Определение замедлений и скорости автомобиля в период торможения и построение тормозной диаграммы. Кристи Н.М. Методические рекомендации по производству автотехнической экспертизы - файл n1.doc Замедление при экстренном торможении таблица

Страница 1

Величина замедления ТС (ј / м/с2) устанавливается путем проведения следственного эксперимента в дорожных условиях места происшествия либо аналогичных ему.

В случае если проведение эксперимента невозможно, она может быть определена по справочным данным экспериментально-расчетных значений параметров замедления ТС. Либо принята как нормативная, установленная Правилами дорожного движения РФ, согласно требованиям ГОСТ Р 51709-2001 «Автотранспортные средства. Требования безопасности к техническому состоянию и методы проверки».

Определение величины замедления ТС возможно и расчетным путем по известным в экспертной практике формулам, основная часть которых разработана В.А. Бекасовым и Н.М. Кристи (ЦНИИСЭ).

▪ При движении заторможенного ТС с блокировкой колес:

в общем случае (2.1)

на горизонтальном участке

ј = g ∙ φ (2.2)

▪ При свободном качении ТС по инерции (накатом):

в общем случае

(2.3)

на горизонтальном участке

▪ При торможении ТС колесами только задней оси:

в общем случае (2.5)

на горизонтальном участке (2.6)

где g – ускорение свободного падения, м/с2 ;

δ1 - коэффициент учета инерции вращающихся незаторможенных колес;

jH - установившееся замедление для технически исправного ТС при торможении всеми колесами его (принимается по справочным данным или рассчитывается по формуле 2.2), м/с2;

jK - замедление ТС при свободном качении (определяется по формуле 2.4) м/с2;

а - расстояние от центра тяжести ТС до оси его передних колес, м;

b - расстояние от центра тяжести ТС до оси его задних колес, м;

L - колесная база ТС, м;

hц - высота центра тяжести ТС над опорной поверхностью, м.

Для мотоциклов, легковых и негруженых грузовых автомобилей - δ1 ≈ 1.1, для груженых грузовых автомобилей и колесных тракторов - δ1 ≈1.0.

▪ При торможении ТС только передними колесами:

в общем случае (2.7)

на горизонтальном участке (2.8)

Здесь определение и выбор параметров δ2, jH jK аналогичны указанным в предыдущем пункте, за исключением колесных тракторов. Для них в этом случае δ2, = 1.1.

▪ При движении ТС с незаторможенными прицепами (колесом коляски) и полностью заторможенным тягачом (мотоциклом):

в общем случае (2.9)

на горизонтальном участке (2.10)

где: G полная масса ТС, кг;

Gnp - полная масса прицепа (прицепов) ТС, кг.

Для ТС без нагрузки δnp ≈1.1, с нагрузкой δnp ≈ 1.0

▪ При движении ТС с незаторможенными прицепами (колесом коляски) и торможении тягача только задними или только передними колесами:

в общем случае (2.11)

на горизонтальном участке (2.12)

здесь ј1 - замедление, определяемое соответственно по формулам (2.6) или (2.8);

δпр - коэффициент учета инерции вращающихся незаторможенных колес прицепов (с теми же значениями, что и в предыдущем пункте).

▪ При замасливании части колесных тормозов:

в общем случае (2.13)

на горизонтальном участке (2.14)

где: G" - масса ТС, приходящаяся на колеса, кроме колес с замасленными тормозами, кг;

G" - масса ТС, приходящаяся на колеса с замасленными тормозами, кг.

▪ При движении ТС с заносом без торможения: в общем случае

Расчет показателей работы автобусов по маршруту «Мозырь - Гостов»
Исходные данные: марка автобуса – МАЗ-103; пробег автобуса с начала эксплуатации – 306270 км; количество шин – 6 штук; цена одного комплекта автомобильных шин – 827676 руб.; размер шин – 11/70R 22,5; стоимость дизельного топлива без учета НДС – 3150 руб.; эксплуатационная норма пробега одной шины до списания - 70000 км; протяженность маршрута (в одну сторону) – 22,9 км; тарифный коэффициент водителя в зависимости от габаритной длины ав...

Разбивка обыкновенного стрелочного перевода
Основными документами для разбивки являются: эпюра со схемой разбивки и план путевого развития в осях. Порядок разбивки стрелочного перевода: Рис.2 Схема разбивки стрелочного перевода От оси станции отмеряют стальной рулеткой или лентой заданное по проекту расстояние до центра стрелочного перевода Ц, отмечают его на оси прямого пути колышком, забивая в него гвоздик, фиксирующий точно центр, и определяют направление прямого пути. Во избежани...

Основное производство
Основное производство - это множество производственных цехов (участков) с обеспеченными документацией исполнителями и средствами технологического оснащения, которые непосредственно воздействуют на ремонтируемые изделия. Основное производство также занято выпуском продукции для продажи или обмена. В основном производстве авторемонтных предприятий применяют цеховую, участковую или комбинированную структуры: 1) Цеховую структуру используют на кр...

"..."установившееся замедление" - среднее значение замедления за время торможения от момента окончания периода времени нарастания замедления до начала его спада в конце торможения;..."

Источник:

Постановление Правительства РФ от 10.09.2009 N 720 (ред. от 06.10.2011) "Об утверждении технического регламента о безопасности колесных транспортных средств"

  • - один из основных классификационных признаков транспортного средства, определяющих его назначение и общее конструктивное исполнение...

    Криминалистическая энциклопедия

  • - А. Отношение массы пассажиров и грузов, загруженных на транспортное средство, к нормативной массе пассажиров и грузов. Б. Масса пассажиров и грузов, загруженных в транспортное средство...

    Словарь бизнес терминов

  • - принудительное задержание транспортного средства на основании решения судебного органа, производимое, например, в порядке обеспечения гражданско-правового...

    Большой экономический словарь

  • - ".....

    Официальная терминология

  • - "...1) владелец транспортного средства - лицо, владеющее транспортным средством на праве собственности или на ином законном основании;..." Источник: Федеральный закон от 01.07...

    Официальная терминология

  • - "..."дефект" - каждое отдельное несоответствие транспортного средства установленным требованиям;..." Источник: Постановление Правительства РФ от 10.09...

    Официальная терминология

  • - мера обеспечения производства по делам о нарушении некоторых правил дорожного движения...

    Административное право. Словарь-справочник

  • - принудительное задержание транспортного средства по решению суда, производимое для обеспечения правового...

    Словарь бизнес терминов

  • - 1. масса пассажиров и грузов, находящихся в транспортном средстве и предназначенных для перевозки 2...

