Контроль кислотного электролита свинцовых аккумуляторов. Техническая эксплуатация свинцово-кислотных аккумуляторных батарей. История появления подобных АКБ

1). Следить за уровнем электролита в аккумуляторах и степенью разряженности АБ. Степень разряженности АБ может быть проверена по напряжению, или более точно по плотности электролита. Для этого применяется аккумуляторный пробник и кислотомер (ареометр). Уровень электролита замеряется с помощью стеклянной трубочки. Он должен быть выше предохранительного щитка для АБ типа САМ на 6-8 мм.

2). Перед каждым полетом проверять степень заряженности АБ по бортовому вольтметру. Для этого при выключенных потребителях и при отключенном источнике наземного питания включается аккумулятор и на 3-5 сек. нагрузка 50-100 А, напряжение должно быть не менее 24 В. Батареи, разряженные более чем на 25%, отправляются не позднее 8 часов после полета на зарядную станцию для подзарядки.

3). Батареи содержать в чистоте, не допускать механических повреждений и прямого воздействия солнечных лучей. Металлические детали батарей очищать от окислов и смазывать тонким слоем технического вазелина.

4). При температуре окружающего воздуха ниже -15 батареи снимать ЛА и хранить в специальных помещениях.

5). Систематически, каждый месяц проводить глубокие заряды батарей во избежание их сульфатации. Один раз в три месяца проводить КТЦ для предупреждения сульфатации и определения фактической емкости АБ. Батареи, имеющие емкость менее 75% от номинальной, к дальнейшей эксплуатации непригодны.

6). На ЛА устанавливать только заряженные АБ.

Занятие №3. "Эксплуатация серебрянно-цинковых аб".

1. Типы, принцип работы и основные ттд серебрянно-цинковых аб.

2. Виды зарядов серебрянно-цинковых аккумуляторов и правила их эксплуатации.

3. Правила эксплуатации серебрянно-цинковых АБ.

4. Интегрирующий счетчик ампер-часов типа "ИСА".

1. Типы, принцип работы и основные ттд серебрянно-цинковых аб.

В настоящее время находят применение батареи типа 15-СЦС-45Б (на МиГ-23 установлены две батареи).

- "15" - количество аккумуляторов в батарее, соединенных последовательно;

- "СЦС" - серебрянно-цинковая стартерная;

- "45" - емкость в ампер-часах;

- "Б" - конструктивное исполнение (модификация).

Принцип действия основан необратимых электрохимических реакциях, протекающих в две ступени:

1). 2AgO + KOH +Zn  Ag 2 + KOH +ZnO

 AgO = 0,62 В;  Zn = -1,24 В; Eак = 0,62 + 1,24 = 1,86 В.

c2). Ag 2 O + KOH +Zn  2Ag + KOH +ZnO

 AgO = 0,31 В;  Zn = -1,24 В; Eак = 0,31 + 1,24 = 1,55 В.

ТТД и характеристики АБ 15-СЦС-45Б:

Вес с электролитом не более 17 кг;

Высотность до 25 км;

Номинальное напряжение не менее 21 В;

Минимально допустимое напряжение разряда аккумулятора от 0,6 до 1,0 В;

Номинальный ток разряда 9 А;

Максимальный ток разряда не более 750 А;

Номинальная емкость 40-45 ампер-часов;

Срок службы 12 месяцев; из них первые 6 месяцев с отдачей емкости не менее 45 АЧ,а вторые 6 месяцев - не менее 40АЧ; за этот срок обеспечивается 180 автономных запусков при расходе на каждый около 5 АЧ;

Внутреннее сопротивление не более 0,001 Ом;

Саморазряд при температуре 20 гр.Цельсия не более 10-15% в месяц.

Своевременная диагностика и обслуживание деталей обеспечивает безупречную работу автомобиля и предотвращает серьезные неисправности. Внимательное отношение к снизит риск поломки и предотвратит изменение его основных технических характеристик в течение долгого времени.

Гелевый аккумулятор – зарядка и обслуживание

Ввиду особенностей конструкции обслуживание аккумулятора гелевого типа ограничивается одной лишь зарядкой . Произвести ее можно при помощи специального , созданного для различных типов гелиевых батарей.

