Импульсный реактивный двигатель. Импульсный электрический реактивный двигатель


5. Двухконтурный турбореактивный двигатель
6. Винтовентиляторный двигатель
7. Пульсирующий воздушно-реактивный двигатель
8. Основные характеристики ВРД

Изготовление авиамодели с ПуВРД

Принцип действия и устройство ПуВРД

Пульсирующий воздушно-реактивный двигатель, как следует из его названия, работает в режиме пульсации, его тяга развивается не непрерывно, как у ПВРД или ТРД, а в виде серии импульсов, следующих друг за другом с частотой от десятков герц, для крупных двигатателей, до 250 Гц — для малых двигателей, предназначенных для авиамоделей.

Конструктивно, ПуВРД представляет собой цилиндрическую камеру сгорания с длинным цилиндрическим соплом меньшего диаметра. Передняя часть камеры соединена со входным диффузором, через который воздух поступает в камеру.

Между диффузором и камерой сгорания установлен воздушный клапан, работающий под воздействием разницы давлений в камере и на выходе диффузора: когда давление в диффузоре превышает давление в камере клапан открывается и пропускает воздух в камеру; при обратном соотношении давлений он закрывается.

Клапан может иметь различную конструкцию: в двигателе Argus As-014 ракеты Фау-1 он имел форму и действовал наподобие оконных жалюзи и состоял из наклёпанных на раму гибких прямоугольных клапанных пластинкок из пружинной стали; в малых двигателях он выглядит как пластина в форме цветка с радиально расположенными клапанными пластинками в виде нескольких тонких, упругих металлических лепестков, прижатых к основанию клапана в закрытом положении и отгибающихся от основания под действием давления в диффузоре, превышающего давление в камере. Первая конструкция намного совершеннее — оказывает минимальное сопротивление потоку воздуха, но гораздо сложнее в производстве.

В передней части камеры имеются одна или несколько топливных форсунок, которые впрыскивают топливо в камеру, пока давление наддува в топливном баке превышает давление в камере; при превышении давлением в камере давления наддува, обратный клапан в топливном тракте перекрывает подачу топлива. Примитивные маломощные конструкции нередко работают без впрыска топлива, подобно поршневому карбюраторному двигателю. Для пуска двигателя в этом случае обычно используют внешний источник сжатого воздуха.

Для инициирования процесса горения в камере устанавливается свеча зажигания, которая создаёт высокочастотную серию электрических разрядов, и топливная смесь воспламеняется, как только концентрация горючего в ней достигает некоторого, достаточного для возгорания, уровня. Когда оболочка камеры сгорания достаточно прогревается, электрозажигание вовсе становится ненужным: топливная смесь воспламененяется от горячих стенок камеры.

При работе, ПуВРД издаёт очень характерный трещащий или жужжащий звук, обусловленный как раз пульсациями в его работе.

Схема работы ПуВРД

Цикл работы ПуВРД иллюстрируется рисунком справа:

  • 1. Воздушный клапан открыт, воздух поступает в камеру сгорания, форсунка впрыскивает горючее, и в камере образуется топливная смесь.
  • 2. Топливная смесь воспламеняется и сгорает, давление в камере сгорания резко возрастает и закрывает воздушный клапан и обратный клапан в топливном тракте. Продукты сгорания, расширяясь, истекают из сопла, создавая реактивную тягу.
  • 3. Давление в камере уравнивается с атмосферным, под напором воздуха в диффузоре воздушный клапан открывается и воздух начинает поступать в камеру, топливный клапан тоже открывается, двигатель переходит к фазе 1.

Кажущееся сходство ПуВРД и ПВРД — ошибочно. В действительности ПуВРД имеет глубокие, принципиальные отличия от ПВРД или ТРД.

  • Во-первых, наличие у ПуВРД воздушного клапана, очевидным назначением которого является предотвращение обратного движения рабочего тела вперёд по ходу движения аппарата. В ПВРД этот клапан не нужен, поскольку обратному движению рабочего тела в тракте двигателя препятствует «барьер» давления на входе в камеру сгорания, созданный в ходе сжатия рабочего тела. В ПуВРД начальное сжатие слишком мало, а необходимое для совершения работы повышение давления в камере сгорания достигается благодаря нагреву рабочего тела в постоянном объёме, ограниченном стенками камеры, клапаном, и инерцией газового столба в длинном сопле двигателя. Поэтому ПуВРД с точки зрения термодинамики тепловых двигателей относится к иной категории, нежели ПВРД или ТРД — его работа описывается циклом Хамфри, в то время как работа ПВРД и ТРД описывается циклом Брайтона.
  • Во-вторых, пульсирующий, прерывистый характер работы ПуВРД, также вносит существенные различия в механизм его функционирования, в сравнении с ВРД непрерывного действия. Для объяснения работы ПуВРД недостаточно рассматривать только газодинамические и термодинамические процессы, происходящие в нём. Двигатель работает в режиме автоколебаний, которые синхронизируют по времени работу всех его элементов. На частоту этих автоколебаний оказывают влияние инерционные характеристики всех частей ПуВРД, в том числе инерция газового столба в длинном сопле двигателя, и время распространения по нему акустической волны. Увеличение длины сопла приводит к снижению частоты пульсаций и наоборот. При определённой длине сопла достигается резонансная частота, при которой автоколебания становятся устойчивыми, а амплитуда колебаний каждого элемента — максимальной. При разработке двигателя эта длина подбирается экспериментально в ходе испытаний и доводки.

