Система распознавания дорожных знаков traffic sign recognition. Принципы распознавания дорожных знаков. Как работает система

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Дорожные условия как фактор, определяющий надежность работы водителя. Оценка влияния, качества, правильности установки и информативности дорожных знаков и иных сооружений на безопасность дорожного движения. Назначение и классификация дорожных знаков.

    дипломная работа , добавлен 11.12.2009

    Особенности и формы маршрутного ориентирования в городах. Установка знаков на пересечениях в одном уровне. Принципы размещения и проектирования дорожных знаков индивидуального проектирования. Компоновка и расчет знаков индивидуального проектирования.

    курсовая работа , добавлен 08.12.2008

    Общая характеристика дорожных знаков: предупреждающие, приоритетные, запрещающие, предписывающие, информационные, сервисные и знаки дополнительной информации. Анализ эффективности работы технических средств организации дорожного движения на перекрестке.

    курсовая работа , добавлен 19.12.2011

    Правила перехода на перекрестке, пешеходном переходе или другом участке дороги. Изучение дорожных знаков для водителей транспортных средств. Регулирование движения светофором на дорогах. Значение в городе наземных и подземных переходов для пешеходов.

    презентация , добавлен 14.02.2014

    Исследование дорожных условий и схемы организации дорожного движения в месте совершения ДТП. Механизм развития ДТП по версии участников ДТП. Определение скорости движения автомобиля перед торможением и минимально допустимой дистанции между автомобилями.

    курсовая работа , добавлен 01.03.2010

    Виды дорожной разметки. Расчёт геометрических параметров. Перечисление и обоснование применения разметки на проектируемой развязке. Перечисление и обоснование применения знаков на проектируемой развязке. Правила применения дорожных знаков, разметки.

    курсовая работа , добавлен 21.06.2010

    Метод выявления опасных участков дороги на основе анализа данных о дорожно-транспортных происшествиях (ДТП). Метод коэффициентов аварийности. Основные виды ДТП. Анализ основных характеристик дорожных условий и эксплуатационного состояния дороги.

    курсовая работа , добавлен 08.10.2014

Сталкивается с необходимостью принятия множества решений в течение минуты. Кроме того, с особой внимательностью нужно наблюдать за обстановкой на дороге. Отслеживать перемещение автомобилей вокруг, следить за разметкой трассы и знаками, соответствующим использованием их органами управления, чрезвычайно трудно. До тех пор, когда водитель приобретёт необходимый опыт и будет способен осуществлять уверенный контроль обстановки во время движения, пройдёт большое количество времени и постоянно присутствует риск аварийной ситуации.

Главное предназначение системы

Следует отметить, что большая часть возникает ввиду неправильного поведения водителя, не соблюдающего требуемый скоростной режим. И это напрасно, поскольку введение ограничений придумано не просто так: автомобиль должен следовать с такой скоростью, чтобы у водителя было время правильно среагировать на изменения обстановки дорожного движения, независимо совершая манёвр либо экстренно тормозя. Именно это и спровоцировало разработку систем специального назначения, оказывающих помощь шофёру в принятии решений либо регулировании его действий. Системой распознавания , иное название которой Traffic Sign Recognition, оснащают свои модели большинство брендовых автопроизводителей, БМВ, Вольво и пр. Подобное устройство на автомобилях марки Opel является составляющей комплекса Opel Eye. Такого рода разработку считают одним из наилучших открытий в сфере автомобильной безопасности две тысячи десятого года. Производители Mercedes-Benz дали название своей установке по определению знаков дорожного движения - Speed Limit Assist (что означает контроль за скоростью), а Volvo - RSI (система информирования).

Представленный вид технологии является самым главным в комплексе , что входит в комплектацию большей части современных машин.

Системные компоненты

Зачастую любая вариация Traffic Sign Recognition от любой компании изготовителя состоит из типичного инструментария и оборудования. Это обуславливается необходимостью для функционирования любой системы такого рода наличия приборов одинакового характера, представленных:

  • специально предназначенной видеокамерой повышенной чувствительности;
  • дисплеем либо иного рода устройством, выводящим сведения системы для автовладельца;
  • блоком управления, выполняющим главную часть работы.

