из одной ступени плавно обтекал лопатки следующей ступени.

Нужное направление воздуха в следующую ступень обеспечивает спрямляющий аппарат. Для этой же цели служит и направляющий аппарат, устанавливаемый перед компрессором. В некоторых конструкциях двигателей направляющий аппарат может отсутствовать.

Одним из основных элементов турбореактивного двигателя является камера сгорания, расположенная за компрессором. В конструктивном отношении камеры сгорания выполняются трубчатыми (рис. 103), кольцевыми (рис. 104), трубчато-кольцевыми (рис. 105).




Трубчатая (индивидуальная) камера сгорания состоит из жаровой трубы и наружного кожуха, соединенных между собой стаканами подвески. В передней части камеры сгорания устанавливаются топливные форсунки и завихритель, служащий для стабилизации пламени. На жаровой трубе имеются отверстия для подвода воздуха, предотвращающего перегрев жаровой трубы. Поджигание топливо-воздушной смеси в жаровых трубах осуществляется специальными запальными устройствами, устанавливаемыми на отдельных камерах. Между собой жаровые трубы соединяются патрубками, которые обеспечивают поджигание смеси во всех камерах.



Кольцевая камера сгорания выполняется в форме кольцевой полости, образованной наружным и внутренним кожухами камеры. В передней части кольцевого канала устанавливается кольцевая жаровая труба, а в носовой части жаровой трубы - завихрители и форсунки.

Трубчато-кольцевая камера сгорания состоит из наружного и внутреннего кожухов, образующих кольцевое пространство, внутри которого размещаются индивидуальные жаровые трубы.

Для привода компрессора ТРД служит газовая турбина. В современных двигателях газовые турбины выполняются осевыми. Газовые турбины могут быть одноступенчатыми и многоступенчатыми (до шести ступеней). К основным узлам турбины относятся сопловые (направляющие) аппараты и рабочие колеса, состоящие из дисков и расположенных на их ободах рабочих лопаток. Рабочие колеса крепятся к валу турбины и образуют вместе с ним ротор (рис. 106). Сопловые аппараты располагаются перед рабочими лопатками каждого диска. Совокупность неподвижного соплового аппарата и диска с рабочими лопатками называется ступенью турбины. Рабочие лопатки крепятся к диску турбины при помощи елочного замка (рис. 107).

Выпускное устройство (рис. 108) состоит из выпускной трубы, внутреннего конуса, стойки и реактивного сопла. В некоторых случаях из условий компоновки двигателя на самолете между выпускной трубой и реактивным соплом устанавливается удлинительная труба. Реактивные сопла могут быть с регулируемым и нерегулируемым выходным сечением.

Принцип работы. В отличие от поршневого двигателя рабочий процесс в газотурбинных двигателях не разделен на отдельные такты, а протекает непрерывно.

Принцип работы турбореактивного двигателя заключается в следующем. В полете воздушный поток, набегающий на двигатель, проходит через входное устройство в компрессор. Во входном устройстве происходит предварительное сжатие воздуха и частичное преобразование кинетической энергии движущегося воздушного потока в потенциальную энергию давления. Более значительному сжатию воздух подвергается в компрессоре. В турбореактивных двигателях с осевым компрессором при быстром вращении ротора лопатки компрессора, подобно лопастям вентилятора, прогоняют воздух в сторону камеры сгорания. В установленных за рабочими колесами каждой ступени компрессора спрямляющих аппаратах вследствие диффузорной формы межлопаточных каналов происходит преобразование приобретенной в колесе кинетической энергии потока в потенциальную энергию давления.

В двигателях с центробежным компрессором сжатие воздуха происходит за счет воздействия центробежной силы. Воздух, входя в компрессор, подхватывается лопатками быстро вращающейся крыльчатки и под действием центробежной силы отбрасывается от центра к окружности колеса компрессора. Чем быстрее вращается крыльчатка, тем большее давление создается компрессором.

