Ротационный детонационный двигатель - реальная экономия в гдт. Фундаментальные исследования. Кратко к вопросу о детонационых двигателях (3 видео)

ВМС США намерены в перспективе модернизировать газотурбинные силовые установки на своих кораблях и самолетах, заменив обычные двигатели внутреннего сгорания с циклом Брайтона на ротационные детонационные двигатели. Благодаря этому военные рассчитывают экономить на топливе до 400 миллионов долларов в год. Впрочем, говорить о скором серийном использовании новой технологии, еще пока до конца не изученной, не приходится - по самым смелым оценкам, первые детонационные двигатели появятся на флоте через десять лет.

Разработкой ротационного, или спинового, детонационного двигателя (Rotating Detonation Engine, RDE) занимается Научно-исследовательская лаборатория (NRL) ВМС США. По предварительным расчетам лаборатории, RDE будет на десять процентов мощнее и на 25 процентов экономичнее используемых сегодня обычных газотурбинных двигателей. Правда, общий принцип работы силовых установок останется неизменным - поток газов от сгоревшего топлива будет по-прежнему вращать лопасти газовой турбины.

По данным NRL, даже в отдаленном будущем, когда все корабли ВМС США будут приводиться в движение электричеством, выработку энергии все равно будут обеспечивать газовые турбины, может быть, конструктивно немного измененные. В настоящее время американский флот использует 430 газотурбинных двигателей на 129 кораблях. Ежегодно они потребляют топлива на два миллиарда долларов. В перспективе обычные двигатели внутреннего сгорания на кораблях будут заменены новыми RDE, то есть речь идет о модернизации. Тем не менее принципы работы перспективных силовых установок и современных двигателей будут значительно отличаться.

Детонация

Сегодня двигатели внутреннего сгорания работают по циклу Брайтона. Упрощенно его суть заключается в последовательном смешивании топлива и окислителя, сжатии смеси, ее поджоге и горении с последующим расширением разогретых продуктов горения. Такое расширение, как раз и используемое для выполнения механической работы (движение, вращение турбины, перемещение поршней), дает постоянное давление. Фронт горения в топливной смеси перемещается на дозвуковой скорости; такой процесс называется дефлаграцией.

В новых двигателях ученые намерены использовать детонацию, взрывное горение топливной смеси, при котором реакция распространяется по веществу со сверхзвуковой скоростью. Явление детонации пока изучено не полностью, однако достоверно известно, что при таком горении по веществу распространяется ударная волна, за которой следует химическая реакция в топливной смеси с выделением большого количества тепла. При прохождении ударной волны через вещество оно нагревается и может детонировать.

В RDE будут использованы наработки, полученные в ходе создания пульсирующего детонационного двигателя (Pulse Detonation Engine, PDE). Принцип его работы заключается в том, что в камеру сгорания впрыскивается предварительно сжатая топливная смесь, происходит ее поджог, после чего смесь детонирует. В сопле происходит расширение продуктов горения, которые и выполняют механическую работу. Затем весь цикл повторяется. Недостаток PDE заключается в относительно малой величине пульсаций (частоте повторения циклов).

Кроме того, конструкция таких двигателей с увеличением частоты пульсаций становится сложнее. В частности, необходимо синхронизировать работу клапанов, ответственных за впрыск топливной смеси, с самими циклами детонации. Сам пульсирующий детонационный двигатель крайне шумен, потребляет много топлива, а для его работы требуется постоянная дозированная подача топлива и инициация каждого цикла детонации. Проще говоря: в камеру сгорания попало топливо, его подожгли, оно детонировало, затем все повторяется.


Принцип работы ротационных детонационных двигателей несколько отличается от PDE. В нем реализована возможность постоянной незатухающей детонации топливной смеси в кольцевой камере сгорания. Впервые такое явление, получившее название спиновой, или вращающейся, детонации, в 1956 году описал советский ученый Богдан Войцеховский. Само явление было открыто в 1926 году в Великобритании - было замечено, что в некоторых системах вместо ожидаемой плоской детонационной волны возникала ярко светящаяся "голова", вращающаяся по спирали.

Благодаря фоторегистратору собственного изобретения Войцеховскому удалось сфотографировать фронт ударной волны, движущейся в топливной смеси в кольцевой камере сгорания. В отличие от плоской детонации, в спиновой детонации возникает единственная поперечная ударная волна, за которой следует слой непрореагировавшего нагретого газа, а затем зона химической реакции. Такая волна "обегает" кольцевую камеру сгорания. Марлен Топчиян, профессор Института гидродинамики имени Лаврентьева, в котором долгое время работал Войцеховский, описал эту камеру как "сплющенный бублик".

Для получения вращающейся детонации в кольцевую камеру сгорания радиально подается топливная смесь (причем топливо и окислитель могут поступать раздельно, а их смешивание и сжатие обеспечивает детонационная волна). В интервью газете "Наука в Сибири" Топчиян рассказал, что, пока детонационная волна "обегает" кольцевую камеру сгорания, топливная смесь за ней успевает обновиться - "и каждый раз перед волной оказывается свежая смесь". Таким образом и обеспечивается стационарность детонации.

Компьютерная модель движения "головы" детонационной волны, распределения давления и массовой концентрации топлива в ротационном детонационном двигателе.

В отличие от цикла Брайтона, при котором давление в системе после сгорания топлива остается величиной постоянной, при детонации за время химического горения смеси давление в камере сгорания не успевает значительно измениться, но затем возрастает скачкообразно в разы и может превышать сто атмосфер. Что интересно, к ротационным детонационным двигателям вполне применимы технологии двигателей, работающих по циклу Брайтона. В частности, использование в RDE компрессора увеличивает эффективность и мощность системы в целом.