    Большой экономический словарь

  • - ".....

    Официальная терминология

  • - "..."база транспортного средства" - расстояние между вертикальной поперечной плоскостью, проходящей через ось передних колес, и вертикальной поперечной плоскостью, проходящей через ось задних колес;.....

    Официальная терминология

  • - "...Год выпуска: календарный год, в котором было произведено ТС..." Источник: "ТРАНСПОРТНЫЕ СРЕДСТВА. МАРКИРОВКА. ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ...

    Официальная терминология

  • - "...ГРУЗОПОДЪЕМНОСТЬ ТРАНСПОРТНОГО СРЕДСТВА - масса груза, на перевозку которого рассчитано данное транспортное средство.....

    Официальная терминология

  • - ".....

    Официальная терминология

  • - ".....

    Официальная терминология

  • - "..."устойчивость транспортного средства при торможении" - способность транспортного средства двигаться при торможениях в пределах коридора движения;..." Источник: Постановление Правительства РФ от 10.09...

    Официальная терминология

"Установившееся замедление при торможении транспортного средства" в книгах

Из книги Пользование чужим имуществом автора Панченко Т М

Статья 637. Страхование транспортного средства Если иное не предусмотрено договором аренды транспортного средства с экипажем, обязанность страховать транспортное средство и (или) страховать ответственность за ущерб, который может быть причинен им или в связи с его

Аренда транспортного средства

Из книги Расходы организации: бухгалтерский и налоговый учет автора Уткина Светлана Анатольевна

Аренда транспортного средства Затраты на выплату компенсации работникам за использование ими личных автомобилей для служебных поездок включаются в состав прочих расходов, связанных с производством и реализацией. При этом нормы расходов на указанные цели установлены

2. 5. Выбор транспортного средства

Из книги Логистика автора Савенкова Татьяна Ивановна

2. 5. Выбор транспортного средства Выбор транспорта решается в о взаимной связи с другими задачами логистики: создание и поддержание оптимального уровня запасов, выбор вида упаковки и др. На выбор транспортных средств будут влиять: характер груза (вес, объем,

Из книги Гражданский кодекс РФ автора ГАРАНТ

Задержание транспортного средства

Из книги автора

Задержание транспортного средства Статья 27.13. Задержание транспортного средства 1. При нарушениях правил эксплуатации, использования транспортного средства и управления транспортным средством соответствующего вида, предусмотренных статьями 11.26, 11.29, частью 1 статьи

автора Дума Государственная

Из книги Кодекс Российской Федерации об административных правонарушениях (КоАП РФ) автора Дума Государственная

автора Законы РФ

Статья 11. 27. Управление транспортным средством без отличительного на нем и (или) прицепах к нему знака государства регистрации транспортного средства (прицепа) и нарушение других правил эксплуатации транспортного средства при осуществлении международной автомобильной

Из книги Кодекс РФ об административных правонарушениях автора Законы РФ

Статья 12. 25. Невыполнение требования о предоставлении транспортного средства или об остановке транспортного средства 1. Невыполнение требования о предоставлении транспортного средства сотрудникам милиции или иным лицам, которым в случаях, предусмотренных

автора Автор неизвестен

Статья 11.27. Управление транспортным средством без отличительного на нем и (или) прицепах к нему знака государства регистрации транспортного средства (прицепа) и нарушение других правил эксплуатации транспортного средства при осуществлении международной автомобильной

Из книги Кодекс Российской Федерации об административных правонарушениях. Текст с изменениями и дополнениями на 1 ноября 2009 г. автора Автор неизвестен

Статья 12.25. Невыполнение требования о предоставлении транспортного средства или об остановке транспортного средства 1. Невыполнение требования о предоставлении транспортного средства сотрудникам милиции или иным лицам, которым в случаях, предусмотренных

Из книги КоАП для автомобилистов с комментариями. С изменениями на 2015 год автора Федорова Екатерина Николаевна

Статья 12.25. Невыполнение требования о предоставлении транспортного средства или об остановке транспортного средства 1. Невыполнение требования о предоставлении транспортного средства сотрудникам полиции или иным лицам, которым в случаях, предусмотренных

4.4. Досмотр транспортного средства

Из книги Эй, инспектор, ты не прав! Все о том, как противостоять произволу ГИБДД на дорогах автора Нариньяни Алена

4.4. Досмотр транспортного средства Досмотр автомобиля - это обследование транспортного средства, проводимое без нарушения его конструктивной целостности. Для того, что бы произвести осмотр вашего автомобиля у сотрудника полиции должны быть основания. Кодексом об

2.2. Задержание транспортного средства

автора

2.2. Задержание транспортного средства Что представляет собой задержание транспортного средства?Это принудительное прекращение использования транспортного средства, включающее его помещение на специализированную стоянку. Специализированная стоянка в свою очередь –

2.4. Досмотр транспортного средства

Из книги ГИБДД. Как вести себя, что важно знать? автора Шалимова Наталия Александровна

2.4. Досмотр транспортного средства Досмотр транспортного средства любого вида – это обследование транспортного средства, проводимое без нарушения его конструктивной целостности. Для того, что бы произвести осмотр вашего автомобиля у сотрудника милиции должны быть

Показателями тормозной динамичности автомобиля являются:

замедление Jз, время торможения tтор и тормозной путь Sтор.

Замедление при торможении автомобиля

Роль различных сил при замедлении автомобиля в процессе торможения неодинакова. В табл. 2.1 приведены значения сил сопротивления при экстренном торможении на примере грузового автомобиля ГАЗ-3307 в зависимости от начальной скорости.

Таблица 2.1

Значения некоторых сил сопротивления при экстренном торможении грузового автомобиля ГАЗ-3307 общей массой 8,5 тонн

При скорости движения автомобиля до 30 м/с (100 км/ч) сопротивление воздуха - не более 4 % всех сопротивлений (у легкового автомобиля оно не превышает 7 %). Влияние сопротивления воздуха на торможение автопоезда еще менее значительно. Поэтому при определении замедлений автомобиля и пути торможения сопротивлением воздуха пренебрегают. С учетом вышеуказанного получим уравнение замедления:

Jз=[(цх+ш)/двр]g (2.6)

Так как коэффициент цх обычно значительно больше коэффициента ш, то при торможении автомобиля на грани блокировки, когда усилие прижатия тормозных колодок одинаково, что дальнейшее увеличение этого усилия приведет к блокировке колес, величиной ш можно пренебречь.