Благодаря компрессору ТРД могут создавать тягу при работе на месте. Эффективность процесса сжатия воздуха в компрессоре


характеризуется величиной степени повышения давления π к, которая представляет собой отношение давления воздуха на выходе из компрессора р 2 к давлению атмосферного воздуха р H


Воздух, сжатый во входном устройстве и компрессоре, далее поступает в камеру сгорания, разделяясь на два потока. Одна часть воздуха (первичный воздух), составляющая 25-35% от общего расхода воздуха, направляется непосредственно в жаровую трубу, где происходит основной процесс сгорания. Другая часть воздуха (вторичный воздух) обтекает наружные полости камеры сгорания, охлаждая последнюю, и на выходе из камеры смешивается с продуктами сгорания, уменьшая температуру газовоздушного потока до величины, определяемой жаропрочностью лопаток турбины. Незначительная часть вторичного воздуха через боковые отверстия жаровой трубы проникает в зону горения.

Таким образом, в камере сгорания происходит образование топливо-воздушной смеси путем распыливания топлива через форсунки и смешения его с первичным воздухом, горение смеси и смешение продуктов сгорания со вторичным воздухом. При запуске двигателя зажигание смеси осуществляется специальным запальным устройством, а при дальнейшей работе двигателя топливо-воздушная смесь поджигается уже имеющимся факелом пламени.

Образовавшийся в камере сгорания газовый поток, обладающий высокой температурой и давлением, устремляется на турбину через суживающийся сопловой аппарат. В каналах соплового аппарата скорость газа резко возрастает до 450-500 м/сек и происходит частичное преобразование тепловой (потенциальной) энергии в кинетическую. Газы из соплового аппарата попадают на лопатки турбины, где кинетическая энергия газа преобразуется в механическую работу вращения турбины. Лопатки турбины, вращаясь вместе с дисками, вращают вал двигателя и тем самым обеспечивается работа компрессора.

В рабочих лопатках турбины может происходить либо только процесс преобразования кинетической энергии газа в механическую работу вращения турбины, либо еще и дальнейшее расширение газа с увеличением его скорости. В первом случае газовая турбина называется активной, во втором - реактивной. Во втором случае лопатки турбины, помимо активного воздействия набегающей газовой струи, испытывают и реактивное воздействие за счет ускорения газового потока.

Окончательное расширение газа происходит в выходном устройстве двигателя (реактивном сопле). Здесь давление газового потока уменьшается, а скорость возрастает до 550-650 м/сек (в земных условиях).

Таким образом, потенциальная энергия продуктов сгорания в двигателе преобразуется в кинетическую энергию в процессе расширения (в турбине и выходном сопле). Часть кинетической энергии при этом идет на вращение турбины, которая в свою очередь вращает компрессор, другая часть - на ускорение газового потока (на создание реактивной тяги).

Турбовинтовые двигатели

Устройство и принцип действия. Для современных самолетов,

обладающих большой грузоподъемностью я дальностью полета, нужны двигатели, которые могли бы развить необходимые тяги при минимальном удельном весе. Этим требованиям удовлетворяют турбореактивные двигатели. Однако они неэкономичны по сравнению с винтомоторными установками на небольших скоростях полета. В связи с этим некоторые типы самолетов, предназначенные для полетов с относительно невысокими скоростями и с большой дальностыо, требуют постановки двигателей, которые сочетали бы в себе преимущества ТРД с преимуществами винтомоторной установки на малых скоростях полета. К таким двигателям относятся турбовинтовые двигатели (ТВД).

Турбовинтовым двигателем называется газотурбинный авиационный двигатель, в котором турбина развивает мощность, большую потребной для вращения компрессора, и этот избыток мощности используется для вращения воздушного винта. Принципиальная схема ТВД показана на рис. 109.