Видеокамеру размещают возле ветрового стекла внутри автомобильного салона. В ряде моделей, где такая система является встроенной в авто, камера может скрываться где-то под оконным стеклом либо, к примеру, в области уплотнителя. Направление камеры необходимо задавать такое, чтобы ей хорошо было видно обзор пространства перед машиной, на участках, где располагают дорожные знаки, вдоль дороги немного правее от трассы. В последующем снятое видео поступает для обработки на управляющий блок, микропроцессором которого осуществляется одновременный анализ содержимого. К тому же такую камеру применяют и иные разработки безопасности: в виде установки выявления пешехода на дороге и системы помощи передвижения в ряду либо по полосе при большом автомобильном потоке.

Специфика функционирования

Посредством электронного управляющего блока системы TSR осуществляется инициирование специального механизма, который заложен в программу системы. Поэтапность процедур заключается:

  • в распознавании особенностей формы дорожного знака;
  • определении надписей на табличке знака;
  • опознавании цветового оттенка знака;
  • проверке присутствия информирующей таблички.

Рассмотрим особенности функционирования настоящей последовательности на примере знаков об ограничении скоростного режима движения, на определение которого и направлены системы распознавания дорожных знаков большей части авто. Первостепенно установкой опознаются знаки, имеющие круглую форму, после этого сочетание его оттенков - красного с белым. Затем распознаётся надпись, присутствующая на табличке, а именно показатель предельно допустимого значения скорости. Далее, блоком выполняется анализ скорости непосредственно движения конкретного авто и, в случае наличия различий, водителю подаётся сигнал о превышении предельно разрешённого скоростного режима на конкретном участке трассы. В случае же отсутствия нарушений образ знака просто появляется на дисплее панели приборов машины, таким образом сообщая водителю о распознавании дорожного знака.

Новшеством в системе распознавания дорожных знаков выступает совместное функционирование с автомобильным навигатором.

Traffic Sign Recognition усовершенствованного типа сообщает водителю не только об ограничителях скорости, но и прочих знаках, регулирующих дорожное движение. Наряду с указателями, запрещающими обгон, отдельными знаками об информации дополнительного характера, системой распознаются знаки, указывающие:

  • на запрещение движения без остановки;
  • запрещение въезда;
  • о главной дороге (окончании её);
  • о преимуществе машин, движущихся по встречной полосе либо напротив;
  • на необходимость уступить путь;
  • о конце зоны со всеми ограничениями;
  • о начале (конце) населённого пункта;
  • о начале (конце) автомагистрали;
  • на въезд в жилую зону.

Ряд знаков, представленных в перечне выше, не выводятся на дисплей. Согласование информации о знаках, что распознаны, происходит с системой навигации и текущими показателями движения машины. В конечном счёте системой передаются сведения водителю об обстановке на дороге и обеспечивается безопасное движение.

Таким образом, такого рода система безопасности выступает существенной помощью для любого водителя - как опытного, так и новичка. Она способствует правильности реакции автовладельца и принятию соответствующего решения.

По статистике превышение скорости является одной из весьма распространенных причин ДТП, которые могут закончиться тяжелыми последствиями для водителя и пассажиров. Разработанная TSR или система распознавания дорожных знаков (Traffic Sign Recognition) создана с тем, чтобы водитель не забывал придерживаться разрешенной скорости согласно правилам дорожного движения. Устройство считывает и распознает дорожные знаки, регламентирующие скорость, напоминая при этом водителю о максимальной разрешенной скорости на определенном участке дороги, если его автомобиль едет быстрее, чем допустимо.

Устанавливаемая на авто система распознавания дорожных знаков конструктивно состоит из видеокамеры, блока управления и устройства подачи информации.
Видеокамера закреплена на ветровое стекло и находится за зеркалом заднего вида. Камера осуществляет функцию фиксации участка дороги впереди движущегося транспортного средства в местах нахождения дорожных знаков сверху и справа по направлению движения, и посылает данные в электронный блок управления. Видеокамера также применяется и другими системами активной безопасности, таких как система помощи движения по полосе и система выявления пешеходов.