Следует помнить главное правило зарядки гелевого аккумулятора: нельзя допускать превышение подаваемого напряжения порогового значения. Результатом несоблюдения этого правила станет выход батареи из строя без возможности восстановления работоспособности.

Найти точное значение порогового напряжения для каждой модели аккумулятора можно в инструкции, прилагаемой к устройству, или на боковой поверхности устройства. Чаще всего его диапазон – от 14,3 до 14,5 вольт .

Перед зарядкой гелевого аккумулятора не лишним будет осмотр детали. Высокое напряжение при зарядке особенно опасно при наличии механических дефектов, которые можно определить невооруженным глазом.

Обслуживание щелочных аккумуляторов

Ключевой особенностью щелочных аккумуляторов является возможность увеличения срока службы за счет регулярных профилактических мер по предотвращению старения. Улучшить работу аккумулятора позволят циклы заряд-разряд, которые можно провести при помощи автоматических зарядных устройств.

При осуществлении цикла ток не должен быть слабым. Это негативно скажется на работе аккумулятора. Следует избегать зарядки АКБ при температуре ниже -10 градусов Цельсия и уж тем более при -30.

Параллельно профилактическим циклам заряд-разряд стоит провести осмотр аккумулятора на предмет повреждений корпуса, появления следов электролита или других аномалий. После каждой 10-й зарядки следует определить уровень электролита и восполнить его при отклонении от нормального значения.

Для понадобится специальный прибор – денсиметр. Погрузив его в отверстие для заливки можно измерить точное значение и сравнить его с приемлемым порогом (указанным в инструкции). В качестве аналога для измерения можно использовать ареометр. Для проверки этим прибором понадобится стеклянная мензурка и резиновая груша. Отобрав 100 мг электролита, можно поместить в него ареометр и проверить значение плотности.

Сделать это можно при помощи стеклянной трубки с отметками. Оптимальным считается уровень от 5 до 12 мм над краем пластин. Если он не соблюден, то можно увеличить количество электролита путем доливки дистиллированной воды. При малых значениях плотности вместо воды следует доливать электролит.

Кислотные аккумуляторы – обслуживание

На данный момент существует два типа свинцово-кислотных аккумуляторов: традиционный и герметичный (необслуживаемый).

Для обслуживания классического типа АКБ характерны следующие действия:

  • Осмотр электрических соединений.
  • Проверка уровня электролита и его плотности.
  • Диагностика емкости свинцово-кислотного аккумулятора (метод контрольного разряда).
  • Поиск следов электролита на крышке аккумулятора.

Заметив проблему, ее стоит как можно быстрее купировать, до того, как аккумулятор придет в негодность или вызовет ряд других нежелательных проблем.

Правила обслуживания кислотного аккумулятора

Обслуживание и уход за АКБ своими руками

Герметичные свинцово-кислотные аккумуляторы практически не нуждаются в обслуживании. Современные технологии позволили избежать проблем, которые могли привести к быстрому износу.Тем не менее, профилактическая проверка электрических соединений будет не лишней. Во время нее следует обследовать как клеммы, так и саму поверхность аккумулятора. Нежелательными признаками окажутся:

  • Следы окислов и белого налета.
  • Разболтанные соединения (болтовые или винтовые).
  • Не укрепленные клеммы.
  • Видимые механические повреждения.

В случае обнаружения перечисленных проблем следует избавиться от них самостоятельно или при помощи специалистов.

После внешней проверки стоит прибегнуть к использованию тестера аккумулятора. Специальное устройство позволит точно определить емкость без традиционного контрольного разряда.

Мы живем в мире, который уже невозможно представить без всевозможных аккумуляторов и батареек. На батареях работают сотовые телефоны, ноутбуки, детские игрушки и автомобили. Они также используются для поддержания работы устройств, работающих от сети. Когда случаются аварии и выключается электричество, тогда источники бесперебойного питания поддерживают функционирование оборудования. Мы везде сталкиваемся с батарейками и аккумуляторами, но практически не задумываемся о том, что они обладают не только полезными для нас свойствами. Также надо знать, что при неправильной и они несут в себе потенциальную угрозу для здоровья и окружающей среды.