Как видно из схемы, турбовинтовой двигатель состоит из тех же узлов и агрегатов, что и турбореактивный. Однако в отличие от ТРД на турбовинтовом двигателе дополнительно смонтированы воздушный винт и редуктор. Для получения максимальной мощности двигателя турбина должна развивать большие обороты (до 20000 об/мин). Если с этой же скоростью будет вращаться воздушный винт, то коэффициент полезного действия последнего будет крайне низким, так как наибольшего значения к. п. д. винта на расчетных режимах полета достигает при 750-1 500 об/мин.


Для уменьшения оборотов воздушного винта по сравнению с оборотами газовой турбины в турбовинтовом двигателе устанавливается редуктор. На двигателях большой мощности иногда используют два винта, вращающихся в противоположные стороны, причем работу обоих воздушных винтов обеспечивает один редуктор.

В некоторых турбовинтовых двигателях компрессор приводится во вращение одной турбиной, а воздушный винт - другой. Это создает благоприятные условия для регулирования двигателя.

Тяга у ТВД создается главным образом воздушным винтом (до 90%) и лишь незначительно за счет реакции газовой струи.

В турбовинтовых двигателях применяются многоступенчатые турбины (число ступеней от 2 до 6), что диктуется необходимостью срабатывать на турбине ТВД большие теплоперепады, чем на турбине ТРД. Кроме того, применение многоступенчатой турбины позволяет снизить ее обороты и, следовательно, габариты и вес редуктора.

Назначение основных элементов ТВД ничем не отличается от назначения тех же элементов ТРД. Рабочий процесс ТВД также аналогичен рабочему процессу ТРД. Так же, как и в ТРД, воздушный поток, предварительно сжатый во входном устройстве, подвергается основному сжатию в компрессоре и далее поступает в камеру сгорания, в которую одновременно через форсунки впрыскивается топливо. Образовавшиеся в результате сгорания топливовоздушной смеси газы обладают высокой потенциальной энергией. Они устремляются в газовую турбину, где, почти полностью расширяясь, производят работу, которая затем передается компрессору, воздушному винту и приводам агрегатов. За турбиной давление газа практически равно атмосферному.

В современных турбовинтовых двигателях сила тяги, получаемая только за счет реакции вытекающей из двигателя газовой струи, составляет 10-20% суммарной силы тяги.

Двухконтурные турбореактивные двигатели

Стремление повысить тяговый коэффициент полезного действия ТРД на больших дозвуковых скоростях полета привело к созданию двухконтурных турбореактивных двигателей (ДТРД).

В отличие от ТРД обычной схемы в ДТРД газовая турбина приводит во вращение (помимо компрессора и ряда вспомогательных агрегатов) низконапорный компрессор, называемый иначе вентилятором второго контура. Привод вентилятора второго контура ДТРД может осуществляться и от отдельной турбины, располагаемой за турбиной компрессора. Простейшая схема ДТРД представлена на рис. 110.


Первый (внутренний) контур ДТРД представляет собой схему обычного ТРД. Вторым (внешним) контуром является кольцевой канал с расположенным в нем вентилятором. Поэтому двухконтурные турбореактивные двигатели называют иногда турбовентиляторными.

Работа ДТРД происходит следующим образом. Набегающий на двигатель воздушный поток поступает в воздухозаборник и далее одна часть воздуха проходит через компрессор высокого давления первого контура, другая - через лопатки вентилятора (компрессора низкого давления) второго контура. Так как схема первого контура представляет собой обычную схему ТРД, то и рабочий процесс в этом контуре аналогичен рабочему процессу в ТРД. Действие вентилятора второго контура подобно действию многолопастного воздушного винта, вращающегося в кольцевом канале.

ДТРД могут найти применение и на сверхзвуковых летательных аппаратах, но в этом случае для увеличения их тяги необходимо предусматривать сжигание топлива во втором контуре. Для быстрого увеличения (форсирования) тяги ДТРД иногда осуществляется сжигание дополнительного топлива либо в воздушном потоке второго контура, либо за турбиной первого контура.