Электронный блок управления предназначен для осуществления следующих функций:

Определение конфигурации дорожного знака круглой формы.
Определение красного цвета знака на белом фоне.
Определение допустимой величины скорости, обозначенной на знаке.
Определение табличек, определяющих время и зону действия знака, а также вид транспортного средства.
Определение реальной скорости авто.
Сопоставление реальной скорости автомобиля с максимально разрешенной указанной на знаке.
Предупреждение водителя звуковым или световым сигналом.
Контурное изображение знака, ограничивающего скорость движения, поступает на экран расположения приборов или на экран системы информации и продолжает быть опознанным до тех пор, пока ограничение не исчезнет или не будет заменено. Если на автомобиле установлен информационный дисплей, то картинка будет отражаться на лобовом стекле.

В некоторых конструкциях система распознавания дорожных знаков согласована с системой навигации, и пользуется данными о знаках, ограничивающих скорость, из карт навигации. Распознавание возможно даже в том случае, когда видеокамера не определит знак – все равно данные о нем поступят на панель приборов.

Однако, возможности системы распознавания дорожных знаков не ограничиваются только определением знаков, ограничивающих скорость, запрета обгона или дополнительных информационных таблиц. Помимо этого, устройство способно передавать водителю информацию о следующих знаках:
Запрещающих въезд.
Пересечения с главной дорогой.
Проезд без остановки запрещен.
Начало и конец населенного пункта.
Начало и конец скоростной магистрали.
Знак, информирующий о въезде в жилую зону.
Окончание зоны ограничения знака.

Иван Ожиганов Июль 9, 2013

Будущее рынка программного обеспечения и мобильных приложений в частности тесно связано с прикладным использованием M2M-технологий, позволяющих реализовывать новые интересные идеи и внедрять более совершенные решения в самых различных областях: безопасности, удаленного видеонаблюдения, автоматизации производства, потребительской электроники и других.

В 2014 Apple планирует запустить iOS in the Car - мобильную платформу, позволяющую использовать iOS-устройства через интерфейс автомобиля, и сейчас наша команда работает над созданием прототипа приложения-помощника водителя для iOS-устройств.

Обзор проекта

Идея проекта - добавить к возможностям iOS-устройств функции штурмана, «умного видеорегистратора». Задача текущего этапа - разработать приложение-прототип, которое не только ведет запись дорожных событий, как обычный регистратор, но и распознает встречающиеся дорожные знаки, предупреждая о них водителя. Функция предупреждения важна, т. к. зачастую водители не успевают заметить знак или быстро забывают, какой последний знак или последовательность знаков они проехали.

Разрабатывая прототип, мы ограничились лишь запрещающими знаками - знаками круглой формы с красной каймой на белом фоне. В дальнейшем планируем добавить остальные знаки, реализовать постоянно пополняемую базу данных о дорогах и дорожных знаках, общую для всех устройств, использующих приложение, и многое другое.

Принцип работы приложения: видеокамера телефона захватывает видеопоток с разрешением 1920×1080, полученные кадры анализируются и распознаются, когда знак распознан, запускается определенное событие: подать предупреждающий сигнал водителю, добавить информацию в базу данных о дорогах и т. д.

Задачу можно условно разбить на два этапа:

  • Цветовая сегментация изображения
  • Распознавание знака

Этап 1. Цветовая сегментация изображения

Захват изображения. Поиск красного и белого цветов

Уникальной характеристикой запрещающих знаков является круг с преобладанием белого цвета и красным контуром, позволяющий идентифицировать эти знаки на изображениях. После того, как мы получили кадр с камеры в формате RGB, мы вырезаем изображение размером 512 на 512 (Рис. 1) и выделяем на нем красный и белый цвета, отбрасывая все остальные.