До изобретения батарей производство электроэнергии требовало прямого подключения к источнику электроэнергии, поскольку не имелось возможности хранить электроэнергию. Батареи работают путем преобразования химической энергии в электрическую энергию. Противоположные концы батареи анод и катод создают электрическую цепь благодаря химическим веществам, называемым электролиты, которые пропускают электрический ток на устройство, когда оно подключено к батарее.

Вообще, батареи безопасны, но обращаться с ними стоит аккуратно, особенно со свинцово-кислотными аккумуляторами, в которых есть доступ к свинцу и серной кислоте. Также надо очень аккуратно обращаться с поврежденными батареями. В некоторых странах свинцово-кислотные батареи маркируются как устройство с опасными материалами, и это правильно. Давайте посмотрим на то, каким может быть вред аккумуляторов и батареек для здоровья, если с ними обращаться не надлежащим образом.

Свинцово-кислотные батареи

Свинец является токсичным металлом, который может попасть в организм при вдыхании свинцовой пыли или при прикосновении ко рту руками, которыми до этого трогали свинец. Попадая в землю, частицы свинца загрязняют почву и, когда она просыхает, попадают в воздух. Дети, поскольку их тела только развиваются, наиболее уязвимы к воздействию свинца. Чрезмерное содержание свинца может повлиять на рост ребенка, вызвать повреждение головного мозга, повредить почки, ухудшают слух и приводить к поведенческим проблемам. Свинец также опасен для детей, которые еще только находятся в утробе матери. У взрослых свинец может привести к потере памяти и к снижению способности концентрации внимания, а также нанести вред репродуктивной системе. Известно, что свинец вызывает повышенное кровяного давления, неврологические нарушения и мышечные и суставные боли. Исследователи считают, что Людвиг ван Бетховен заболел и умер из-за отравления свинцом.

Серная кислота в свинцово-кислотных батареях чрезвычайно агрессивна и потенциально более вредна, чем кислоты, используемые в других аккумуляторных системах. При попадании в глаза она может привести к постоянной слепоте; при проглатывании она повреждает внутренние органы, что может привести к смерти. Первая помощь при попадании на кожу серной кислоты – это промывание большим количеством воды в течение 10-15 минут, вода несколько охлаждает пораженные ткани и предотвращает вторичное повреждение. При попадании на одежду ее надо немедленно снять и тщательно промыть кожу под ней. При работе с серной кислотой всегда необходимо носить защитную одежду.

Никель-кадмиевые батареи

Кадмий, который используется в никель-кадмиевых батареях, считается более вредным при попадании внутрь, чем свинец. Рабочие на заводах в Японии, которые работают с никель-кадмиевыми батареями, испытывают серьезные проблемы со здоровьем, связанные с длительным воздействием металла. Утилизация на свалке таких батарей запрещена во многих странах. Мягкий, беловатый металл, который встречается в природе, может привести к повреждению почек. При прикосновении к протекшей батарее кадмий может всасываться через кожу. Так как большинство NiCd батарей герметизировано, то при обращении с ними практически не существует риска для здоровья. Но очень осторожно надо обращаться с открытыми батареями.

Никель-металл-гидридные и литий-ионные батареи

Никель-металл-гидридные батареи считается нетоксичными и единственное, чего следует опасаться – это электролит. Токсичный для растений, никель тем не менее не представляет опасности для человека. Литий-ионные батареи также являются довольно безопасными, они содержат мало токсичных материалов. Тем не менее, с поврежденными батареями необходимо обращаться с осторожностью. При работе с протекшей батареей не прикасайтесь ко рту, носу и глазам и тщательно мойте руки.

Батарейки и опасность для маленьких детей

Держите батарейки в недоступном для детей месте. Дети в возрасте до четырех лет очень легко могут проглотить батарейку. Чаще всего они глотают кнопочные элементы. Батарея часто застревает в пищеводе у ребенка и при этом электрический ток может сжигать окружающие ткани. Врачи часто неправильно диагностируют симптомы, которые могут быть такими как лихорадка, рвота, отсутствие аппетита и усталость. Батареи, которые свободно проходят через пищеварительный тракт, практически не причиняют длительного ущерба здоровью. Родителям стоит выбирать не только безопасные игрушки, но и хранить батарейки подальше от маленьких детей.