При сжигании дополнительного топлива во втором контуре необходимо увеличивать площадь его реактивного сопла для сохранения неизменными режимов работы обоих контуров. При несоблюдении этого условия расход воздуха через вентилятор второго контура уменьшится вследствие повышения температуры газа между вентилятором и реактивным соплом второго контура. Это повлечет за собой снижение потребной мощности для вращения вентилятора. Тогда, чтобы сохранить прежние числа оборотов двигателя, придется в первом контуре снизить температуру газа перед турбиной, а это приведет к уменьшению тяги в первом контуре. Повышение суммарной тяги будет недостаточным, а в некоторых случаях суммарная тяга форсированного двигателя может оказаться меньше суммарной тяги обычного ДТРД. Кроме того, форсирование тяги связано с большими удельными расходами топлива. Все эти обстоятельства ограничивают применение данного способа увеличения тяги. Однако форсирование тяги ДТРД может найти широкое применение при сверхзвуковых скоростях полета.

Используемая литература: "Основы авиации" авторы: Г.А. Никитин, Е.А. Баканов

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

На сегодняшний день, авиация практически на 100% состоит из машин, которые используют газотурбинный тип силовой установки. Иначе говоря – газотурбинные двигатели. Однако, несмотря на всю возрастающую популярность авиаперелетов сейчас, мало кто знает каким образом работает тот жужжащий и свистящий контейнер, который висит под крылом того или иного авиалайнера.

Принцип работы газотурбинного двигателя.

Газотурбинный двигатель, как и поршневой двигатель на любом автомобиле, относится к двигателям внутреннего сгорания. Они оба преобразуют химическую энергию топлива в тепловую, путем сжигания, а после - в полезную, механическую. Однако то, как это происходит, несколько отличается. В обоих двигателях происходит 4 основных процесса – это: забор, сжатие, расширение, выхлоп. Т.е. в любом случае в двигатель сначала входит воздух (с атмосферы) и топливо (из баков), далее воздух сжимается и в него впрыскивается топливо, после чего смесь воспламеняется, из-за чего значительно расширяется, и в итоге выбрасывается в атмосферу. Из всех этих действий выдает энергию лишь расширение, все остальные необходимы для обеспечения этого действия.

А теперь в чем разница. В газотурбинных двигателях все эти процессы происходят постоянно и одновременно, но в разных частях двигателя, а в поршневом – в одном месте, но в разный момент времени и по очереди. К тому же, чем более сжат воздух, тем большую энергию можно получить при сгорании, а на сегодняшний день степень сжатия газотурбинных двигателей уже достигла 35-40:1, т.е. в процессе прохода через двигатель воздух уменьшается в объеме, а соответственно увеличивает свое давление в 35-40 раз. Для сравнения в поршневых двигателях этот показатель не превышает 8-9:1, в самых современных и совершенных образцах. Соответственно имея равный вес и размеры газотурбинный двигатель гораздо более мощный, да и коэффициент полезного действия у него выше. Именно этим и обусловлено такое широкое применения газотурбинных двигателей в авиации в наши дни.

А теперь подробней о конструкции. Четыре вышеперечисленных процесса происходят в двигателе, который изображен на упрощенной схеме под номерами:

  • забор воздуха – 1 (воздухозаборник)
  • сжатие – 2 (компрессор)
  • смешивание и воспламенение – 3 (камера сгорания)
  • выхлоп – 5 (выхлопное сопло)
  • Загадочная секция под номером 4 называется турбиной. Это неотъемлемая часть любого газотурбинного двигателя, ее предназначение – получение энергии от газов, которые выходят после камеры сгорания на огромных скоростях, и находится она на одном валу с компрессором (2), который и приводит в действие.

Таким образом получается замкнутый цикл. Воздух входит в двигатель, сжимается, смешивается с горючим, воспламеняется, направляется на лопатки турбины, которые снимают до 80% мощности газов для вращения компрессора, все что осталось и обуславливает итоговую мощность двигателя, которая может быть использована разными способами.