Для цветовой локализации - определения элементов конкретного цвета - формат RGB очень неудобен, потому что чистый красный цвет в природе встречается очень редко, но почти всегда идет с примесями других цветов. Кроме того, цвет изменяет оттенок и яркость в зависимости от освещения. Так, например, на восходе и закате солнца все предметы приобретаю красный оттенок; сумерки и полумрак тоже дают свои оттенки.

Рис. 1 . Изображение в формате RGB размером 512 х 512, поступающее на вход алгоритма.

Тем не менее, сначала мы попробовали решить задачу, используя исходный RGB-формат. Чтобы выделить красный цвет, мы устанавливали верхний и нижний пороги: R > 0,7, а G и B < 0,2. Но модель оказалась не очень удобной, т.к. значения цветовых каналов сильно зависели от освещенности и времени суток. Например, значения каналов RGB красного цвета в солнечный и пасмурный дни сильно отличаются.

Поэтому модель RGB мы перевели в цветовую модель HSV/B, в которой координатами цвета являются: цветовой тон (Hue), насыщенность (Saturation) и яркость (Value / Brightness).

Модель HSV/B обычно представляют цветовым цилиндром (Рис. 2). Она удобна тем, что оттенки цвета в ней являются лишь инвариантами различных типов освещения и теней, что естественным образом упрощает задачу выделения необходимого цвета на изображении вне зависимости от условий, таких как время суток, погода, тень, расположение солнца и др.

Код шейдера для перехода от RGB к HSV/B:

Varying highp vec2 textureCoordinate; precision highp float; uniform sampler2D Source; void main() { vec4 RGB = texture2D(Source, textureCoordinate); vec3 HSV = vec3(0); float M = min(RGB.r, min(RGB.g, RGB.b)); HSV.z = max(RGB.r, max(RGB.g, RGB.b)); float C = HSV.z - M; if (C != 0.0) { HSV.y = C / HSV.z; vec3 D = vec3((((HSV.z - RGB) / 6.0) + (C / 2.0)) / C); if (RGB.r == HSV.z) HSV.x = D.b - D.g; else if (RGB.g == HSV.z) HSV.x = (1.0/3.0) + D.r - D.b; else if (RGB.b == HSV.z) HSV.x = (2.0/3.0) + D.g - D.r; if (HSV.x < 0.0) { HSV.x += 1.0; } if (HSV.x > 1.0) { HSV.x -= 1.0; } } gl_FragColor = vec4(HSV, 1); }


Рис. 2
. Цветовой цилиндр HSV/B.

Для выделения красного цвета мы строим три пересекающиеся плоскости, которые образуют область в цветовом цилиндре HSV/B, соответствующую красному цвету. Задача выделения белого цвета является более простой, т.к. белый цвет расположен в центральной части цилиндра и нам достаточно указать порог по радиусу (ось S) и высоте (ось V) цилиндра, которые образуют область, соответствующую белому цвету.

Код шейдера, выполняющий эту операцию:

Varying highp vec2 textureCoordinate; precision highp float; uniform sampler2D Source; //parameters that define plane const float v12_1 = 0.7500; const float s21_1 = 0.2800; const float sv_1 = -0.3700; const float v12_2 = 0.1400; const float s21_2 = 0.6000; const float sv_2 = -0.2060; const float v12_w1 = -0.6; const float s21_w1 = 0.07; const float sv_w1 = 0.0260; const float v12_w2 = -0.3; const float s21_w2 = 0.0900; const float sv_w2 = -0.0090; void main() { vec4 valueHSV = texture2D(Source, textureCoordinate); float H = valueHSV.r; float S = valueHSV.g; float V = valueHSV.b; bool fR=(((H>=0.75 && -0.81*H-0.225*S+0.8325 <= 0.0) || (H <= 0.045 && -0.81*H+0.045*V-0.0045 >= 0.0)) && (v12_1*S + s21_1*V + sv_1 >= 0.0 && v12_2*S + s21_2*V + sv_2 >= 0.0)); float R = float(fR); float B = float(!fR && v12_w1*S + s21_w1*V + sv_w1 >= 0.0 && v12_w2*S + s21_w2*V + sv_w2 >= 0.0); gl_FragColor = vec4(R, 0.0, B, 1.0); }

Результат работы шейдера, выделяющего красный и белый цвет на изображении 512 х 512, приведен на Рис. 2. Однако, как показали вычислительные эксперименты, для дальнейшей работы полезно понижать разрешение изображения до 256 на 256, т.к. это повышает производительность и практически не влияет на качество локализации знаков.