Иногда говорят, что функционирование ПуВРД при нулевой скорости движения аппарата невозможно — это ошибочное представление, во всяком случае, оно не может быть распространено на все двигатели этого типа. Большинство ПуВРД может работать, «стоя на месте», хотя тяга, развиваемая им в этом режиме, минимальна.

Функционирование двигателя в этом случае объясняется следующим образом. Когда давление в камере после очередного импульса снижается до атмосферного, движение газа в сопле по инерции продолжается, и это приводит к понижению давления в камере до уровня ниже атмосферного. Когда воздушный клапан открывается под воздействием атмосферного давления, в камере уже создано достаточное разрежение, чтобы двигатель мог «вдохнуть свежего воздуха» в количестве, необходимом для продолжения следующего цикла.

Другие пульсирующие ВРД

Образцы бесклапанных ПуВРД.

В литературе встречается описание двигателей, подобных ПуВРД.

  • Бесклапанные ПуВРД, иначе — U-образные ПуВРД. В этих двигателях отсутствуют механические воздушные клапаны, а чтобы обратное движение рабочего тела не приводило к уменьшению тяги, тракт двигателя выполняется в форме латинской буквы «U», концы которой обращены назад по ходу движения аппарата, при этом истечение реактивной струи происходит сразу из обоих концов тракта. Поступление свежего воздуха в камеру сгорания осуществляется за счёт волны разрежения, возникающей после импульса и «вентилирующей» камеры, а изощрённая форма тракта служит для наилучшего выполнения этой функции. Отсутствие клапанов позволяет избавиться от характерного недостатка клапанного ПуВРД — их низкой долговечности.
  • Детонационные ПуВРД. В этих двигателях горение топливной смеси происходит в режиме детонации. Детонационная волна распространяется в топливной смеси гораздо быстрее, чем звуковая, поэтому, за время химической реакции детонационного горения объём топливной смеси не успевает существенно увеличиться, а давление возрастает скачкообразно, таким образом имеет место изохорический нагрев рабочего тела. После этого начинается фаза расширения рабочего тела в сопле с образованием реактивной струи. Детонационные ПуВРД могут быть как с клапанами, так и без них.

Потенциальным преимуществом детонационного ПуВРД считается термический КПД более высокий, чем в ВРД любого другого типа. Практическая реализация этого двигателя находится в стадии эксперимента.

Область применения ПуВРД

ПуВРД характеризуется как шумный и неэкономный, зато простой и дешёвый. Высокий уровень шума и вибрации вытекает из самого пульсирующего режима его работы. О неэкономном характере использования топлива свидетельствует обширный факел, «бьющий» из сопла ПуВРД — следствие неполного сгорания топлива в камере.

Сравнение ПуВРД с другими авиационными двигателями позволяет довольно точно определить область его применимости.

ПуВРД во много раз дешевле в производстве, чем газотурбинный или поршневой ДВС, поэтому при одноразовом применении он выигрывает экономически у них. При длительной эксплуатации аппарата многоразового использования, ПуВРД проигрывает экономически этим же двигателям из-за расточительного расхода топлива.

По простоте и дешевизне ПВРД практически не уступает ПуВРД, но на скоростях менее 0,5М он неработоспособен. На более высоких скоростях, ПВРД превосходит по эффективности ПуВРД.

Совокупность этих обстоятельств и определяют ту нишу, в которой находит применение ПуВРД — беспилотные летательные аппараты одноразового применения с рабочими скоростями до 0,5М,- летающие мишени, беспилотные разведчики.

Клапанные, так же, как и бесклапанные, ПуВРД имеют распространение в любительской авиации и авиамоделировании, благодаря простоте и дешевизне.