Детонационные двигатели, к слову, уже использовались. В частности, один из вариантов такой силовой установки - пульсирующий воздушно-реактивный двигатель - использовался на немецких крылатых ракетах "Фау-1" в конце Второй мировой войны. Он был прост в производстве, неприхотлив, однако не очень надежен для решения более серьезных задач.

В 2008 году первый полет совершил экспериментальный самолет Rutang Long-EZ с пульсирующим детонационным двигателем. Двигатель работал в течение десяти секунд, самолет летел на высоте 30 метров. PDE на экспериментальном самолете состоял из четырех трубок, в которых происходили циклы детонации с частотой 80 герц. Силовая установка смогла развить тягу в 890 ньютонов. Для сравнения, каждый двигатель истребителя МиГ-29 развивает тягу в 81,4 килоньютона.

Двигатели будущего

Экспериментальный образец RDE, созданный Научно-исследовательской лабораторией ВМС США, представляет собой кольцевую конусообразную камеру сгорания, диаметр которой со стороны впрыска топливной смеси составляет 140 миллиметров, а со стороны сопла - 160 миллиметров. Расстояние между стенками камеры сгорания составляет десять миллиметров при длине "трубки" 177 миллиметров.

В качестве топлива используется стехиометрическая смесь водорода и воздуха (в ней окислителя содержится ровно столько, сколько необходимо для полного сгорания топлива). Топливная смесь подается в камеру сгорания под давлением в десять атмосфер, а сама смесь предварительно прогревается до 27,9 градуса Цельсия. Смесь водорода и кислорода считается наиболее удобной для изучения спиновой детонации, однако, по утверждению NRL, в перспективных двигателях можно будет использовать обычное горючее в смеси с воздухом.

Предварительные испытания RDE, созданного NRL, показали коэффициент полезного действия одного цикла детонации на уровне 30 процентов (КПД цикла Брайтона был принят за ноль процентов). При добавлении в систему компрессора КПД цикла Брайтона можно увеличить; причем это правило работает и для систем, построенных на цикле детонации. Износостойкость RDE по сравнению с PDE выше, поскольку в них детонационная волна "идет" вдоль стенок камеры сгорания и ее ударное влияние на них существенно ниже.

Карта температур (сверху) и давления в RDE. Фото NRL.

A - детонационная волна; B - задний фронт ударной волны; C - зона смешения свежих и старых продуктов горения; D - область заполнения топливной смесью; E - область несдетонировавшей сгоревшей топливной смеси; F - зона расширения со сдетонировавшей сгоревшей топливной смесью; G, H, I - зоны подачи топлива с заблокированными, частично открытыми и открытыми форсунками; J - вторичная ударная волна. Движение детонации - слева направо.

По данным NRL, процесс сгорания топливной смеси в RDE неоднороден, в нем присутствуют и области дефлаграции, однако их доля в общем процессе горения составляет всего 14 процентов. Оптимизация конструкции двигателя и подбор подходящих диаметров кольцевой камеры сгорания и просвета между стенками может уменьшить этот показатель. К достоинствам перспективного двигателя NRL относит существенную экономию топлива (для инициации нового цикла детонации горючей смеси требуется меньше).

Расширяющиеся в сопле продукты горения впоследствии можно, благодаря эффекту Коанда , собирать при помощи конуса в единую газовую струю и направлять ее в турбину. Истекающие из сопла газы будут вращать ее; часть работы турбины можно будет использовать для движения кораблей, а часть - для выработки энергии, необходимой для корабельных систем и оборудования.

Сами спиновые детонационные двигатели могут быть собраны вообще без каких-либо подвижных частей, благодаря чему упрощается конструкция и снижается конечная стоимость силовой установки в целом. Тем не менее, прежде чем всерьез говорить о перспективах серийного использования ротационных двигателей, ученым предстоит решить еще несколько задач, самой сложной из которых является подбор термостойких и прочных материалов.

В RDE стабильность детонации можно поддерживать до окончания горючего и прогрева конструкции до стадии разрушения. В последнем случае могут быть также использованы технологии, успешно применяющиеся для охлаждения лопаток турбин, например, в воздушно-реактивных двигателях. Со временем новые двигатели можно будет устанавливать не только на корабли, но и на перспективные летательные аппараты. Так, из архивов может быть возвращен к жизни проект Blackswift - аппарат, способный развивать скорость до шести чисел Маха (около семи тысяч километров в час).

В настоящее время RDE считаются наиболее перспективным типом двигателей внутреннего сгорания. Их разработкой, в частности, занимается Техасский университет в Арлингтоне. Создаваемая им силовая установка получила название "двигателя непрерывной детонации" (Continous Detonation Engine, CDE). Ученые из этого университета также проводят эксперименты с разными диаметрами кольцевых камер сгорания и с различными топливными смесями, в которых присутствуют водород, а также кислород или воздух в разных пропорциях.

Двигатель непрерывной детонации. Показана работа двигателя с топливной смесью водорода-воздуха и водорода-кислорода в разных пропорциях.

В марте 2011 года управляющий директор НПО "Сатурн" Илья Федоров рассказал, что Научно-технический центр имени Люльки (входит в состав научно-производственного объединения) занимается созданием пульсирующего воздушно-реактивного двигателя. Тип двигателя Федоров не уточнил. В настоящее время известны три вида пульсирующих двигателей: клапанные, бесклапанные и детонационные. Наконец, французская компания MBDA совместно с Институтом гидродинамики имени Лаврентьева занимается изучением вращающейся детонации и созданием спинового детонационного двигателя.