Jз=(цх/двр)g

При торможении с отключенным двигателем коэффициент вращающихся масс можно принять равным единице (от 1,02 до 1,04).

Время торможения

Зависимость времени торможения от скорости движения автомобиля показана на рисунке 2.7, зависимость изменения скорости от времени торможения - на рисунке 2.8.

Рисунок 2.7 - Зависимость показателей


Рисунок 2.8 - Тормозная диаграмма тормозной динамичности автомобиля от скорости движения

Время торможения до полной остановки складывается из отрезков времени:

tо=tр+tпр+tн+tуст, (2.8)

где tо - время торможения до полной остановки

tр - время реакции водителя, в течение которого он принимает решение и переносит ногу на педаль тормозного механизма, оно составляет 0,2-0,5 с;

tпр - время срабатывания привода тормозного механизма, в течение этого времени происходит перемещение деталей в приводе. Промежуток этого времени зависит от технического состояния привода и его типа:

для тормозных механизмов с гидравлическим приводом - 0,005-0,07 с;

при использовании дисковых тормозных механизмов 0,15-0,2 с;

при использовании барабанных тормозных механизмов 0,2-0,4 с;

для систем с пневматическим приводом - 0,2-0,4 с;

tн - время нарастания замедления;

tуст - время движения с установившемся замедлением или время торможения с максимальной интенсивностью соответствует тормозному пути. В этот период времени замедление автомобиля практически постоянно.

С момента соприкосновения деталей в тормозном механизме, замедление увеличивается от нуля до того установившегося значения, которое обеспечивает сила, развиваемая в приводе тормозного механизма.

Время, затраченное на этот процесс, называется временем нарастания замедления. В зависимости от типа автомобиля, состояния дороги, дорожной ситуации, квалификации и состояния водителя, состояние тормозной системы tн может меняться от 0,05 до 2 с. Оно возрастает с увеличением силы тяжести автомобиля G и уменьшением коэффициента сцепления цх. При наличии воздуха в гидравлическом приводе, низком давлении в ресивере привода, попадании масла и воды на рабочие поверхности фрикционных элементов значение tн увеличивается.

При исправной тормозной системе и движении по сухому асфальту значение колеблется:

от 0,05 до 0,2 с для легковых автомобилей;

от 0,05 до 0,4 с для грузовых автомобилей с гидравлическим приводом;

от 0,15 до 1,5 с для грузовых автомобилей с пневматическим приводом;

от 0,2 до 1,3 с для автобусов;

Так как время нарастания замедления изменяется по линейному закону, то можно считать, что на этом отрезке времени автомобиль движется с замедлением равным примерно 0,5 Jзmax.

Тогда уменьшение скорости

Дх=х-х?=0,5Jустtн

Следовательно, в начале торможения с установившимся замедлением

х?=х-0,5Jустtн (2.9)

При установившемся замедлении скорость уменьшается по линейному закону от х?=Jустtуст до х?=0. Решая уравнение относительно времени tуст и подставляя значения х?, получим:

tуст=х/Jуст-0,5tн

Тогда остановочное время:

tо=tр+tпр+0,5tн+х/Jуст-0,5tн?tр+tпр+0,5tн+х/Jуст

tр+tпр+0,5tн=tсумм,

тогда, считая, что максимальная интенсивность торможения может быть получена, только при полном использовании коэффициента сцепления цх получим

tо=tсумм+х/(цхg) (2.10)

Тормозной путь

Тормозной путь зависит от характера замедления автомобиля. Обозначив пути, проходимые автомобилем за время tр, tпр, tн и tуст, соответственно Sр, Sпр, Sн и Sуст, можно записать, что полный остановочный путь автомобиля от момента обнаружения препятствия до полной остановки может быть представлен в виде суммы:

Sо=Sр+Sпр+Sн+Sуст

Первые три члена представляют собой путь пройденный автомобилем за время tсумм. Он может быть представлен как

Sсумм=хtсумм

Путь, пройденный за время установившегося замедления от скорости х? до нуля, найдем из условия, что на участке Sуст автомобиль будет двигаться до тех пор, пока вся его кинетическая энергия не израсходуется на совершение работы против сил, препятствующих движению, а при известных допущениях только против сил Ртор т.е.

mх?2/2=Sуст Ртор

Пренебрегая силами Рш и Рщ, можно получить равенство абсолютных значений силы инерции и тормозной силы:

РJ=mJуст=Ртор,

где Jуст - максимальное замедление автомобиля, равное установившемуся.

mх?2/2=Sуст m Jуст,

0,5х?2=Sуст Jуст,

Sуст=0,5х?2/Jуст,

Sуст=0,5х?2/цх g?0,5х2/(цх g)

Таким образом, тормозной путь при максимальном замедлении прямо пропорционален квадрату скорости движения в начале торможения и обратно пропорционален коэффициенту сцепления колес с дорогой.

Полный остановочный путь Sо, автомобиля будет

Sо=Sсумм+Sуст=хtсумм+0,5х2/(цх g) (2.11)

Sо=хtсумм+0,5х2/Jуст (2.12)

Значение Jуст, можно установить опытным путем, используя деселерометр - прибор для измерения замедления движущегося транспортного средства.

  • Туренко А.Н., Клименко В.И., Сараев А.В. Автотехническая экспертиза (Документ)
  • Кустарев В.П., Тюленев Л.В., Прохоров Ю.К., Абакумов В.В. Обоснование и проектирование организации по производству товаров (работ, услуг) (Документ)
  • Яковлева Е.В. Заболевания почек в практике участкового терапевта (Документ)
  • Скирковский С.В., Лукьянчук А.Д., Капский Д.В. Экспертиза ДТП (Документ)
  • Пупко Г.М. Ревизия и аудит (Документ)
  • (Документ)
  • Алгоритм проведения гемотрансфузии. Методические рекомендации (Документ)
  • Балакин В.Д. Экспертиза дорожно-транспортных происшествий (Документ)
  • Пучков Н.П., Ткач Л.И. Математика случайного. Методические рекомендации (Документ)
  • n1.doc

    ТЕХНИЧЕСКИЕ ВЕЛИЧИНЫ, ОПРЕДЕЛЯЕМЫЕ ЭКСПЕРТОМ

    Помимо исходных данных, принимаемых на основании постановления следователя и материалов дела, эксперт использует ряд технических величин (параметров), которые им определяются в соответствии с установленными исходными данными. К ним относятся: время реакции водителя, время запаздывания срабатывания тормозного привода, время нарастания замедления при экстренном торможении, коэффициент сцепления шин с дорогой, коэффициент сопротивления движению при качении колес или скольжении тела по поверхности и др. Принятые значения всех величин должны быть подробно обоснованы в исследовательской части экспертного заключения.