Немецкие конструкторы, ещё накануне Второй мировой войны проводившие широкий поиск альтернатив поршневым авиационным двигателям, не обошли вниманием и это изобретение, долгое время остававшееся невостребованным. Наиболее известным летательным аппаратом (и единственным серийным) c ПуВРД Argus As-014 производства фирмы Argus-Werken, явился немецкий самолёт-снаряд Фау-1 . Главный конструктор Фау-1 Роберт Люссер выбрал для него ПуВРД не ради эффективности (поршневые авиационные двигатели той эпохи обладали лучшими характеристиками), а, главным образом, из-за простоты конструкции и, как следствие, малых трудозатрат на изготовление, что было оправдано при массовом производстве одноразовых снарядов, серийно выпущенных за неполный год (с июня 1944 по март 1945) в количестве свыше 10 000 единиц.

После войны исследования в области пульсирующих воздушно-реактивных двигателей продолжились во Франции (компания SNECMA) и в США (Pratt & Whitney , General Electric).
Результаты этих разработок заинтересовали США и СССР. Был разработан ряд опытных и экспериментальных образцов. Первоначально основная проблема ракет «воздух-поверхность» заключалась в несовершенстве инерциальной системы наведения, точность которой считалась хорошей, если ракета с дальности в 150 километров попадала в квадрат со сторонами 3 километра. Это привело к тому, что с боезарядом на основе обычного взрывчатого вещества данные ракеты имели низкую эффективность, а ядерные заряды в то же время имели ещё слишком большую массу (несколько тонн). Пульсирующий воздушно-реактивный двигатель обладает большим удельным импульсом по сравнению с ракетными двигателями , но уступает по этому показателю турбореактивным двигателям . Существенным ограничением является также то, что этот двигатель требует разгона до рабочей скорости 100 м/с и его использование ограничено скоростью порядка 250 м/с. Когда появились компактные ядерные заряды, уже была отработана конструкция более эффективных турбореактивных двигателей. Поэтому пульсирующие воздушно-реактивные двигатели не получили широкого распространения.

Принцип действия и устройство ПуВРД

Пульсирующий воздушно-реактивный двигатель (ПуВРД, англоязычный термин Pulse jet), как следует из его названия, работает в режиме пульсации, его тяга развивается не непрерывно, как у ПВРД или ТРД, а в виде серии импульсов, следующих друг за другом с частотой от десятков герц, для крупных двигатателей, до 250 Гц - для малых двигателей, предназначенных для авиамоделей.

Конструктивно, ПуВРД представляет собой цилиндрическую камеру сгорания с длинным цилиндрическим соплом меньшего диаметра . Передняя часть камеры соединена со входным диффузором, через который воздух поступает в камеру.

Между диффузором и камерой сгорания установлен воздушный клапан, работающий под воздействием разницы давлений в камере и на выходе диффузора: когда давление в диффузоре превышает давление в камере клапан открывается и пропускает воздух в камеру; при обратном соотношении давлений он закрывается.

Клапан может иметь различную конструкцию: в двигателе Argus As-014 ракеты Фау-1 он имел форму и действовал наподобие оконных жалюзи и состоял из наклёпанных на раму гибких прямоугольных клапанных пластинкок из пружинной стали; в малых двигателях он выглядит как пластина в форме цветка с радиально расположенными клапанными пластинками в виде нескольких тонких, упругих металлических лепестков, прижатых к основанию клапана в закрытом положении и отгибающихся от основания под действием давления в диффузоре, превышающего давление в камере. Первая конструкция намного совершеннее - оказывает минимальное сопротивление потоку воздуха, но гораздо сложнее в производстве.

В передней части камеры имеются одна или несколько топливных форсунок, которые впрыскивают топливо в камеру, пока давление наддува в топливном баке превышает давление в камере; при превышении давлением в камере давления наддува, обратный клапан в топливном тракте перекрывает подачу топлива. Примитивные маломощные конструкции нередко работают без впрыска топлива, подобно поршневому карбюраторному двигателю. Для пуска двигателя в этом случае обычно используют внешний источник сжатого воздуха.

Для инициирования процесса горения в камере устанавливается свеча зажигания, которая создаёт высокочастотную серию электрических разрядов, и топливная смесь воспламеняется, как только концентрация горючего в ней достигает некоторого, достаточного для возгорания, уровня. Когда оболочка камеры сгорания достаточно прогревается (обычно, через несколько секунд после начала работы большого двигателя, или через доли секунды - малого; без охлаждения потоком воздуха, стальные стенки камеры сгорания быстро нагреваются докрасна), электрозажигание вовсе становится ненужным: топливная смесь воспламеняется от горячих стенок камеры.

При работе, ПуВРД издаёт очень характерный трещащий или жужжащий звук, обусловленный как раз пульсациями в его работе.