Однако в настоящий момент можно сделать вывод, что RDE (пусть уже и существующие в виде экспериментальных образцов), как и , являются технологией завлекательной, но пока мало реализуемой в промышленных масштабах. И все же время, в котором самолеты будут быстрее, а орудия - убойнее и дальнобойнее, уже обретает свои очертания.

1

Рассмотрена проблема разработки ротационных детонационных двигателей. Представлены основные типы таких двигателей: ротационный детонационный двигатель Николса, двигатель Войцеховского. Рассмотрены основные направления и тенденции развития конструкции детонационных двигателей. Показано, что современные концепции ротационного детонационного двигателя не могут в принципе привести к созданию работоспособной конструкции, превосходящей по своим характеристикам существующие воздушно-реактивные двигатели. Причиной является стремление конструкторов объединить в один механизм генерацию волны, горение топлива и эжекцию топлива и окислителя. В результате самоорганизации ударно-волновых структур детонационное горение осуществляется в минимальном, а не максимальном объеме. Реально достигнутый сегодня результат – детонационное горение в объеме, не превышающем 15 % объема камеры сгорания. Выход видится в ином подходе – сначала создается оптимальная конфигурация ударных волн, а уже затем в эту систему подаются компоненты топлива и организуется оптимальное детонационное горение в большом объеме.

детонационный двигатель

ротационный детонационный двигатель

двигатель Войцеховского

круговая детонация

спиновая детонация

импульсный детонационный двигатель

1. Войцеховский Б.В., Митрофанов В.В., Топчиян М.Е., Структура фронта детонации в газах. – Новосибирск: Изд-во СО АН СССР, 1963.

2. Усков В.Н., Булат П.В. О задаче проектирования идеального диффузора для сжатия сверхзвукового потока // Фундаментальные исследования. – 2012. – № 6 (ч. 1). – С. 178–184.

3. Усков В.Н., Булат П.В., Продан Н.В. История изучения нерегулярного отражения скачка уплотнения от оси симметрии сверхзвуковой струи с образованием диска Маха // Фундаментальные исследования. – 2012. – № 9 (ч. 2). – С. 414–420.

4. Усков В.Н., Булат П.В., Продан Н.В. Обоснование применения модели стационарной Маховской конфигурации к расчету диска Маха в сверхзвуковой струе // Фундаментальные исследования. – 2012. – № 11 (ч. 1). – С. 168–175.

5. Щелкин К.И. Неустойчивость горения и детонации газов // Успехи физических наук. – 1965. – Т. 87, вып. 2.– С. 273–302.

6. Nichols J.A., Wilkmson H.R., Morrison R.B. Intermittent Detonation as a Trust-Producing Mechanism // Jet Propulsion. – 1957. – № 21. – P. 534–541.

Ротационные детонационные двигатели

Все виды ротационных детонационных двигателей (RDE) роднит то, что система подачи топлива объединена с системой сжигания топлива в детонационной волне, но дальше все работает, как в обычном реактивом двигателе - жаровая труба и сопло. Именно этот факт и инициировал такую активность на ниве модернизации газотурбинных двигателей (ГТД). Представляется привлекательным заменить в ГТД только смесительную головку и систему розжига смеси. Для этого нужно обеспечить непрерывность детонационного горения, например, запустив волну детонации по кругу. Одним из первых такую схему предложил Николс в 1957 г. , а затем развил ее и в середине 60-х годов провел серию экспериментов с вращающейся детонационной волной (рис. 1).

Регулируя диаметр камеры и толщину кольцевого зазора, для каждого вида топливной смеси можно подобрать такую геометрию, что детонация будет устойчивой. На практике соотношения величины зазора и диаметра двигателя получаются неприемлемыми и регулировать скорость распространения волны приходится, управляя подачей топлива, о чем сказано ниже.

Так же как и в импульсных детонационных двигателях, круговая детонационная волна способна эжектировать окислитель, что позволяет использовать RDE при нулевых скоростях. Этот факт повлек за собой шквал экспериментальных и расчетных исследований RDE c кольцевой камерой сгорания и самопроизвольной эжекцией топливно-воздушной смеси, перечислять здесь которые не имеет никакого смысла. Все они построены примерно по одной схеме (рис. 2), напоминающей схему двигателя Николса (рис. 1).

Рис. 1. Схема организации непрерывной круговой детонации в кольцевом зазоре: 1 - детонационная волна; 2 - слой «свежей» топливной смеси; 3 - контактный разрыв; 4 - распространяющийся вниз по течению косой скачок уплотнения; D - направление движения детонационной волны

Рис. 2. Типичная схема RDE: V - скорость набегающего потока; V4 - скорость потока на выходе из сопла; а - свежая ТВС, b - фронт детонационной волны; c - присоединенный косой скачок уплотнения; d - продукты сгорания; p(r) - распределение давления на стенке канала

Разумной альтернативой схеме Николса могла бы стать установка множества топливно-окислительных форсунок, которые бы вспрыскивали топливно-воздушную сместь в область непосредственно перед детонационной волной по определенному закону с заданным давлением (рис. 3). Регулируя давление и скорость подачи топлива в область горения за детонационной волной, можно влиять на скорость ее распространения вверх по потоку. Данное направление является перспективным, но основная проблема в проектировании подобных RDE заключается в том, что повсеместно используемая упрощенная модель течения во фронте детонационного горения совершенно не соответствует реальности.