    Поскольку эти величины определяются, как правило, в соответствии с установленными исходными данными об обстоятельствах происшествия, они не могут быть отнесены к исходным (т.е. принятым без обоснования или исследования) независимо от того, каким путем эксперт определяет их (по таблицам, расчетным путем или в результате экспериментальных исследований). Эти величины могут быть приняты за исходные данные лишь в случае, если они определены следственными действиями, как правило, при участии специалиста и указаны в постановлении следователя.

    1. ЗАМЕДЛЕНИЕ ПРИ ЭКСТРЕННОМ ТОРМОЖЕНИИ ТРАНСПОРТНЫХ СРЕДСТВ

    Замедление J - одна из основных величин, необходимых при проведении расчетов для установления механизма происшествия и решения вопроса о технической возможности предотвратить происшествие путем торможения.

    Величина установившегося максимального замедления при экстренном торможении зависит от многих факторов. С наибольшей точностью она может быть установлена в результате эксперимента на месте происшествия. Если сделать это не представляется возможным, эту величину определяют с некоторым приближением по таблицам или расчетным путем.

    При торможении негруженого транспортного средства с исправными тормозами на сухой горизонтальной поверхности асфальтового покрытия минимально допустимые значения замедления при экстренном торможении определяются в соответствии с Правилами движения (ст. 124), а при торможении груженого транспортного средства по следующей формуле:


    где:



    -

    минимально допустимое значение замедления негруженого транспортного средства, м/сек,




    -

    коэффициент эффективности торможения негруженого транспортного средства;




    -

    коэффициент эффективности торможения груженого транспортного средства.

    Значения замедления при экстренном торможении всеми колесами в общем случае определяется по формуле:



    где

    ?

    -

    коэффициент сцепления на участке торможения;



    -

    коэффициент эффективности торможения транспортного средства;



    -

    угол уклона на участке торможения (если  ? 6-8°, Cos можно принимать равным 1).

    Знак (+) в формуле принимается при движении транспортного средства на подъем, знак (-) - при движении на спуске.

    2. КОЭФФИЦИЕНТ СЦЕПЛЕНИЯ ШИН С ДОРОГОЙ

    Коэффициент сцепления ? представляет собой отношение максимально возможного на данном участке дороги значения cилы сцепления между шинами транспортного средства и поверхностью дороги Р сц к весу этого транспортного средства G a :

    Необходимость в определении коэффициента сцепления возникает при расчете замедления при экстренном торможении транспортного средства, решении ряда вопросов, связанных с маневром и движением на участках с большими углами наклона. Величина его зависит главным образом от типа и состояния покрытия дороги, поэтому приближенное значение коэффициента для конкретного случая может быть определено по таблице 1 3 .

    Таблица 1


    Вид дорожного покрытия

    Состояние покрытия

    Коэффициент сцепления (? )

    Асфальт, бетон

    сухой

    0,7 - 0,8

    мокрый

    0,5 - 0,6

    грязный

    0,25 - 0,45

    Булыжник, брусчатка

    сухие

    0,6 - 0,7

    мокрые

    0,4 - 0,5

    Грунтовая дорога

    сухая

    0,5 - 0,6

    мокрая

    0,2 - 0,4

    грязная

    0,15 - 0,3

    Песок

    влажный

    0,4 - 0,5

    сухой

    0,2 - 0,3

    Асфальт, бетон

    обледенелые

    0,09 - 0,10

    Укатанный снег

    обледенелый

    0,12 - 0,15

    Укатанный снег

    без ледяной корки

    0,22 - 0,25

    Укатанный снег

    обледенелый, после россыпи песка

    0,17 - 0,26

    Укатанный снег

    без ледяной корки, после россыпи песка

    0,30 - 0,38

    Существенное влияние на величину коэффициента сцепления оказывают скорость движения транспортного средства, состояние протекторов шин, давление в шинах и ряд других неподдающихся учету факторов. Поэтому, чтобы выводы эксперта оставались справедливыми и при других возможных в данном случае его значениях, при проведении экспертиз следует принимать не средние, а предельно возможные значения коэффициента ? .

    Если необходимо точно определить значение коэффициента ? , следует провести эксперимент на месте происшествия.

    Значения коэффициента сцепления, наиболее приближенные к действительному, т. е. к бывшему в момент происшествия, можно установить путем буксировки заторможенного транспортного средства, причастного к происшествию (при соответствующем техническом состоянии этого транспортного средства), замеряя при этом с помощью динамометра силу сцепления.

    Определение коэффициента сцепления с помощью динамометрических тележек нецелесообразно, поскольку действительное значение коэффициента сцепления конкретного транспортного средства может существенно отличаться от значения коэффициента сцепления динамометрической тележки.

    При решении вопросов, связанных с эффективностью торможения, экспериментально определять коэффициент? нецелесообразно, поскольку значительно проще установить замедление транспортного средства, наиболее полно характеризующее эффективность торможения.

    Необходимость в экспериментальном определении коэффициента ? может возникнуть при исследовании вопросов, связанных с маневром, преодолением крутых подъемов и спусков, удержанием на них транспортных средств в заторможенном состоянии.

    3. КОЭФФИЦИЕНТ ЭФФЕКТИВНОСТИ ТОРМОЖЕНИЯ

    Коэффициент эффективности торможения есть отношение расчетного замедления (определенного с учетом величины коэффициента сцепления на данном участке) к действительному замедлению при движении заторможенного транспортного средства на этом участке:

    Следовательно, коэффициент К э учитывает степень использования сцепных качеств шин с поверхностью дороги.

    При производстве автотехнических экспертиз знать коэффициент эффективности торможения необходимо для расчета замедления при экстренном торможении транспортных средств.

    Величина коэффициента эффективности торможения прежде всего зависит от характера торможения, при торможении исправного транспортного средства с блокировкой колес (когда на проезжей части остаются следы юза) теоретически К э = 1.

    Однако при неодновременной блокировке коэффициент эффективности торможения может превышать единицу. В экспертной практике в этом случае рекомендуются следующие максимальные значения коэффициента эффективности торможения:


    К э = 1.2

    при? ? 0.7

    К э = 1.1

    при? = 0,5-0,6

    К э = 1.0

    при? ? 0.4

    Если торможение транспортного средства осуществлялось без блокировки колес, определить эффективность торможения транспортного средства без экспериментальных исследований невозможно, так как не исключено, что тормозная сила ограничивалась конструкцией и техническим состоянием тормозов.