Цикл работы ПуВРД иллюстрируется рисунком справа:

  • 1. Воздушный клапан открыт, воздух поступает в камеру сгорания, форсунка впрыскивает горючее, и в камере образуется топливная смесь.
  • 2. Топливная смесь воспламеняется и сгорает, давление в камере сгорания резко возрастает и закрывает воздушный клапан и обратный клапан в топливном тракте. Продукты сгорания, расширяясь, истекают из сопла, создавая реактивную тягу .
  • 3. Давление в камере уравнивается с атмосферным, под напором воздуха в диффузоре воздушный клапан открывается и воздух начинает поступать в камеру, топливный клапан тоже открывается, двигатель переходит к фазе 1.

Кажущееся сходство ПуВРД и ПВРД (возможно, возникающее из-за сходства аббревиатур названий) - ошибочно. В действительности ПуВРД имеет глубокие, принципиальные отличия от ПВРД или ТРД.

  • Во-первых, наличие у ПуВРД воздушного клапана, очевидным назначением которого является предотвращение обратного движения рабочего тела вперёд по ходу движения аппарата (что свело бы на нет реактивную тягу). В ПВРД (как и в ТРД) этот клапан не нужен, поскольку обратному движению рабочего тела в тракте двигателя препятствует «барьер» давления на входе в камеру сгорания, созданный в ходе сжатия рабочего тела. В ПуВРД начальное сжатие слишком мало, а необходимое для совершения работы повышение давления в камере сгорания достигается благодаря нагреву рабочего тела (при сжигании горючего) в постоянном объёме , ограниченном стенками камеры, клапаном, и инерцией газового столба в длинном сопле двигателя. Поэтому ПуВРД с точки зрения термодинамики тепловых двигателей относится к иной категории, нежели ПВРД или ТРД - его работа описывается циклом Хамфри (Humphrey) , в то время как работа ПВРД и ТРД описывается циклом Брайтона .
  • Во-вторых, пульсирующий, прерывистый характер работы ПуВРД, также вносит существенные различия в механизм его функционирования, в сравнении с ВРД непрерывного действия. Для объяснения работы ПуВРД недостаточно рассматривать только газодинамические и термодинамические процессы, происходящие в нём. Двигатель работает в режиме автоколебаний , которые синхронизируют по времени работу всех его элементов. На частоту этих автоколебаний оказывают влияние инерционные характеристики всех частей ПуВРД, в том числе инерция газового столба в длинном сопле двигателя, и время распространения по нему акустической волны. Увеличение длины сопла приводит к снижению частоты пульсаций и наоборот. При определённой длине сопла достигается резонансная частота, при которой автоколебания становятся устойчивыми, а амплитуда колебаний каждого элемента - максимальной. При разработке двигателя эта длина подбирается экспериментально в ходе испытаний и доводки.

Иногда говорят, что функционирование ПуВРД при нулевой скорости движения аппарата невозможно - это ошибочное представление, во всяком случае, оно не может быть распространено на все двигатели этого типа. Большинство ПуВРД (в отличие от ПВРД) может работать, «стоя на месте» (без набегающего потока воздуха), хотя тяга, развиваемая им в этом режиме, минимальна (и обычно недостаточна для старта приводимого им в движение аппарата без посторонней помощи - поэтому, например, V-1 запускали с паровой катапульты, при этом ПуВРД начинал устойчиво работать ещё до пуска ).

Функционирование двигателя в этом случае объясняется следующим образом. Когда давление в камере после очередного импульса снижается до атмосферного, движение газа в сопле по инерции продолжается, и это приводит к понижению давления в камере до уровня ниже атмосферного. Когда воздушный клапан открывается под воздействием атмосферного давления (на что тоже требуется некоторое время), в камере уже создано достаточное разрежение, чтобы двигатель мог «вдохнуть свежего воздуха» в количестве, необходимом для продолжения следующего цикла. Ракетные двигатели помимо тяги характеризуются удельным импульсом , являющимся показателем степени совершенства или качества двигателя. Этот показатель является также мерой экономичности двигателя. В приведённой ниже диаграмме в графической форме представлены верхние значения этого показателя для разных типов реактивных двигателей, в зависимости от скорости полёта, выраженной в форме числа Маха , что позволяет видеть область применимости каждого типа двигателей.

ПуВРД - Пульсирующий воздушно-реактивный двигатель, ТРД - Турбореактивный двигатель , ПВРД - Прямоточный воздушно-реактивный двигатель , ГПВРД - Гиперзвуковой прямоточный воздушно-реактивный двигатель .