Безопасность зарядки аккумуляторов

Зарядка аккумуляторов в жилых, хорошо проветриваемых помещениях, когда она выполняется правильно, вполне безопасна. При зарядке свинцово-кислотные аккумуляторы выделяют некоторое количество водорода, которое, однако, не так велико. Водород становится взрывоопасным при концентрации 4%. Такое количество водорода может выделиться только при зарядке очень больших аккумуляторов в герметично закрытом помещении.

Перезарядка свинцово-кислотных аккумуляторов также может привести к выделению сероводорода. Это бесцветный, очень ядовитый легковоспламеняющийся газ, который пахнет тухлыми яйцами. Сероводород также встречается в природе, хотя и не очень часто, он образуется в результате распада органических веществ в болотах и канализации; присутствует в вулканических газах, в составе природного газа, попутных нефтяных газов, иногда встречается в растворенном виде в воде. Будучи тяжелее воздуха, газ скапливается внизу в плохо вентилируемых пространствах. Сероводород опасен ещё и тем, что хотя сначала запах газа можно ощутить, потом обоняние притупляется и его перестаешь замечать. Поэтому потенциальная жертва может и не знать о присутствии газа. Надо отметить, что когда запах сероводорода становится заметным, то концентрации газа опасна для жизни человека. При этом надо выключить зарядное устройство и хорошо проветрить помещение, пока весь запах не исчезнет.

Зарядка литий-ионных батарей вне безопасных ограничений сопряжена с опасностью взрыва и воспламенения. Большинство изготовителей снабжают Li-ion элементы устройством защиты, но это делается не всегда, поскольку это сопряжено с увеличением стоимости. Не надо заряжать вышедшие из строя аккумуляторы. Это может привести к взрыву и воспламенению устройства.

Для защиты герметизированных свинцово-кислотных аккумуляторов (SLA) при зарядке с перенапряжением должны применяться ограничители тока. Всегда устанавливайте ограничение тока на минимальное значение и следите за напряжением и температурой батареи во время зарядки.
В случае утечки электролита или в любом другом случае воздействия электролита на кожу немедленно промойте поврежденный участок большим количеством воды. При попадании в глаза также необходимо промыть их большим количеством воды и немедленно обратиться к врачу.
Надевайте защитные перчатки при работе с электролитом, свинцом и кадмием.

Читайте также статьи:

(Просмотрели48 167 | Посмотрели сегодня 3)


Экологические проблемы океана. 5 угроз будущему
Исчезающие виды животных и растений. Статистика и тенденции

В настоящее время аккумуляторные батареи применяются в различных отраслях народного хозяйства, а также в Вооруженных силах РФ (ВС РФ). Батареи главным образом предназначены для накопление электроэнергии и поддержания энергобаланса в системе энергоснабжения объекта на требуемом уровне.

Самое широкое применение находят свинцово-кислотные аккумуляторные батареи, ввиду своей низкой стоимости, простоты обслуживания, приемлемых сроков службы и высоких энергетических характеристик. Конструкции свинцово-кислотных батарей постоянно совершенствуются. В таблице 1 представлены основные характеристики аккумуляторов, наиболее часто используемых на объектах связи ВС РФ.

Таблица 1 – Основные характеристики аккумуляторов, наиболее часто используемых на объектах связи ВС РФ.

Характеристики

Тип аккумулятора

никель-кадмиевые

никель-металл-гидридные

свинцово-кислотные

литий-ионные

Рабочее напряжение, В
Диапазон рабочих температур, °С

–20 (40)…50 (60)

Удельная энергия: весовая, Втч/кг (объёмная, Втч/дм3)

30…60 (100…170)

25…50 (55…100)

100…180 (250…400)

Коэффициент отдачи по емкости, %

Температуры, указанные в скобках, достигнуты только для продукции некоторых зарубежных компаний.

Из таблицы 1 следует, что по энергетическим характеристикам современные свинцово-кислотные аккумуляторные батареи вполне сопоставимы со щелочными. Исключение составляют литий-ионные и литий-полимерные аккумуляторы, стоимость которых в несколько раз, а иногда и на порядок, превышает стоимость щелочных. Современные подвижные комплексы связи комплектуются стартерными свинцово-кислотными аккумуляторными батареями той же номенклатуры, что и входящие в состав комплексов связи шасси. В случае аварийных ситуаций эти же батареи работают уже как резервные источники тока, однако основной режим их работы – буферный. В целях унификации, удешевления, простоты обслуживания и упрощения логистики замена щелочных батарей на стартерные свинцово-кислотные выглядит оправданной.