Рис . 3. Красно-белое изображение.

Поиск окружностей на изображении

Большинство методов поиска окружностей работают с бинарными изображениями. Поэтому, полученное на предыдущем шаге красно-белое изображение нужно преобразовать в бинарный вид. В нашей работе мы опирались на то, что на запрещающих знаках белый цвет фона граничит с красным контуром знака, и разработали алгоритм для шейдера, который ищет такие границы на красно-белом изображении и отмечает граничные пиксели как 1, а не граничные - 0.

Работа алгоритма заключается в следующем:

  • сканируются соседние пиксели каждого красного пикселя изображения;
  • если находится хоть один пиксел белого цвета, то исходный красный пиксел помечается как граничный.

Таким образом, у нас получается черно-белое изображение (256 х 256), в котором фон залит черным цветом, а предполагаемые окружности - белым (Рис. 4а).

Рис. 4а . Бинарное изображение, отображающее границы красного и белого цветов.

Для уменьшения количества ложных точек полезно применить морфологию (Рис. 4б).

Рис. 4б . То же изображение, но после применения морфологии.

Далее, на полученном бинарном изображении необходимо найти окружности. Сначала, мы решили использовать метод Хаффа для поиска окружностей (Hough Circles Transform), реализованный на CPU в библиотеке OpenCV. К сожалению, как показали вычислительные эксперименты, данный метод слишком нагружает CPU и снижает производительность до неприемлемого уровня.

Логичным выходом из данной ситуации служил бы перенос алгоритма на шейдеры GPU, однако, как и другие методы поиска окружностей на изображениях, метод Хаффа плохо соответствует парадигме шейдеров (shader-approach). Таким образом, нам пришлось обратиться к более экзотическому методу поисков окружностей - методу быстрого поиск кругов при помощи градиентных пар (Fast Circle Detection Using Gradient Pair Vectors) , который показывает более высокую производительность на CPU.

Основные этапы данного метода следующие:

1 . Для каждого пикселя бинарного изображения определяется вектор, характеризующий направление градиента яркости в данной точке. Данные вычисления выполняет шейдер, реализующий оператор Собеля (Sobel operator):

Varying highp vec2 textureCoordinate; precision highp float; uniform sampler2D Source; uniform float Offset; void main() { vec4 center = texture2D(Source, textureCoordinate); vec4 NE = texture2D(Source, textureCoordinate + vec2(Offset, Offset)); vec4 SW = texture2D(Source, textureCoordinate + vec2(-Offset, -Offset)); vec4 NW = texture2D(Source, textureCoordinate + vec2(-Offset, Offset)); vec4 SE = texture2D(Source, textureCoordinate + vec2(Offset, -Offset)); vec4 S = texture2D(Source, textureCoordinate + vec2(0, -Offset)); vec4 N = texture2D(Source, textureCoordinate + vec2(0, Offset)); vec4 E = texture2D(Source, textureCoordinate + vec2(Offset, 0)); vec4 W = texture2D(Source, textureCoordinate + vec2(-Offset, 0)); vec2 gradient; gradient.x = NE.r + 2.0*E.r + SE.r - NW.r - 2.0*W.r - SW.r; gradient.y = SW.r + 2.0*S.r + SE.r - NW.r - 2.0*N.r - NE.r; float gradMagnitude = length(gradient); float gradX = (gradient.x+4.0)/255.0; float gradY = (gradient.y+4.0)/255.0; gl_FragColor = vec4(gradMagnitude, gradX, gradY, 1.0); }

Все ненулевые векторы группируются по направлениям. В силу дискретности бинарного изображения всего получается 48 направлений, т. е. 48 групп.