Двигатели характеризуют рядом параметров:

В отличие от ракетных двигателей, тяга которых не зависит от скорости движения ракеты, тяга воздушно-реактивных двигателей (ВРД) сильно зависит от параметров полёта - высоты и скорости. Пока не удалось создать универсальный ВРД, поэтому эти двигатели рассчитываются под определенный диапазон рабочих высот и скоростей. Как правило, разгон ВРД до рабочего диапазона скоростей осуществляется самим носителем либо стартовым ускорителем.

Другие пульсирующие ВРД

В литературе встречается описание двигателей, подобных ПуВРД.

  • Бесклапанные ПуВРД , иначе - U-образные ПуВРД. В этих двигателях отсутствуют механические воздушные клапаны, а чтобы обратное движение рабочего тела не приводило к уменьшению тяги, тракт двигателя выполняется в форме латинской буквы «U», концы которой обращены назад по ходу движения аппарата, при этом истечение реактивной струи происходит сразу из обоих концов тракта. Поступление свежего воздуха в камеру сгорания осуществляется за счёт волны разрежения, возникающей после импульса и «вентилирующей» камеру, а изощрённая форма тракта служит для наилучшего выполнения этой функции. Отсутствие клапанов позволяет избавиться от характерного недостатка клапанного ПуВРД - их низкой долговечности (на самолёте-снаряде Фау-1 клапаны прогорали приблизительно после получаса полёта, чего вполне хватало для выполнения его боевых задач, но абсолютно неприемлемо для аппарата многоразового использования).

Область применения ПуВРД

ПуВРД характеризуется как шумный и неэкономный , зато простой и дешёвый . Высокий уровень шума и вибрации вытекает из самого пульсирующего режима его работы. О неэкономном характере использования топлива свидетельствует обширный факел, «бьющий» из сопла ПуВРД - следствие неполного сгорания топлива в камере.

Сравнение ПуВРД с другими авиационными двигателями позволяет довольно точно определить область его применимости.

ПуВРД во много раз дешевле в производстве, чем газотурбинный или поршневой ДВС , поэтому при одноразовом применении он выигрывает экономически у них (разумеется, при условии, что он «справляется» с их работой). При длительной эксплуатации аппарата многоразового использования, ПуВРД проигрывает экономически этим же двигателям из-за расточительного расхода топлива.

Воздушно-реактивные двигатели

Схема устройства ПВРД на жидком топливе: 1. Встречный поток воздуха; 2. Центральное тело. 3. Входное устройство. 4. Топливная форсунка. 5. Камера сгорания. 6. Сопло. 7. Реактивная струя.

Воздушно-реактивный двигатель (ВРД) -- тепловой реактивный двигатель, в качестве рабочего тела которого используется смесь забираемого из атмосферы воздуха и продуктов окисления топлива кислородом, содержащимся в воздухе. За счёт реакции окисления рабочее тело нагревается и, расширяясь, истекает из двигателя с большой скоростью, создавая реактивную тягу. Воздушно- реактивные двигатели разделяются на прямоточные, пульсирующие, дозвуковые, сверхзвуковые, гиперзвуковые. Турбореактивные двигатели (ТРД) тоже относятся к воздушно- реактивным двигателям. Во всех этих двигательных установках используется, в принципе, одна и та же система. Воздух нагнетается в камеру сгорания, где происходит смешивание с топливом и последующее воспламенение, приводящее к расширению. Затем горячая воздушная масса выходит из сопла, создавая тягу. Основное различие это способ нагнетания воздуха в камеру сгорания. Например у ПВРД воздух нагнетался под давлением находящего потока, следовательно, двигатель не мог запуститься на земле, ибо такого потока не было. В турбореактивных двигателях воздух нагнетается встречным потоком и компрессорами, которые приводятся в движение лопатками турбины.

Затем воздушный поток смешивается с топливом и сгорает в камере сгорания, следом горячий воздух попадает на заднюю часть турбины и выходит через сопло.

Клапанный пульсирующий воздушно-реактивный двигатель

Простейший ПуВРД был впервые применён во время Второй мировой войны на снаряде FZG-76, известный под названием «Фау-1». Он состоял из цилиндра, с одного конца закрытого клапанной решёткой. Горючая смесь поджигалась внутри цилиндра по средствам запальной свечи. Выделявшиеся при этом газы сильно расширялись и вместе с нагретым воздухом вырывались через сопло. Даже в том случае, когда давление внутри цилиндра падало до уровня атмосферного, газы в выхлопной трубе обладали достаточным количеством кинетической энергии, чтобы продолжать движение и создавать определённое разряжение в камере сгорания. Благодаря этому, через створки клапанов в двигатель попадала новая порция воздуха и цикл возобновлялся. Частота циклов в основном зависит главным образом от резонанса камеры сгорания, выхлопной трубы и клапанов.