Рис. 3. RDE с регулируемой подачей топлива в область горения. Ротационный двигатель Войцеховского

Основные надежды в мире связываются с детонационными двигателями, работающими по схеме ротационного двигателя Войцеховского. В 1963 г. Б.В. Войцеховский по аналогии со спиновой детонацией разработал схему непрерывного сжигания газа за тройной конфигурацией ударных волн, циркулирующих в кольцевом канале (рис. 4).

Рис. 4. Схема Войцеховского непрерывного сжигания газа за тройной конфигурацией ударных волн, циркулирующих в кольцевом канале: 1 - свежая смесь; 2 - дважды сжатая смесь за тройной конфигурацией ударных волн, область детонации

В данном случае стационарный гидродинамический процесс с горением газа за ударной волной отличается от схемы детонации Чепмена-Жуге и Зельдовича-Неймана. Такой процесс вполне устойчив, его длительность определяется запасом топливной смеси и в известных экспериментах составляет несколько десятков секунд.

Схема детонационного двигателя Войцеховского послужила прототипом многочисленных исследований ротационных и спиновых детонационных двигателей, инициированных в последние 5 лет. На эту схему приходится более 85 % всех исследований. Всем им присущ один органический недостаток - зона детонации занимает слишком маленькую часть общей зоны горения, обычно не более 15 %. В результате удельные показатели двигателей получаются хуже, чем у двигателей традиционной конструкции.

О причинах неудач с реализацией схемы Войцеховского

Большинство работ по двигателям с непрерывной детонацией связано с развитием концепции Войцеховского. Несмотря на более чем 40-летнюю историю исследований, результаты фактически остались на уровне 1964 г. Доля детонационного горения не превышает 15 % от объема камеры сгорания. Остальное - медленное горение в условиях, далеких от оптимальных.

Одной из причин такого положения дел является отсутствие работоспособной методики расчета. Поскольку течение является трехмерным, а при расчете учитываются только законы сохранения количества движения на ударной волне в перпендикулярном к модельному фронту детонации направлении, то результаты расчета наклона ударных волн к потоку продуктов сгорания отличаются от экспериментально наблюдаемых более чем на 30 %. Следствием является то, что, несмотря на многолетние исследования различных систем подачи топлива и эксперименты по изменению соотношения компонентов топлива, все, что удалось сделать, - это создать модели, в которых детонационное горение возникает и поддерживается в течение 10-15 с. Ни об увеличении КПД, ни о преимуществах по сравнению с существующими ЖРД и ГТД речи не идет.

Проведенный авторами проекта анализ имеющихся схем RDE показал, что все предлагающиеся сегодня схемы RDE неработоспособны в принципе. Детонационное горение возникает и успешно поддерживается, но только в ограниченном объеме. В остальном объеме мы имеем дело с обычным медленным горением, причем за неоптимальной системой ударных волн, что приводит к значительным потерям полного давления. Кроме того, давление оказывается также ниже в разы, чем необходимо для идеальных условий горения при стехиометрическом соотношении компонентов топливной смеси. В результате удельный расход топлива на единицу тяги оказывается на 30-40 % выше, чем у двигателей традиционных схем.

Но самой главной проблемой является сам принцип организации непрерывной детонации. Как показали исследования непрерывной круговой детонации, выполненные еще в 60-е годы , , фронт детонационного горения представляет собой сложную ударно-волновую структуру, состоящую как минимум из двух тройных конфигураций (о тройных конфигурациях ударных волн . Такая структура с присоединенной зоной детонации, как и любая термодинамическая система с обратной связью, оставленная в покое, стремится занять положение, соответствующее минимальному уровню энергии. В результате тройные конфигурации и область детонационного горения подстраиваются друг под друга так, чтобы фронт детонации перемещался по кольцевому зазору при минимально возможном для этого объеме детонационного горения. Это прямо противоположно той цели, которую ставят перед детонационным горением конструкторы двигателей.

Для создания эффективного двигателя RDE необходимо решить задачу создания оптимальной тройной конфигурации ударных волн и организации в ней зоны детонационного сжигания. Оптимальные ударно-волновые структуры необходимо уметь создавать в самых разных технических устройствах, например, в оптимальных диффузорах сверхзвуковых воздухозаборников . Основная задача - максимально возможное увеличение доли детонационного горения в объеме камеры сгорания с неприемлемых сегодняшних 15 % до хотя бы 85 %. Существующие проекты двигателей, основанные на схемах Николса и Войцеховского, не могут обеспечить выполнения данной задачи.

Рецензенты:

Усков В.Н., д.т.н., профессор кафедры гидроаэромеханики Санкт-Петербургского государственного университета, математико-механический факультет, г. Санкт-Петербург;

Емельянов В.Н., д.т.н., профессор, заведующий кафедрой плазмогазодинамики и теплотехники, БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова, г. Санкт-Петербург.

Работа поступила в редакцию 14.10.2013.

Библиографическая ссылка

Булат П.В., Продан Н.В. ОБЗОР ПРОЕКТОВ ДЕТОНАЦИОННЫХ ДВИГАТЕЛЕЙ. РОТАЦИОННЫЕ ДЕТОНАЦИОННЫЕ ДВИГАТЕЛИ // Фундаментальные исследования. – 2013. – № 10-8. – С. 1672-1675;
URL: http://fundamental-research.ru/ru/article/view?id=32642 (дата обращения: 20.02.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Освоение космического пространства невольно ассоциируется с космическими кораблями. Сердцем любой ракеты-носителя является ее двигатель. Он должен развить первую космическую скорость - около 7,9 км/с, чтобы доставить космонавтов на орбиту, и вторую космическую, чтобы преодолеть поле тяготения планеты.