2 . В группах ищутся пары противоположно направленных векторов V1 и V2, например, 45 градусов и 225. Для каждой найденной пары проверяются условия (Рис. 5):

  • угол бета меньше некоторого порога
  • расстояние между точками P1 и P2 меньше заданного максимального диаметра окружности и больше минимального.

Если данные условия выполняются, то считается, что точка С, являющаяся серединой отрезка P1P2, является предполагаемым центром окружности. Далее эта точка C помещается, в так называемый, аккумулятор.

3 . Аккумулятор представляет собой трехмерный массив размером 256 x 256 x 80. Первые два измерения (256 x 256 - высота и ширина бинарного изображения) соответствуют предполагаемым центрам окружностей, а третье измерение (80) представляет возможные радиусы окружностей (максимальный - 80 пикселей). Таким образом, каждая градиентная пара накапливает отклик в некоторой точке, соответствующей предполагаемому центру окружности с некоторым радиусом.


Рис. 5 . Пара векторов V1-V2 и предполагаемый центр окружности C.

4 . Далее, в аккумуляторе ищутся центры, в которых дали отклик как минимум 4 пары векторов с различными направлениями, например, пары 0 и 180, 45 и 225, 90 и 270, 135 и 315. Близкие друг к другу центры объединяются. Если в одной точке аккумулятора найдено несколько центров окружностей с разными радиусами, то эти центры также объединяются и берется максимальный радиус.

Результат работы алгоритма поиска окружностей показан на Рис. 6.

Рис. 6 . Локализованные окружности, соответствующие двум запрещающим знакам.

Этап 2. Распознавание локализованных знаков

Локализованные на изображение окружности, которые должны соответствовать запрещающим знакам, вырезаются и нормализуются до размера 28х28 пикселя. Вырезанные изображения дополнительно обрабатываются оператором Собеля и передаются на вход сверточной нейронной сети, предварительно обученной на базе изображений запрещающих знаков.

О принципе работы нейросетей мы писали в одном из наших недавних проектов по распознаванию номеров банковских карт. Наша задача требовала работу с многослойными - сверточными - нейросетями. Когда сегментация знака завершена, мы получаем изображение, которое и передаем сверточной нейронной сети, построенной на основе работ Йэн ЛеКана, Леона Вотту, Йошуа Бенджио и Патрика Хаффнера. Для обучения нейросети была подготовлена небольшая база обучающих изображений.

После распознавания каждой окружности мы получаем массив вероятностей того или иного знака. Не всегда получается определить знак с хорошей вероятностью на одном кадре, нераспознанные знаки будут уточнены после обработки следующего кадра; точно распознанной считается знак, максимальное значение вероятности для которого в массиве вероятностей выше определенного порога.

Заключение

Прототип приложения-штурмана - наш пробный шар в использовании M2M-технологий, и мы планируем развивать это направление в дальнейшем. В ближайших планах - реализовать распознавание всех типов знаков и расширить диапазон яркости: день, сумерки, яркое солнце, закаты и др.

Основная сложность задачи по распознаванию других типов знаков - в определении форм отличных от круга: треугольников, квадратов и других. Пока у нас нет конечного решения, есть несколько вариантов, каждый со своими достоинствами и недостатками. Поэтому нам очень интересен ваш опыт решения задач по цветовой локализации, будем признательны вам за рекомендации и советы.

Достаточно нередко начинающие и уже бывалые водители сталкиваются с рядом
заморочек во время управления транспортным средством. Водителю нужно
успевать смотреть за разметкой на дороге и созидать все дорожные знаки, чтоб
избежать аварийных и неожиданных ситуаций. Для облегчения жизни автомобилистов
разработана система определения дорожных символов. В первый раз они были
установлены в2008 году на автомобилях Бмв 7 серии, а потом на Mersedes-Benz S-Class. Современные
системы, которые обнаруживают знаки ограничения скорости, можно отыскать по всей
Европе.