Обычно частота двигателя достигала 300 циклов в секунду, сливаясь в характерный для немецких ракет воющий звук. После нескольких циклов искра не требуется, так как нагретые детали и горячие газы способны поджечь топливо-воздушную смесь. В ПуВРД тяга возрастает как функция скорости, потому что именно скорость влияет на степень компрессии воздуха в цилиндре, отчего зависит давление в камере сгорания, а следовательно и термический КПД двигателя. Такой двигатель не требует дорогостоящих компрессоров и турбин, а так же он лёгок в производстве. В отличии от ПВРД, ПуВРД развивают значительную тягу даже при малых скоростях полёта. Однако, КПД такого двигателя весьма мал и потребление топлива велико. Поэтому ПуВРД находят себе применение на летающих мишенях, где требуется дешёвый двигатель однократного применения.

Пульсирующий воздушно-реактивный двигатель обладает большим удельным импульсом по сравнению с ракетными двигателями, но уступает по этому показателю турбореактивным двигателям. Существенным ограничением является также то, что этот двигатель требует разгона до рабочей скорости 100 м/с и его использование ограничено скоростью порядка 250 м/с (на Фау-1 такая скорость получалась при запуске ракеты с паровой катапульты). По свидетельству рабочих, которые присутствовали на заводе при первых испытания ПуВРД в СССР, первые такты напоминали выстрелы, а когда двигатель заработал в нормальном режиме, то звук был очень резким и громким, от него содрагалось всё вокруг. Очень часто рвались клапаны, корпус не выдерживал больших температур, прогорали свечи и возникали трудности с системой зажигания.

Схема работы ПуВРД.

Кажущееся сходство ПуВРД и ПВРД (возможно, возникающее из-за сходства аббревиатур названий) -- ошибочно. В действительности ПуВРД имеет глубокие, принципиальные отличия от ПВРД или ТРД.

1) Наличие у ПуВРД воздушного клапана, очевидным назначением которого является предотвращение обратного движения рабочего тела вперёд по ходу движения аппарата (что свело бы на нет реактивную тягу).

2) Пульсирующий, прерывистый характер работы ПуВРД, также вносит существенные различия в механизм его функционирования, в сравнении с ВРД непрерывного действия.

В России испытали пульсирующий детонационный двигатель

Опытно-конструкторское бюро имени Люльки разработало, изготовило и испытало опытный образец пульсирующего резонаторного детонационного двигателя с двухстадийным сжиганием керосиновоздушной смеси. Как сообщает ИТАР-ТАСС , средняя измеренная тяга двигателя составила около ста килограммов, а длительность непрерывной работы ─ более десяти минут. До конца текущего года ОКБ намерено изготовить и испытать полноразмерный пульсирующий детонационный двигатель.

По словам главного конструктора ОКБ имени Люльки Александра Тарасова, в ходе испытаний моделировались режимы работы, характерные для турбореактивного и прямоточного двигателей. Измеренные величины удельной тяги и удельного расхода топлива оказались на 30-50 процентов лучше, чем у обычных воздушно-реактивных двигателей. В ходе экспериментов производилось многократное включение и выключение нового двигателя, а также регулирование тяги.

На основе проведенных исследований, полученных при испытании данных, а также схемно-конструкторского анализа ОКБ имени Люльки намерено предложить разработку целого семейства пульсирующих детонационных авиационных двигателей. В частности, могут быть созданы двигатели с коротким ресурсом работы для беспилотных летательных аппаратов и ракет и самолетные двигатели с крейсерским сверхзвуковым режимом полета.

В перспективе на основе новых технологий могут быть созданы двигатели для ракетно-космических систем и комбинированных силовых установок самолетов, способных выполнять полеты в атмосфере и за ее пределами.

По оценке конструкторского бюро, новые двигатели позволят увеличить тяговооруженность самолетов в 1,5-2 раза. Кроме того, при использовании таких силовых установок дальность полета или масса авиационных средств поражения могут увеличиться на 30-50 процентов. При этом удельный вес новых двигателей будет в 1,5-2 раза меньше аналогичного показателя обычных реактивных силовых установок.

О том, что в России ведутся работы по созданию пульсирующего детонационного двигателя, сообщалось в марте 2011 года. Об этом заявил тогда Илья Федоров, управляющий директор научно-производственного объединения «Сатурн», в состав которого входит ОКБ имени Люльки. О каком именно типа детонационного двигателя шла речь, Федоров не уточнил.