Добиться этого непросто, но ученые постоянно ищут новые пути решения этой задачи. Конструкторы из России шагнули еще дальше и сумели разработать детонационный ракетный двигатель, испытания которого завершились успехом. Это достижение можно назвать настоящим прорывом в области космического машиностроения.

Новые возможности

Почему на детонационные двигатели возлагают большие надежды? По расчетам ученых, их мощность будет в 10 тыс. раз больше, чем мощность существующих ракетных двигателей. При этом они будут потреблять гораздо меньше топлива, а их производство отличится низкой стоимостью и рентабельностью. С чем это связано?

Все дело в реакции окисления горючего. Если в современных ракетах используется процесс дефлаграции - медленное (дозвуковое) горение топлива при постоянном давлении, то детонационный ракетный двигатель функционирует за счет взрыва, детонации горючей смеси. Она сгорает со сверхзвуковой скоростью с выделением огромного количества тепловой энергии одновременно с распространением ударной волны.

Разработкой и испытанием российского варианта детонационного двигателя занималась специализированная лаборатория «Детонационные ЖРД» в составе производственного комплекса «Энергомаш».

Превосходство новых двигателей

Изучением и разработкой детонационных двигателей занимаются ведущие мировые ученые на протяжении 70 лет. Основной причиной, препятствующей созданию этого типа двигателей, является неконтролируемое самовозгорание топлива. Кроме того, на повестке дня стояли задачи по эффективному смешиванию горючего и окислителя, а также интеграции сопла и воздухозаборника.

Решив эти задачи, удастся создать детонационный ракетный двигатель, который по своим техническим характеристикам обгонит время. При этом ученые называют такие его преимущества:

  1. Способность развивать скорости в дозвуковом и гиперзвуковом диапазонах.
  2. Исключение из конструкции многих движущихся частей.
  3. Более низкая масса и стоимость силовой установки.
  4. Высокая термодинамическая эффективность.

Серийно данный тип двигатель не производился. Впервые был испытан на низколетящих самолетах в 2008 году. Детонационный двигатель для ракет-носителей был впервые испытан российскими учеными. Именно поэтому данному событию отводится столь большое значение.

Принцип работы: импульсный и непрерывный

В настоящее время ученые ведут разработку установок с импульсным и непрерывным рабочим процессом. Принцип работы детонационного ракетного двигателя с импульсной схемой работы основан на циклическом заполнении камеры сгорания горючей смесью, последовательном ее воспламенении и выбросе продуктов сгорания в окружающую среду.

Соответственно, при непрерывном рабочем процессе топливо подается в камеру сгорания непрерывно, горючее сгорает в одной или нескольких детонационных волнах, которые непрерывно циркулируют поперек потока. Преимуществами таких двигателей являются:

  1. Однократное зажигание топлива.
  2. Относительно простая конструкция.
  3. Небольшие габариты и масса установок.
  4. Более эффективное использование горючей смеси.
  5. Низкий уровень производимого шума, вибрации и вредных выбросов.

В перспективе, используя данные преимущества, детонационный жидкостный ракетный двигатель непрерывной схемы работы вытеснит все существующие установки благодаря своим массо-габаритным и стоимостным характеристикам.

Испытания детонационного двигателя

Первые испытания отечественной детонационной установки прошли в рамках проекта, учрежденного Министерством образования и науки. В качестве опытного образца был представлен небольшой двигатель с камерой сгорания диаметром 100 мм и шириной кольцевого канала в 5 мм. Испытания проводились на специальном стенде, фиксировались показатели при работе на различных видах горючей смеси - водород-кислород, природный газ-кислород, пропан-бутан-кислород.

Испытания детонационного ракетного двигателя на кислородно-водородном топливе доказали, что термодинамический цикл этих установок на 7 % эффективнее, чем при работе других установок. Кроме того, было экспериментально подтверждено, что с увеличением количества подаваемого горючего увеличивается и тяга, а также количество детонационных волн и частота вращения.

Аналоги в других странах

Разработкой детонационных двигателей занимаются ученые ведущих стран мира. Наибольших успехов в этом направлении достигли конструкторы из США. В своих моделях они реализовали непрерывный способ работы, или ротационный. Американские военные планируют использовать данные установки для оснащения надводных кораблей. Благодаря меньшей массе и небольшим размерам при высокой выдаваемой мощности они помогут увеличить эффективность боевых катеров.

Стехиометрическую смесь водорода и кислорода использует для своей работы американский детонационный ракетный двигатель. Преимущества такого источника энергии в первую очередь экономические - кислорода сгорает ровно столько, сколько того требуется для окисления водорода. Сейчас для обеспечения военных кораблей углеродным топливом правительство США тратит несколько миллиардов долларов. Стехиометрическое горючее снизит расходы в несколько раз.

Дальнейшие направления разработки и перспективы

Новые данные, полученные в результате испытаний детонационных двигателей, определили применение принципиально новых методов построения схемы работы на жидком топливе. Но для функционирования такие двигатели должны иметь высокую жаропрочность ввиду большого количества выделяемой тепловой энергии. В настоящий момент ведется разработка особого покрытия, которое обеспечит работоспособность камеры сгорания под высокотемпературным воздействием.

Особое место в дальнейших исследованиях занимает создание смесительных головок, с помощью которых можно будет получить капли горючего материала заданного размера, концентрации и состава. По решению данных вопросов будет создан новый детонационный жидкостный ракетный двигатель, который станет основой нового класса ракет-носителей.