    Таблица 2 4

    Вид транспортного средства

    К э в случае торможения негруженого и полностью груженного транспортных средств при следующих коэффициентах сцепления

    0,7

    0,6

    0,5

    0,4

    Легковые автомобили и другие на их базе









    Грузовые - грузоподъемностью до 4,5 т и автобусы длиной до 7,5 м









    Грузовые - грузоподъемностью свыше 4.5 т и автобусы длиной более 7,5 м









    Мотоциклы и мопеды без коляски









    Мотоциклы и мопеды с коляской









    Мотоциклы и мопеды с рабочим объемом двигателя 49,8 см 3

    1.6

    1.4

    1.1

    1.0

    В этом случае для исправного транспортного средства можно определить лишь минимально допустимую эффективность торможения (максимальное значение коэффициента эффективности; торможения).

    Максимально допустимые значения коэффициента эффективности торможения исправного транспортного средства в основном зависят от типа транспортного средства, его нагрузки и коэффициента сцепления на участке торможения. Располагая этими сведениями можно определить коэффициент эффективности торможения (см. табл. 2).

    Приведенные в таблице значения коэффициента эффективности торможения мотоциклов справедливы при одновременном торможении ножным и ручным тормозами.

    Если транспортное средство нагружено не полностью, коэффициент эффективности торможения может быть определен путем интерполяции.

    4. КОЭФФИЦИЕНТ СОПРОТИВЛЕНИЯ ДВИЖЕНИЮ

    В общем случае коэффициентом сопротивления движению тела по опорной поверхности называется отношение сил, препятствующих этому движению, к весу тела. Следовательно, коэффициент сопротивления движению позволяет учесть потери энергии при перемещении тела на данном участке.

    В зависимости от природы действующих сил в экспертной практике пользуются различными понятиями коэффициента сопротивления движению.

    Коэффициентом сопротивления качению - ѓ называют отношение силы сопротивления движению при свободном качении транспортного средства в горизонтальной плоскости к его весу.

    На величину коэффициента ѓ , помимо типа и состояния дорожного покрытия, оказывает влияние целый ряд других факторов (например, давление в шинах, рисунок протектора, конструкция подвески, скорость и др.), поэтому более точное значение коэффициента ѓ может быть определено в каждом случае экспериментальным путем.

    Потеря энергии при перемещении по поверхности дороги различных объектов, отброшенных при столкновении (наезде), определяется коэффициентом сопротивления движению ѓ g . Зная величину этого коэффициента и расстояние, на которое переместилось тело по поверхности дороги, можно установить его первоначальную скорость, после чего во многих случаях.

    Значение коэффициента ѓ можно приближенно определить по таблице 3 5 .

    Таблица 3


    Дорожное покрытие

    Коэффициент, ѓ

    Цемент и асфальтобетон в хорошем состоянии

    0,014-0,018

    Цемент и асфальтобетон в удовлетворительном состоянии

    0,018-0,022

    Щебенка, гравий с обработкой вяжущими материалами, в хорошем состоянии

    0,020-0,025

    Щебенка, гравий без обработки, с небольшими выбоинами

    0,030-0,040

    Брусчатка

    0,020-0,025

    Булыжник

    0,035-0,045

    Грунт плотный, ровный, сухой

    0,030-0,060

    Грунт неровный и грязный

    0,050-0,100

    Песок влажный

    0,080-0,100

    Песок сухой

    0,150-0,300

    Лед

    0,018-0,020

    Снежная дорога

    0,025-0,030

    Как правило, при перемещении отброшенных при столкновении (наезде) объектов движение их тормозится неровностями дороги, острые кромки их врезаются в поверхность покрытия и т.п. Учесть влияние всех этих факторов на величину силы сопротивления движению конкретного объекта не представляется возможным, поэтому значение коэффициента сопротивления движению ѓ g может быть найдено лишь экспериментальным путем.

    Следует помнить, что при падении тела с высоты в момент удара гасится часть кинетической энергии поступательного движения за счет прижатия тела к поверхности дороги вертикальной составляющей сил инерции. Поскольку потерянную при этом кинетическую энергию учесть не удается, нельзя определить и действительное значение скорости тела в момент падения, можно определить лишь нижний ее предел.

    Отношение силы сопротивления движению к весу транспортного средства при свободном качении его на участке с продольным уклоном дороги называется коэффициентом суммарного сопротивления дороги ? . Величина его может быть определена по формуле:


    Знак (+) берется при движении транспортного средства на подъем, знак (-) - при движении на спуске.

    При перемещении по наклонному участку дороги заторможенного транспортного средства коэффициент суммарного сопротивления движению выражается аналогичной формулой:


    5. ВРЕМЯ РЕАКЦИИ ВОДИТЕЛЯ

    Под временем реакции водителя в психологической практике понимается промежуток времени с момента поступления к водителю сигнала об опасности до начала воздействия водителя на органы управления транспортного средства (педаль тормоза, рулевое колесо).

    В экспертной практике под этим термином принято понимать промежуток времени t 1 , достаточный для того, чтобы любой водитель (психофизические возможности которого отвечают профессиональным требованиям) после того, как возникнет объективная возможность обнаружить опасность, успевал воздействовать на органы управления транспортного средства.

    Очевидно между этими двумя понятиями имеется существенная разница.

    Во-первых, не всегда сигнал об опасности совпадает с моментом, когда возникает объективная возможность обнаружить препятствие. В момент появления препятствия водитель может выполнять другие функции, отвлекающие его на какое-то время от наблюдения в направлении возникшего препятствия (например, наблюдение за показаниями контрольных приборов, поведением пассажиров, объектами, расположенными в стороне от направления движения, и т. п.).

    Следовательно, время реакции (в том смысле, какой вкладывается в этот термин в экспертной практике) включает в себя время, прошедшее с момента, когда водитель имел объективную возможность обнаружить препятствие, до момента, когда он фактически его обнаружил, и собственно время реакции с момента поступления к водителю сигнала об опасности.

    Во-вторых, время реакции водителя t 1 , которое принимается в расчетах экспертов, для данной дорожной обстановки величина постоянная, одинаковая для всех водителей. Она может значительно превышать фактическое время реакции водителя в конкретном случае дорожно-транспортного происшествия, однако фактическое время реакции водителя не должно быть больше этой величины, так как тогда его действия следует оценивать как несвоевременные. Фактическое время реакции водителя в течении короткого отрезка времени может меняться в широких пределах в зависимости от целого ряда случайных обстоятельств.