В настоящее время известны три вида пульсирующих двигателей ─ клапанные, бесклапанные и детонационные. Принцип работы этих силовых установок заключается в периодической подаче в камеру сгорания топлива и окислителя, где происходит воспламенение топливной смеси и истечение продуктов сгорания из сопла с образованием реактивной тяги. Отличие от обычных реактивных двигателей заключается в детонационном горении топливной смеси, при котором фронт горения распространяется быстрее скорости звука.

Пульсирующий воздушно-реактивный двигатель был изобретен еще в конце XIX века шведским инженером Мартином Вибергом. Пульсирующий двигатель считается простым и дешевым в изготовлении, однако из-за особенностей горения топлива ─ малонадежным. Впервые новый тип двигателя был использован серийно во время Второй мировой войны на немецких крылатых ракетах Фау-1. На них устанавливался двигатель Argus As-014 компании Argus-Werken.

В настоящее время несколько крупных оборонных фирм мира занимаются исследованиями в области создания высокоэффективных пульсирующих реактивных двигателей. В частности, работы ведут французская компания SNECMA и американские General Electric и Pratt & Whitney. В 2012 году Научно-исследовательская лаборатория ВМС США объявила о намерении разработать спиновый детонационный двигатель, который должен будет заменить на кораблях обычные газотурбинные силовые установки.

Спиновые детонационные двигатели отличаются от пульсирующих тем, что детонационное горение топливной смеси в них происходит непрерывно ─ фронт горения перемещается в кольцевой камере сгорания, в которой топливная смесь постоянно обновляется.

Причиной написания статьи стало огромное внимание к маленькому двигателю, который появился совсем недавно в ассортименте Паркфлаера. Но мало, кто задумывался, что у этого двигателя более чем 150-и летняя история:

Многие полагают, что пульсирующий воздушно-реактивный двигатель (ПуВРД) пявился в Германии в период Второй мировой войны, и применялся на самолетах-снарядах V-1 (Фау-1), но это не совсем так. Конечно, немецкая крылатая ракета стала единственным серийным летательным аппаратом с ПуВРД, но сам двигатель был изобретен на 80 (!) лет раньше и совсем не в Германии.
Патенты на пульсирующий воздушно-реактивный двигатель были получены (независимо друг от друга) в 60-х годах XIX века Шарлем де Луврье (Франция) и Николаем Афанасьевичем Телешовым (Россия).

Пульсирующий воздушно-реактивный двигатель (англ. Pulse jet), как следует из его названия, работает в режиме пульсации, его тяга развивается не непрерывно, как у ПВРД (прямоточный воздушно реактивный двигатель) или ТРД (турбореактивный двигатель), а в виде серии импульсов.

Воздух, проходя через конфузорную часть, увеличивает свою скорость, вследствие чего давление на этом участке падает. Под действием пониженного давления из трубки 8 начинает подсасываться топливо, которое затем подхватывается струей воздуха, рассеивается ею на более мелкие частички. Образовавшаяся смесь, проходя диффузорную часть головки, несколько поджимается за счет уменьшения скорости движения и в окончательно перемешанном виде через входные отверстия клапанной решетки поступает в камеру сгорания.
Первоначально топливно-воздушная смесь, заполнившая объем камеры сгорания, воспламеняется с помощью свечи, в крайнем случае, с помощью открытого пламени, подводимого к обрезу выхлопной трубы. Когда двигатель выйдет на рабочий режим, вновь поступающая в камеру сгорания топливно-воздушиая смесь воспламеняется не от постороннего источника, а от горячих газов. Таким образом, свеча необходима лишь на этапе запуска двигателя, в качестве катализатора.
Образовавшиеся в процессе сгорания топливно-воздушной смеси газы резко повышают, и пластинчатые клапаны решетки закрываются, а газы устремляются в открытую часть камеры сгорания в сторону выхлопной трубы. Таким образом, в трубе двигателя, в процессе его работы происходит колебание газового столба: в период повышенного давления в камере сгорания газы движутся в сторону выхода, в период пониженного давления — в сторону камеры сгорания. И чем интенсивнее колебания газового столба в рабочей трубе, тем большую тягу развивает двигатель за один цикл.

ПуВРД имеет следующие основные элементы : входной участок а — в , заканчивающийся клапанной решеткой, состоящей из диска 6 и клапанов 7 ; камеру сгорания 2 , участок в — г ; реактивное сопло 3 , участок г — д , выхлопную трубу 4 , участок д — е .
Входной канал головки имеет конфузорный а — б и диффузорный б — в участки. В начале диффузорного участка устанавливается топливная трубка 8 с регулировочной иглой 5 .