В конце января появились сообщения о новых успехах российской науки и техники. Из официальных источников стало известно, что один из отечественных проектов перспективного реактивного двигателя детонационного типа уже прошел стадию испытаний . Это приближает момент полного завершения всех требуемых работ, по результатам которых космические или военные ракеты российской разработки смогут получить новые силовые установки с повышенными характеристиками. Более того, новые принципы работы двигателей могут найти применение не только в сфере ракет, но и в других областях.

В последних числах января вице-премьер Дмитрий Рогозин рассказал отечественной прессе о последних успехах научно-исследовательских организаций. Среди прочих тем он затронул процесс создания реактивных двигателей, использующих новые принципы работы. Перспективный двигатель с детонационным горением уже был доведен до испытаний. По словам вице-премьера, применение новых принципов работы силовой установки позволяет получить значительный прирост характеристик. В сравнении с конструкциями традиционной архитектуры наблюдается рост тяги порядка 30% .

Схема детонационного ракетного двигателя

Современные ракетные двигатели разных классов и типов, эксплуатируемые в различных областях, используют т.н. изобарический цикл или дефлаграционное горение . В их камерах сгорания поддерживается постоянное давление, при котором происходит медленное горение топлива. Двигатель на дефлаграционных принципах не нуждается в особо прочных агрегатах, однако ограничен в максимальных показателях. Повышение основных характеристик, начиная с определенного уровня, оказывается неоправданно сложным.

Альтернатива двигателю с изобарическим циклом в контексте повышения характеристик – система с т.н. детонационным горением. В таком случае реакция окисления горючего происходит за ударной волной, с высокой скоростью перемещающейся по камере сгорания . Это предъявляет особые требования к конструкции двигателя, но при этом дает очевидные преимущества. С точки зрения эффективности сгорания топлива детонационное горение на 25% лучше дефлаграционного. Также отличается от горения с постоянным давлением увеличенной мощностью тепловыделения с единицы площади поверхности фронта реакции. В теории, возможно повышение этого параметра на три-четыре порядка. Как следствие, скорость реактивных газов можно увеличить в 20-25 раз .

Таким образом, детонационный двигатель, отличаясь повышенным коэффициентом полезного действия, способен развивать большую тягу при меньшем расходе топлива . Его преимущества перед традиционными конструкциями очевидны, однако до недавнего времени прогресс в этой области оставлял желать лучшего. Принципы детонационного реактивного двигателя были сформулированы еще в 1940 году советским физиком Я.Б. Зельдовичем, но готовые изделия подобного рода все еще не дошли до эксплуатации. Главные причины отсутствия реальных успехов – проблемы с созданием достаточно прочной конструкции, а также сложность запуска и последующего поддержания ударной волны при применении существующих топлив.

Один из последних отечественных проектов в области детонационных ракетных двигателей стартовал в 2014 году и разрабатывается в НПО «Энергомаш» им. академика В.П. Глушко. Согласно доступным данным, целью проекта с шифром «Ифрит» являлось изучение основных принципов новой техники с последующим созданием жидкостного ракетного двигателя, использующего керосин и газообразный кислород. В основу нового двигателя, названного по имени огненных демонов из арабского фольклора, укладывался принцип спинового детонационного горения. Таким образом, в соответствии с основной идеей проекта, ударная волна должна непрерывно перемещаться по кругу внутри камеры сгорания.

Головным разработчиком нового проекта стало НПО «Энергомаш», а точнее созданная на его базе специальная лаборатория. Кроме того, к работам привлекли несколько других научно-исследовательских и проектных организаций. Программа получила поддержку Фонда перспективных исследований. Совместными усилиями все участники проекта «Ифрит» смогли сформировать оптимальный облик перспективного двигателя, а также создать модельную камеру сгорания с новыми принципами работы.

Для изучения перспектив всего направления и новых идей несколько лет назад была построена т.н. модельная детонационная камера сгорания, соответствующая требованиям проекта. Такой опытный двигатель с сокращенной комплектацией должен был использовать в качестве горючего жидкий керосин. В качестве окислителя предлагался газообразный водород. В августе 2016 года начались испытания опытной камеры. Важно, что впервые в истории проект подобного рода удалось довести до стадии стендовых проверок . Ранее отечественные и зарубежные детонационные ракетные двигатели разрабатывались, но не испытывались.

В ходе испытаний модельного образца удалось получить весьма интересные результаты, показывающие правильность использованных подходов. Так, за счет использования правильных материалов и технологий получилось довести давление внутри камеры сгорания до 40 атмосфер. Тяга опытного изделия достигла 2 т .

Модельная камера на испытательном стенде

В рамках проекта «Ифрит» были получены определенные результаты, но отечественный детонационный двигатель на жидком топливе пока еще далек от полноценного практического применения. Перед внедрением такого оборудования в новые проекты техники конструкторам и ученым предстоит решить целый ряд самых серьезных задач. Только после этого ракетно-космическая отрасль или оборонная промышленность смогут приступить к реализации потенциала новой техники на практике.

В середине января «Российская газета» опубликовала интервью с главным конструктором НПО «Энергомаш» Петром Левочкиным, темой которого стало текущее положение дел и перспективы детонационных двигателей. Представитель предприятия-разработчика напомнил об основных положениях проекта, а также затронул тему достигнутых успехов. Кроме того, он рассказал о возможных сферах применения «Ифрита» и подобных ему конструкций.