В зависимости от способа дальнейшего использования этой энергии газотурбинные двигатели подразделяются на:

  • турбореактивные
  • турбовинтовые
  • турбовентиляторные
  • турбовальные

Двигатель, изображенный на схеме выше, является турбореактивным . Можно сказать «чистым» газотурбинным, ведь газы после прохождения турбины, которая вращает компрессор, выходят из двигателя через выхлопное сопло на огромной скорости и таким образом толкают самолет вперед. Такие двигатели сейчас используются в основном на высокоскоростных боевых самолетах.

Турбовинтовые двигатели отличаются от турбореактивных тем, что имеют дополнительную секцию турбины, которая еще называется турбиной низкого давления, состоящую из одного или нескольких рядов лопаток, которые отбирают оставшуюся после турбины компрессора энергию у газов и таким образом вращает воздушный винт, который может находится как спереди так и сзади двигателя. После второй секции турбины, отработанные газы выходят фактически уже самотеком, не имея практически никакой энергии, поэтому для их вывода используются просто выхлопные трубы. Подобные двигатели используются на низкоскоростных, маловысотных самолетах.

Турбовентиляторные двигатели имеют схожую схему с турбовинтовыми, только вторая секция турбины отбирает не всю энергию у выходящих газов, поэтому такие двигатели также имеют выхлопное сопло. Но основное отличие состоит в том, что турбина низкого давления приводит в действия вентилятор, который закрыт в кожух. Потому такой двигатель еще называется двуконтурным, ведь воздух проходит через внутренний контур (сам двигатель) и внешний, который необходим лишь для направления воздушной струи, которая толкает двигатель вперед. Потому они и имеют довольно «пухлую» форму. Именно такие двигатели применяются на большинстве современных авиалайнеров, поскольку являются наиболее экономичными на скоростях, приближающихся к скорости звука и эффективными при полетах на высотах выше 7000-8000м и вплоть до 12000-13000м.

Турбовальные двигатели практически идентичны по конструкции с турбовинтовыми, за исключением того, что вал, который соединен с турбиной низкого давления, выходит из двигателя и может приводить в действие абсолютно что угодно. Такие двигатели используются в вертолетах, где два-три двигателя приводят в действие единственный несущий винт и компенсирующий хвостовой пропеллер. Подобные силовые установки сейчас имеют даже танки – Т-80 и американский «Абрамс».

Газотурбинные двигатели имеют классификацию также по другим при знакам:

  • по типу входного устройства (регулируемое, нерегулируемое)
  • по типу компрессора (осевой, центробежный, осецентробежный)
  • по типу воздушно-газового тракта (прямоточный, петлевой)
  • по типу турбин (число ступеней, число роторов и др.)
  • по типу реактивного сопла (регулируемое, нерегулируемое) и др.

Турбореактивный двигатель с осевым компрессором получил широкое применение. При работающем двигателе идет непрерывный процесс. Воздух проходит через диффузор, притормаживается и попадает в компрессор. Затем он поступает в камеру сгорания. В камеру через форсунки подается также топливо, смесь сжигается, продукты сгорания перемещаются через турбину. Продукты сгорания в лопатках турбины расширяются и приводят ее во вращение. Далее газы из турбины с уменьшенным давлением поступают в реактивное сопло и с огромной скоростью вырываются наружу, создавая тягу. Максимальная температура имеет место и на воде камеры сгорания.

Компрессор и турбина расположены на одном валу. Для охлаждения продуктов сгорания подается холодный воздух. В современных реактивных двигателях рабочая температура может превышать температуру плавления сплавов рабочих лопаток примерно на 1000 °С. Система охлаждения деталей турбины и выбор жаропрочных и жаростойких деталей двигателя - одни из главных проблем при конструировании реактивных двигателей всех типов, в том числе и турбореактивных.

Особенностью турбореактивных двигателей с центробежным компрессором является конструкция компрессоров. Принцип работы подобных двигателей аналогичен двигателям с осевым компрессором.

Газотурбинный двигатель. Видео.

Полезные статьи по теме.