    Следовательно, время реакции водителя t 1 , которое принимается в экспертных расчетах, по существу является нормативным, как бы устанавливающим необходимую степень внимательности водителя.

    Если водитель реагирует на сигнал медленнее, чем другие водители, следовательно, он должен быть более внимательным при управлении транспортным средством, чтобы уложиться в этот норматив.

    Было бы правильнее, по нашему мнению, назвать величину t 1 не временем реакции водителя, а нормативным временем запаздывания действий водителя, такое название точнее отражает сущность этой величины. Однако поскольку термин «время реакции водителя» прочно укоренился в экспертной и следственной практике, мы сохраняем его и в настоящей работе.

    Так как необходимая степень внимательности водителя и возможность обнаружения им препятствия в различной дорожной обстановке неодинаковы, нормативное время реакции целесообразно дифференцировать. Чтобы сделать это, необходимы сложные эксперименты с целью выявления зависимости времени реакции водителей от различных обстоятельств.

    В экспертной практике в настоящее время рекомендуется принимать нормативное время реакции водителя t 1 равным 0,8 сек. Исключение составляют следующие случаи.

    Если водитель предупрежден о возможности возникновения опасности и о месте предполагаемого появления препятствия (например, при объезде автобуса, из которого выходят пассажиры, или при проезде с малым интервалом мимо пешехода), ему не требуется дополнительное время на обнаружение препятствия и принятие решения, он должен быть подготовлен к немедленному торможению в момент начала опасных действий пешехода. В подобных случаях нормативное время реакции t 1 рекомендуется принимать 0,4-0,6 сек (большее значение - в условиях ограниченной видимости).

    Когда водитель обнаруживает неисправность органов управления лишь в момент возникновения опасной обстановки, время реакции, естественно, возрастает, так как при этом необходимо дополнительное время для принятия водителем нового решения, t 1 в этом случае равно 2 сек.

    Правилами движения водителю запрещается управлять транспортным средством даже в состоянии самого легкого алкогольного опьянения, а также при такой степени утомления, которая может повлиять на безопасность движения. Поэтому влияние алкогольного опьянения на t 1 не учитывается, а при оценке степени утомляемости водителя и его влияния на безопасность движения следователь (суд) учитывает обстоятельства, которые вынудили водителя управлять транспортным средством в подобном состоянии.

    Полагаем, что эксперт в примечании к заключению может указать на возрастание t 1 в результате переутомления (после 16 час работы за рулем примерно на 0,4 сек).

    6.ВРЕМЯ ЗАПАЗДЫВАНИЯ СРАБАТЫВАНИЯ ТОРМОЗНОГО ПРИВОДА

    Время запаздывания срабатывания тормозного привода (t 2 ) зависит от типа и конструкции системы тормозов, их технического состояния и, в определенной степени, от характера нажатия водителем на педаль тормоза. При экстренном торможении исправного транспортного средства время t 2 сравнительно невелико: 0,1 сек для гидравлического и механического приводов и 0,3 сек - для пневматического.

    Если тормоза с гидравлическим приводом срабатывают со второго нажатия на педаль, время (t 2 ) не превышает 0,6 сек, при срабатывании с третьего нажатия на педаль t 2 = 1.0 сек (по данным экспериментальных исследований, проведенных в ЦНИИСЭ).

    Экспериментальное определение действительных значений времени запаздывания срабатывания тормозного привода транспортных средств с исправными тормозами в большинстве случаев излишне, поскольку возможные отклонения от средних значений не могут существенно повлиять на результаты расчетов и выводы эксперта.

    Б. М. Тишин ,

    негосударственный судебный эксперт в области автотехнической экспертизы,

    кандидат технических наук

    (г. Санкт-Петербург)

    Расстояния тормозного и остановочного пути, рассчитанные имеющимися в экспертной практике методами, основаны на допущении о равенстве скорости движения транспортного средства на всём протяжении процесса торможения. В работе предложена методика уточнённого расчёта расстояний тормозного и остановочного пути транспортных средств, учитывающая снижение скорости на всех этапах процесса торможения. Рассчитанные расстояния методом уточнения дают результат на 10÷20 % меньше, чем по методикам, имеющимся в распоряжении экспертов сегодня.

    Ключевые слова: методика расчёта; тормозной путь; остановочный путь; равенство скоростей; снижение скорости; погрешность результатов; замедление; время движения.

    Т 47

    ББК 67.52

    УДК 343.983.25

    ГРНТИ 10.85.31

    Код ВАК 12.00.12

    To the question of the refined calculation of the braking and stopping distance of the vehicle in the analysis of road accidents and the production of auto-technical examinations

    B. M. Tishin,

    non-state forensic expert in the field of autotechnical expertise

    (city Sankt-Peterburg)

    The distances of the braking and stopping tracks, calculated by the methods available in expert practice, are based on the assumption that the speed of the vehicle is equal throughout the braking process. In the work the technique of the refined calculation of distances of a brake and stopping way of vehicles, taking into account speed reduction at all stages of process of braking is offered. Calculated distances by the refinement method give a result of 10 ÷ 20 % less than the methods available to experts today.

    Keywords : calculation technique; braking distances; stopping way; equality of speeds; reduction in speed; error in results; slowing down; driving time.

    _____________________________________

    Наиболее объективным показателем, по которому можно судить о скорости движения перед торможением, являются следы, оставленные шинами транспортного средства на дорожном покрытии.

    Скорость движения транспортного средства перед торможением в экспертной практике рассчитывают по формуле:

    Здесь:

    Установившееся замедление при торможении транспортного средства;

    Нормативное время нарастания замедления;

    - длина замеренного следа торможения до остановки транспортного средства.

    В данной формуле учитывается то обстоятельство, что при нажатии на педаль тормоза происходит постепенное нарастание замедления, и поэтому в формуле учитывается изменение скорости за время нарастания замедления как средняя величина при начальном замедлении «0» и конечном - «».

    Однако изменение скорости движения в процессе торможения происходит не только за время нарастания замедления, но и за время срабатывания тормозного привода и за время движения транспортного средства, когда водитель принимает решение о необходимости торможения, прекращает подачу топлива и переносит ногу с педали подачи топлива на педаль тормоза. В это время транспортное средство двигается под действием силы инерции, преодолевая сопротивление движению транспортного средства в зависимости от условий движения и сопротивление принудительному прокручиванию коленчатого вала двигателя от колёс через трансмиссию, если не выключена передача на коробке переключения передач (КПП), так как обороты коленчатого вала резко уменьшаются после прекращения подачи топлива, а колёса продолжают вращение какое-то время, практически, с прежней скоростью.