И снова вернемся к истории. Немецкие конструкторы, ещё накануне Второй мировой войны проводившие широкий поиск альтернатив поршневым двигателям, не обошли вниманием и это изобретение, долгое время остававшееся невостребованным. Наиболее известным летательным аппаратом как я уже говорил, явился немецкий самолёт-снаряд Фау-1.

Главный конструктор Фау-1 Роберт Люссер выбрал для него ПуВРД главным образом, из-за простоты конструкции и, как следствие, малых трудозатрат на изготовление, что было оправдано при массовом производстве одноразовых снарядов, серийно выпущенных за неполный год (с июня 1944 по март 1945) в количестве свыше 10 000 единиц.

Кроме беспилотных крылатых ракет, в Германии, так же разрабатывалась пилотируемая версия самолета-снаряда- Фау-4 (V-4). По задумке инженеров, пилот должен был навести на цель свой одноразовый пепелац, покинуть кабину и спастись, используя парашют.

Правда, о том, способен ли человек покинуть кабину пилота на скорости 800км/час, да еще имея у себя за головой воздухозаборник двигателя- скромно умалчивалось.

Изучением и созданием ПуВРД занимались не только в фашисткой Германии. В 1944 году для ознакомления, в СССР Англия поставила покореженые куски Фау-1. Мы, в свою очередь "слепили из того, что было", создав при этом, практически новый двигатель ПуВРД Д-3, ииии.....
.....и водрузили его на Пе-2:

Но не с целью создания первого отечественного реактивного бомбардировщика, а для испытаний самого двигателя, который потом применялся для производства советских крылатых ракет 10-Х:


Но на этом не ограничивается применение пульсирующих двигателей в советской авиации. В 1946 году была реализована идея оборудовать истрибитель ПуВРД-шками:

Да. Всё просто. На истрибитель Ла-9, под крыло установили два пульсирующих движка. Конечно на практике все оказалось несколько сложнее: на самолете изменили систему питания топливом, сняли бронеспинку, и две пушки НС-23, усилив конструкцию планера. Прирост скорости составил 70 км/ч. Летчик-испытатель И.М.Дзюба отмечал сильные вибрации и шум при включении ПуВРД. Подвеска ПуВРД ухудшала маневренные и взлетно-посадочные характеристики самолета. Запуск двигателей был ненадежным, резко снижалась продолжительность полета, усложнялась эксплуатация. Проведенные работы принесли пользу лишь при отработке прямоточных двигателей, предназначавшихся для установки на крылатые ракеты.
Конечно, в боях эти самолеты участия не принимали, но они достаточно активно использовались на воздушных парадах, где неизменно своим грохотом производили сильное впечатление на публику. По свидетельству очевидцев в разных парадах участвовало от трех до девяти машин с ПуВРД.
Кульминацией испытаний ПуВРД стал пролет девяти Ла-9РД летом 1947 г. на воздушном параде в Тушино. Пилотировали самолеты летчики-испытатели ГК НИИ ВВС В.И.Алексеенко. А.Г.Кубышкин. Л.М.Кувшинов, А.П.Манучаров. В.Г.Масич. Г.А.Седов, П.М.Стефановский, А.Г.Терентьев и В.П.Трофимов.

Надо сказать о том, что американцы, тоже, не отставали в этом направлении. Они прекрасно понимали, что реактивная авиация, даже находясь на стадии младеньчества, уже превосходит свои поршневые аналоги. Но поршевых самолетов- очень много. Куда их девать?!.... И в 1946 году под крылья одного из самых совершенных истребителей своего времени, Мустанг P-51D, подвесили два двигателя Ford PJ-31-1.

Однако, результат оказался, прямо скажем,- не очень. С включенными ПуВРД скорость самолета заметно увеличивалась, но топливо они поглащали- о-го-го, так что долго летать с хорошей скоростью не получалось, и в выключенном состоянии реактивные моторы превращали истребитель небеный тихоход. Промучившись целый год американцы, все-таки, пришли к выводу, что получить задешево истребитель, способный хотя бы как-то конкурировать с новомодными реактивными не получится.

В итоге про ПуВРД забыли.....
Но не на долго! Этот тип двигателей хорошо проявил себя в качестве авиамодельного! А почему бы нет?! Дешевый в производстве и обслуживании, имеет простое устройство и минимум настроек, не требует дорогостоящего горючего, да и вообще- его и покупать не обязательно- можно и самостоятельно построить, имея минимум ресурсов.

Это самый маленький ПуВРД в мире. Создан в 1952 г.
Ну согласитесь, кто не мечтал о реактвном самолете с хомячком пилотом и ракетами?!))))
Теперь ваша мечта стала реальостью! Да и не обязательно покупать двигаль- его можно построить:


P.S. данная статья основана на материалах, опубликованных в сети Интернет...
The end.