Как работает система определения
дорожных символов

Система определения дорожных символов
представляет собой камеру, которая крепится меж зеркалом заднего вида и
лобовым стеклом. Ее обычная конструкция помогает водителям совладать со
многими непростыми задачками в пути следования. Устройство сканирует и
распознает дорожный символ, а потом передает сигнал на экран, находящийся на
приборной панели. Это также может быть и звуковой сигнал. Почти всегда
эти системы распознают только знаки ограничения скорости, но существует и те,
которые подают сигнал о запрете обгона и однобоком движении. Устройство
определения дорожных символов повсевременно совершенствуется и обновляется, и
равномерно интегрированная база данных становится более широкой. Для правильной
работы в сложных погодных критериях камера оснащается инфракрасным прожектором.

Точность определения вышеуказанной системы
находится в зависимости от скорости передвижения тс, погодных критерий,
огромных автомобилей, находящихся на обочине и деревьев. Взвесив все
перечисленные причины, водителям не следует вполне доверяться этой системе,
потому что она является только дополнительной опцией, которая может стать надежным
ассистентом в неких ситуациях на дороге.

Более продвинутые
системы, установленные в премиум-автомобилях, показывают наивысшую скорость
определенного типа дороги. Если шофер едет на автомобиле со скоростью 100 км в
час за пределами населенных пт, то после обнаружения знака «конец
ограничения скорости», система показывает на стандартное ограничение скорости.

Система просто приспосабливается
к погодным условиям. Если она ощущает дождик, то происходит отображение соответственного
ограничения скорости на маленьком мониторе автомобиля, расположенном меж
2-мя основными циферблатами. Это вправду может посодействовать водителю
избежать неких штрафов за превышение скорости, ездить в неопасной обстановке
и быть более ознакомленным в пути.

Достоинства системы

Система определения
дорожных символов для тс в незнакомой местности, в местах, где
авто передвигаются на высочайшей скорости, в плотном городском потоке
является неподменным ассистентом для водителя. Достаточно нередко дорожные знаки
остаются без внимания водителей либо ненамеренно игнорируется. Система, о
которой сказано выше, является ценным инвентарем для хоть какого автомобилиста,
в особенности в отношении признаков, указывающих на опасность и ограничение
скорости. Она способна распознавать дорожные
знаки, определять их значение и стабильно помогать водителю в адаптации собственного
стиля вождения к ситуации и правилам дорожного движения. С системой определения дорожных символов вы всегда будете
находиться в неопасной обстановке во время движения. Функциональная камера способна
распознавать знаки, контролируя участок дороги в фронтальной части автомобиля,
сравнивая отысканные признаки и сохраняя их в собственной базе данных. Ограничение скорости либо предупреждение о неких дорожных
знаках, которое отображается на приборной либо системной панели, может спасти участников
дорожного движения от многих противных последствий.

Современная установка
в автомобилях может также признавать индикатор временных символов сообщения. Камера работает очень
накрепко и способна распознавать признаки в тяжелых критериях. В редчайших случаях нехороший видимости, к примеру, с замороженным
ветровым стеклом либо очень сильным дождиком шофер получает сигнал и воспринимает
надлежащие деяния. Для этой цели создано особое программное
обеспечение для оптической диагностики. Камера распознает более 90
процентов из поддерживаемых дорожных символов. Благодаря сочетанию функций камеры
в автомобиле с навигационной системой, особенности и достоинства отдельных устройств
существенно возросла. Навигационная система не
может сама по для себя показывать всякую значимую информацию. Не считая того, информация, хранящаяся на карте в навигационной
системе, устаревает со временем. К примеру,
знаки перемещения скорости либо ограничение скорости нужно поновой
отрегулировать. Система обеспечивает более
точную и своевременную информацию, конкретно там, где автомобиль проходит под
знаком.

Благодаря высочайшему
уровню надежности система определения дорожных символов оказывает решающее воздействие
на существенное понижение нагрузки на водителя и увеличение уровня безопасности
для всех участников дорожного движения.