К примеру, детонационные двигатели могут использоваться в гиперзвуковых летательных аппаратах . П. Левочкин напомнил, что двигатели, сейчас предлагаемые для применения на такой технике, используют дозвуковое горение. При гиперзвуковой скорости аппарата полета поступающий в двигатель воздух необходимо затормозить до звукового режима. Однако энергия торможения должна приводить к дополнительным тепловым нагрузкам на планер. В детонационных двигателях скорость горения топлива достигает, как минимум, М=2,5. Благодаря этому появляется возможность повысить скорость полета летательного аппарата. Подобная машина с двигателем детонационного типа сможет разгоняться до скоростей, в восемь раз превышающих скорость звука .

Впрочем, реальные перспективы ракетных двигателей детонационного типа пока не слишком велики. По словам П. Левочкина, мы «только приоткрыли дверь в область детонационного горения». Ученым и конструкторам предстоит изучить множество вопросов, и только после этого можно будет заниматься созданием конструкций с практическим потенциалом. Из-за этого космической отрасли еще долго предстоит использовать жидкостные двигатели традиционной конструкции, что, однако, не отменяет возможности их дальнейшего совершенствования.

Интересен тот факт, что детонационный принцип горения находит применение не только в сфере ракетных двигателей. Уже существует отечественный проект авиационной системы с камерой сгорания детонационного типа, работающей по импульсному принципу . Опытный образец такого рода был доведен до испытаний, и в будущем может дать старт новому направлению. Новые двигатели с детонационным горением могут найти применение в самых разных сферах и частично заменить газотурбинные или турбореактивные двигатели традиционных конструкций.

Отечественный проект детонационного авиационного двигателя разрабатывается в ОКБ им. А.М. Люльки. Информация об этом проекте впервые была представлена на прошлогоднем международном военно-техническом форуме «Армия-2017». На стенде предприятия-разработчика присутствовали материалы по различным двигателям, как серийным, так и находящимся на стадии разработки. Среди последних был перспективный детонационный образец.

Суть нового предложения заключается в применении нестандартной камеры сгорания, способной осуществлять импульсное детонационное горение топлива в воздушной атмосфере. При этом частота «взрывов» внутри двигателя должна достигать 15-20 кГц. В перспективе возможно дополнительное увеличение этого параметра, в результате чего шум двигателя уйдет за пределы диапазона, воспринимаемого человеческим ухом. Такие особенности двигателя могут представлять определенный интерес.

Первый запуск опытного изделия «Ифрит»

Однако главные преимущества новой силовой установки связаны с повышенными характеристиками. Стендовые испытания опытных изделий показали, что они примерно на 30% превосходят традиционные газотурбинные двигатели по удельным показателям. Ко времени первой публичной демонстрации материалов по двигателю ОКБ им. А.М. Люльки смогло получить и достаточно высокие эксплуатационные характеристики. Опытный двигатель нового типа смог без перерыва проработать 10 минут. Суммарная наработка этого изделия на стенде на тот момент превысила 100 часов.

Представители предприятия-разработчика указывали, что уже сейчас можно создать новый детонационный двигатель с тягой 2-2,5 т, пригодный для установки на легкие самолеты или беспилотные летательные аппараты. В конструкции такого двигателя предлагается использовать т.н. резонаторные устройства, отвечающие за правильный ход горения топлива. Важным преимуществом нового проекта является принципиальная возможность установки таких устройств в любом месте планера .

Специалисты ОКБ им. А.М. Люльки работают над авиационными двигателями с импульсным детонационным горением более трех десятилетий, но пока проект не выходит из научно-исследовательской стадии и не имеет реальных перспектив. Главная причина – отсутствие заказа и необходимого финансирования. Если проект получит необходимую поддержку, то уже в обозримом будущем может быть создан образец двигателя, пригодный для использования на различной технике.

К настоящему времени российские ученые и конструкторы успели показать весьма примечательные результаты в области реактивных двигателей, использующих новые принципы работы. Существует сразу несколько проектов, пригодных для применения в ракетно-космической и гиперзвуковой областях. Кроме того, новые двигатели могут применяться и в «традиционной» авиации. Некоторые проекты пока находятся на ранних стадиях и еще не готовы к проверкам и другим работам, тогда как в иных направлениях уже были получены самые примечательные результаты.

Исследуя тематику реактивных двигателей с детонационным горением, российские специалисты смогли создать стендовый модельный образец камеры сгорания с желаемыми характеристиками. Опытное изделие «Ифрит» уже прошло испытания, в ходе которых было собрано большое количество разнообразной информации. С помощью полученных данных развитие направления будет продолжаться.

Освоение нового направления и перевод идей в практически применимую форму займет немало времени, и по этой причине в обозримом будущем космические и армейские ракеты в обозримом будущем будут комплектоваться только традиционными жидкостными двигателями. Тем не менее, работы уже вышли из чисто теоретической стадии, и теперь каждый тестовый запуск опытного двигателя приближает момент строительства полноценных ракет с новыми силовыми установками.

По материалам сайтов:
http://engine.space/
http://fpi.gov.ru/
https://rg.ru/
https://utro.ru/
http://tass.ru/
http://svpressa.ru/

Детонационные двигатели заменят ядро газотурбинных / Фото: finobzor.ru

В действительности вместо постоянного фронтального пламени в зоне сгорания, образуется детонационная волна, несущаяся со сверхзвуковой скоростью. В такой волне сжатия детонируют топливо и окислитель, этот процесс, с точки зрения термодинамики повышает КПД двигателя на порядок, благодаря компактности зоны сгорания.

Интересно, что ещё в 1940 году советский физик Я.Б. Зельдович предложил идею детонационного двигателя в статье «Об энергетическом использовании детонационного сгорания». С тех пор над перспективной идеей работали многие учёные из разных стран, вперёд выходили то США, то Германия, то наши соотечественники.