    В настоящее время наличие в системе тормозов устройства антиблокировки колёс (АБС), не позволяет колёсам блокироваться при интенсивном (экстренном) торможении. Поэтому следов торможения, как таковых, на дорожном покрытии не остаётся. Это положение закреплено в ГОСТ Р 51709-2001 п. 4.1.16: «АТС, оборудованные антиблокировочными тормозными системами (АБС), при торможениях в снаряжённом состоянии, (с учётом массы водителя), с начальной скоростью, не менее 40 км /час , должны двигаться в пределах коридора движения без видимых следов увода и заноса, а их колёса не должны оставлять следов юза на дорожном покрытии до момента отключения АБС при достижении скорости движения, соответствующей порогу отключения АБС (не более 15 км /час ). Функционирование сигнализаторов АБС должно соответствовать её исправному состоянию».

    Это же обстоятельство не позволяет устанавливать скорость транспортного средства перед торможением по приведённой формуле, учитывающей изменение скорости за время нарастания замедления.

    Поэтому скорость движения перед торможением устанавливается следствием, судом, экспертами другими методами, когда и изменение скорости за время нарастания замедления не учитывается.

    Согласно ГОСТ Р 51709-2001 , под тормозным путём понимается расстояние, пройденное АТС от начала до конца торможения.

    Тормозная диаграмма, приведённая в ГОСТ Р 51709-2001 в приложении «Б» изображена на рис. 1.

    Рис. 1. Тормозная диаграмма: время запаздывания тормозной системы; время нарастания замедления; время торможения с установившимся замедлением; время срабатывания тормозной системы; установившееся замедление АТС; Н и К - начало и конец торможения соответственно.

    Начало торможения - это момент времени, в который транспортное средство получает сигнал о необходимости осуществить торможение. Обозначено точкой «Н» в приложении «Б».

    Конец торможения - это момент времени, в который исчезло искусственное сопротивление движению АТС или оно остановилось. Обозначено точкой «К» в приложении «Б».

    В приложении «Г» (ГОСТ Р 51709-2001) указано, что допускается вычисление тормозного пути в метрах, для начальной скорости торможения по результатам проверок показателей замедления АТС при торможении по формуле (приложение «Д»):


    где: - начальная скорость торможения АТС, км /час ;

    Время запаздывания тормозной системы, с ;

    Время нарастания замедления, с ;

    Установившееся замедление, м /с 2 ;

    В приложении «Д» первое слагаемое выражения тормозного пути приравнивается к выражению, в котором «А» - коэффициент, характеризующий время срабатывания тормозной системы.


    В этом же приложении даётся таблица значений коэффициента «А», и нормативного установившегося замедления для различных категорий АТС.

    Данный способ расчёта применяется при пересчётах нормативов тормозного пути.

    Таблица Д. 1

    АТС

    Исходные данные для расчета норматива тормозного пути АТС в снаряженном состоянии:

    А

    м /с 2

    Пассажирские и грузопассажирские автомобили

    М1

    0,10

    5,8

    М2, М3

    0,10

    5,0

    Легковые автомобили с прицепом прицприприцепом

    M 1

    0,10

    5,8

    Грузовые автомобили

    N 1 , N2, N3

    0,15

    5,0

    Грузовые автомобили с прицепом (полуприцепом)

    N 1 , N2, N3

    0,18

    5,0

    Исходя из нормативных значений коэффициента «А», для АТС категорий М1, М2, М3, расстояние тормозного пути увеличивается на 10 % от величины начальной скорости. Для АТС категорий N1, N2, N3 без прицепа - на 15 % от величины начальной скорости. Для АТС категорий N1; N2; N3 с прицепом или полуприцепом - на 18 % величины начальной скорости.

    Начальная скорость подставляется в км /час .

    В практике анализа ДТП или при производстве автотехнических экспертиз для определения эффективности торможения принимается не тормозной путь, обусловленный техническими параметрами автотранспортного средства, а остановочный путь АТС, обусловленный как техническими параметрами транспортного средства, так и психофизиологическими возможностями водителя.

    По определению, данному профессором С. А. Евтюковым - остановочный путь - это расстояние, необходимое водителю для остановки транспортного средства с помощью торможения при начальной скорости торможения при движении в конкретных дорожных условиях. Остановочный путь складывается из расстояния, проходимого транспортным средством за время реакции водителя на опасность, запаздывания тормозного привода и нарастания замедления при экстренном торможении, а также расстояния, проходимого транспортным средством с установившемся замедлением вплоть до полной его остановки.

    Как видно из определений тормозного и остановочного пути, они отличаются друг от друга на расстояние, которое проходит транспортное средство за время реакции усреднённого водителя.

    В экспертной практике остановочный путь рассчитывается, исходя из нормативов времени реакции усреднённого водителя, по видам дорожно-транспортных ситуаций, нормативного времени запаздывания тормозного привода и нарастания замедления по категориям транспортных средств и видам тормозных приводов.


    где: - время реакции водителя, выбираемое экспертом по таблицам дифференцированных значений времени реакции водителя, в соответствии с метеорологическими и дорожными условиями .

    - нормативно-технические значения параметров торможения, принимаемые экспертом по таблицам экспериментально расчётных значений параметров торможения автотранспортных средств в экспертной практике .

    Как для расчёта тормозного пути по формуле, приведённой в ГОСТ, так и для расчёта остановочного пути по формуле, применяемой в практике экспертных расчётов, сделаны допущения: начальная скорость движения транспортного средства перед торможением принимается равной скорости и при нажатии на педаль тормоза и при начале движения в заторможенном состоянии с установившемся замедлением. То есть условно принимается, что на всём протяжении процесса торможения до момента возникновения установившегося замедления, скорость движения транспортного средства остаётся постоянной.

    На самом деле, в процессе торможения постоянно происходит снижение скорости как при движении за время реакции водителя, так и при движении за время срабатывания тормозной системы. При расчёте тормозного и остановочного пути в приведённых формулах применяются параметры, учитывающие расстояния, которые проходит транспортное средство на этапах торможения, но не учитывается, что эти расстояния транспортное средство проходит с постоянно уменьшающейся скоростью.