Летом, в августе 2016 года российским учёным удалось создать впервые в мире полноразмерный жидкостный реактивный двигатель, работающий на принципе детонационного сгорания топлива. Наша страна наконец-то за многие постперестроечные годы установила мировой приоритет в освоении новейшей техники.

Чем же так хорош новый двигатель? В реактивном двигателе применяется энергия, выделяемая при сжигании смеси при постоянном давлении и неизменным пламенном фронте. Газовая смесь из топлива и окислителя при горении резко повышает температуру и столб пламени, вырывающийся из сопла, создаёт реактивную тягу.

Детонационный двигатель / Фото: sdelanounas.ru

При детонационном горении продукты реакции не успевают разрушиться, потому что этот процесс в 100 раз быстрее дефларгации и давлении при этом стремительно увеличивается, а объём остаётся неизменным. Выделение такого большого количества энергии действительно может разрушить двигатель автомобиля, поэтому такой процесс часто ассоциируется со взрывом.

В действительности вместо постоянного фронтального пламени в зоне сгорания, образуется детонационная волна, несущаяся со сверхзвуковой скоростью. В такой волне сжатия детонируют топливо и окислитель, этот процесс, с точки зрения термодинамики повышает КПД двигателя на порядок, благодаря компактности зоны сгорания. Поэтому специалисты так рьяно и приступили к разработке этой идеи.В обычном ЖРД, по сути, являющейся большой горелкой, главное не камера сгорания и сопло, а топливный турбонасосный агрегат (ТНА), создающий такое давление, чтобы топливо проникло в камеру. К примеру, в российском ЖРД РД-170 для ракет-носителей «Энергия» давление в камере сгорания 250 атм и насосу, подающему окислитель в зону сгорания приходиться создавать давление в 600 атм.

В детонационном двигателе давление создаётся самой детонацией, представляющую бегущую волну сжатия в смеси топлива, в которой давление без всякого ТНА уже в 20 раз больше и турбонасосные агрегаты являются лишними. Чтобы было понятно, у американского «Шаттла» давление в камере сгорания 200 атм, а детонационному двигателю в таких условиях надо всего лишь 10 атм для подачи смеси - это как велосипедный насос и Саяно-Шушенская ГЭС.

Двигатель на основе детонации в таком случае не только более простой и дешёвый на целый порядок, но гораздо мощнее и экономичнее, чем обычный ЖРД.На пути внедрения проекта детонационного двигателя встала проблема совладения с волной детонации. Это явление непросто взрывная волна, которая имеет скорость звука, а детонационная, распространяющаяся со скоростью 2500 м/сек, в ней нет стабилизации фронта пламени, за каждую пульсацию обновляется смесь и волна вновь запускается.

Ранее русские и французские инженеры разрабатывали и строили реактивные пульсирующие двигатели, но не на принципе детонации, а на основе пульсации обычного горения. Характеристики таких ПуВРД были низкими и когда двигателестроители разработали насосы, турбины и компрессоры, наступил век реактивных двигателей и ЖРД, а пульсирующие остались на обочине прогресса. Светлые головы науки пытались объединить детонационное горение с ПуВРД, но частота пульсаций обычного фронта горения составляет не более 250 в секунду, а фронт детонации обладает скоростью до 2500 м/сек и частота его пульсаций достигает несколько тысяч в секунду. Казалось невозможным воплотить на практике такую скорость обновления смеси и при этом инициировать детонацию.

В СЩА удалось построить такой детонационный пульсирующий двигатель и испытать его в воздухе, правда, проработал он всего 10 секунд, но приоритет остался за американскими конструкторами. Но уже в 60-х годах прошлого века советскому учёному Б.В. Войцеховскому и практически в то же время и американцу из университета в Мичигане Дж. Николсу пришла идея закольцевать в камере сгорания волну детонации.

Изображение: sdelanounas.ru


Как работает детонационный ЖРД

Такой ротационный двигатель состоял из кольцевой камеры сгорания с форсунками, размещёнными по её радиусу для подачи топлива. Волна детонации бегает как белка в колесе по окружности, топливная смесь сжимается и выгорает, выталкивая продукты сгорания через сопло. В спиновом двигателе получаем частоту вращения волны в несколько тысяч в секунду, работа его подобна рабочему процессу в ЖРД, только более эффективно, благодаря детонации смеси топлива.

В СССР и США, а позже в России ведутся работы по созданию ротационного детонационного двигателя с незатухающей волной, пониманию процессов, происходящих внутри, для чего была создана целая наука физико-химическая кинетика. Для расчёта условий незатухающей волны нужны были мощные ЭВМ, которые создали лишь в последнее время.

В России над проектом такого спинового двигателя работают многие НИИ и КБ, среди которых двигателестроительная компания космической промышленности . На помощь в разработке такого двигателя пришёл Фонд перспективных исследований, ведь финансирование от Министерства обороны добиться невозможно - им подавай только гарантированный результат.

Тем не мене на испытаниях в Химках на «Энергомаше» был зафиксирован установившийся режим непрерывной спиновой детонации - 8 тысяч оборотов в секунду на смеси «кислород - керосин». При этом детонационные волны уравновешивали волны вибрации, а теплозащитные покрытия выдержали высокие температуры.

Но не стоит обольщаться, ведь это лишь двигатель-демонстратор, проработавший весьма непродолжительное время и о характеристиках его ещё пока ничего не сказано. Но основное в том, что доказана возможность создания детонационного горения и создан полноразмерный спиновой двигатель именно в России, что останется в истории науки навсегда.

МОСКВА, издание "Сделано у нас"
12