    При движении транспортного средства во время реакции водителя оно под действием силы инерции проходит расстояние , преодолевая силу сопротивления качению по фактическому дорожному покрытию, и, если при нажатии на педаль тормоза не происходит выключения передачи КПП, то и преодолевая силу сопротивления движению от прокручивания коленчатого вала двигателя через трансмиссию.

    Сила сопротивления качению транспортного средства в общем случае определяется произведением коэффициента сопротивления качению на фактическом покрытии дороги на силу тяжести транспортного средства:

    При движении на горизонтальном участке пути или когда уклоном - подъёмом можно пренебречь,

    Сопротивление движению транспортного средства, возникающее от прокручивания коленчатого вала двигателя, очень сложно рассчитать аналитически, поэтому в практике теории движения автомобилей силу сопротивления движению, возникающую от прокручивания вала двигателя через трансмиссию, рассчитывают по эмпирической формуле Ю. А. Кременца :


    где - рабочий объём двигателя (литраж), в литрах;

    Скорость движения транспортного средства перед торможением в км /час .

    Сила тяжести транспортного средства, кг .

    Если движение осуществляется не на прямой передаче, то в числитель вводится передаточное число КПП передачи.

    Сложность учёта этих параметров заключается в том, что для каждого конкретного случая необходимо вычислять свои значения замедления, возникающего при преодолении сопротивлений движению. Однако это же и повышает точность произведённых расчётов остановочного и тормозного пути.

    Замедление транспортного средства при преодолении сопротивления движению определяется по общей формуле замедления:

    где - суммарное значение коэффициента сопротивления движению.

    В частности, оно включает в себя коэффициент сопротивления качению и условный коэффициент сопротивления от прокручивания вала двигателя через трансмиссию - .

    Коэффициент рассчитывается по общей формуле - сила сопротивления, поделённая на силу тяжести транспортного средства.

    Замедление транспортного средства, возникающее при движении за время реакции водителя:

    За время реакции водителя происходит снижение скорости движения:

    м/c

    В момент начала реагирования на опасность скорость движения транспортного средства , а в момент нажатия на педаль тормоза -

    М/с

    Следовательно, всё время движения транспортного средства за время реакции водителя следует рассматривать, как движение со средней скоростью:


    Исходя из представленного расчёта, к моменту начала срабатывания тормозной системы скорость транспортного средства будет не

    м /с

    При движении транспортного средства за время срабатывания тормозной системы (, конец движения осуществляется со скоростью:

    м /с

    Движение транспортного средства за время срабатывания тормозной системы осуществляется со средней скоростью:


    Снижение скорости за время срабатывания тормозной системы

    Таким образом, к моменту появления установившегося замедления скорость транспортного средства равна

    Именно эту скорость следует подставлять в слагаемое, определяющее расстояние перемещения транспортного средства за время движения с установившимся замедлением до остановки или до заданного значения.

    Предложенная методика учёта снижения скорости позволяет предложить другой вариант расчёта остановочного и тормозного пути:


    Несмотря на громоздкость предложенных выражений, они несложны в вычислениях, так как здесь приведены общие выводы. При последовательном решении значений средних скоростей по начальным и конечным скоростям, процесс вычислений упрощается.

    Рассмотрим какое-либо конкретное событие торможения легкового транспортного средства категории , при времени реакции водителя на опасность, равном 1 с , времени запаздывания тормозного привода равным 0,1 с , времени нарастания замедления, возникающего на сухом асфальтовом покрытии 0,35 с , при установившемся замедлении 6,8 м /с 2 . Рабочий объём двигателя 2 л , фактическая масса транспортного средства 1500 кг , начальная скорость движения транспортного средства перед торможением 90 км /час (25 м /с ). Установившееся замедление принято без учёта влияния системы АБС.

    Замедление в процессе движения транспортного средства за время реакции равно:

    м/с 2

    где - коэффициент сопротивления качению на сухом горизонтальном асфальте - 0,018 .

    Условный коэффициент сопротивления прокручиванию коленчатого вала двигателя через трансмиссию:


    Замедление транспортного средства за время реакции водителя:

    При движении за время реакции водителя происходит снижение скорости движения:

    Средняя скорость движения за время реакции водителя:

    Скорость в конце времени реакции:

    Установившееся замедление за время срабатывания тормозной системы:

    Снижение скорости за время срабатывания тормозной системы:

    Средняя скорость движения за время срабатывания тормозной системы.

    Скорость движения в конце времени срабатывания тормозной системы:

    Именно эта скорость и должна подставляться в слагаемое, определяющее расстояние движение транспортного средства в режиме торможения с установившимся замедлением.

    Рассчитаем расстояние тормозного пути по формулам, принимаемым в ГОСТ и по предложенной методике:

    По методике ГОСТ Р 51709-2001, приложение «Д»:

    По методике, допускаемой приложением «Г», ГОСТ Р 51709-2001:



    Что составляет, соответственно, 19,8 и 16,6 % от величины тормозного пути, определённого по ГОСТ Р 51709-2001.


    По принятой в экспертной практике методике расчёта расстояния остановочного пути:

    По предложенной методике уточнённого расчёта:


    Что составляет 11,6 % от величины тормозного пути, рассчитанного по принятой методике:


    Предлагаемая методика позволяет учитывать влияние конкретной модели транспортного средства и при дифференцированном расчёте тормозного и остановочного пути уменьшить погрешность расчёта. Это позволяет принимать категорический вывод о наличии или отсутствии технической возможности предотвращений дорожно-транспортных происшествий на более обоснованных расчётах, а не на усреднённых нормативных параметрах и допущении о равенстве скорости движения в процессе всего процесса торможения до момента возникновения установившегося замедления.

    Применяемые в экспертной практике формулы расчёта тормозного и остановочного пути дают завышенный результат, превышающий 10 %, по сравнению с предлагаемой методикой уточнённого расчёта. При расчёте тормозных и остановочных путей транспортных средств категорий N 1 , N 2 , N 3 по предлагаемой методике разность результатов по сравнению с применяемыми методиками будет увеличиваться, так как растёт значение коэффициента «А».

    Литература:

    1. Евтюков С.А., Васильев Я. В. Экспертиза ДТП: Справочник. - СПб.: ДНК, 2006.

    2. Применение дифференцированных значений времени реакции водителя в экспертной практике: Методические рекомендации ВНИИСЭ. - М., 1987.

    3. Использование в экспертной практике экстремально-расчетных значений параметров торможения АТС: Методические рекомендации ВНИИСЭ. - М., 1986.

    4. Боровский Б. Е. Безопасность движения автомобильного транспорта. - Л.: Лениздат, 1984.