Свинцовые стартерные AGM батареи с регулирующими клапанами характеризуются высокой вибростойкостью, непроливаемостью электролита и малым газовыделением при заряде и повышенной цикличностью.

Своевременное и достоверное определение технического состояния свинцовых стартерных аккумуляторных батарей производится в ходе их диагностирования, что позволяет повысить эффективность использования батарей и продлить их срок службы .

Возможность определить в любой момент величину остаточной емкости и спрогнозировать ресурс батареи является достаточно трудоемкой задачей. Полученные данные представляют большую ценность для обслуживающего персонала и позволяют принимать оперативные решения. В стандарте указаны основные диагностические параметры, характеризующие техническое состояние стартерных батарей.

Основными задачами диагностирования являются :

Контроль технического состояния;

Поиск места и определение причин отказа (неисправности);

Прогнозирование технического состояния.

Под контролем технического состояния понимается проверка соответствия значений параметров объекта требованиям технической документации и определение на этой основе одного из заданных видов технического состояния в данный момент времени.

На рисунке 1 представлены виды технического состояния свинцовой стартерной батареи.

Рисунок 1 – Виды технического состояния свинцовой стартерной батареи

Для решения задач диагностирования необходимо:

Определить параметры аккумуляторных батарей, позволяющие с требуемой точностью произвести оценку их состояния;

Минимизировать разброс значений параметров у однотипных батарей;

Выбрать методики проведения диагностирования;

Подобрать аппаратуру, позволяющую провести контроль технического состояния батарей требуемой достоверности.

Согласно работе дефекты по механизму влияния на аккумулятор классифицируются следующим образом:

Дефекты, уменьшающие площадь истинной поверхности электродов;

Дефекты, увеличивающие ток утечки.

Для объективной оценки состояния аккумуляторных батарей необходимо определить степень заряженности аккумуляторов. Все диагностические параметры условно можно систематизировать по трем направлениям:

Определение степени заряженности;

Поиск дефектов, уменьшающих площадь истинной поверхности электродов;

Поиск дефектов, увеличивающих ток утечки.

Диагностирование свинцовых стартерных аккумуляторных батарей в настоящее время осуществляется согласно . Для выпускаемых промышленностью аккумуляторных батарей устанавливаются испытания:

Приемо-сдаточные;

Периодические;

На надежность;

Типовые.

Методы этих испытаний достаточно трудоемки, требуют специального дорогостоящего оборудования, высококвалифицированного персонала, и для диагностирования батарей при их эксплуатации в войсках практически неприемлемы. Классификация стартерных аккумуляторных батарей, применяемых в ВС РФ представлена в источнике , однако она не учитывает герметизированных GEL или AGM аккумуляторных батарей. В Руководстве не предусмотрены методы диагностирования батарей с регулирующими клапанами. Поэтому в настоящее время учеными и промышленностью активно ведутся работы по созданию и внедрению принципиально новых методов и способов диагностирования свинцовых стартерных аккумуляторных батарей. Связано это прежде всего с тем, что имеющиеся на сегодняшний момент способы и средства диагностирования герметизированных AGM аккумуляторных батарей не позволяют оперативно и с достаточной достоверностью оценить их состояние и спрогнозировать их ресурс.

Основные методы диагностирования свинцовых стартерных аккумуляторных батарей представлены на рисунке 2.

Рисунок 2 – Основные методы диагностирования свинцовых стартерных аккумуляторных батарей

Разрушающие методы диагностирования в основном применяются в исследовательских работах с целью определить процессы, протекающие в свинцовом аккумуляторе, приводящие к его отказу. Иными словами выявить природу дефектов, которые уменьшают площадь активной поверхности электродов, увеличивают ток утечки и повышают внутреннее сопротивление аккумулятора.

Масс-спектроскопия – один из методов исследования вещества аккумуляторных электродов путем определения масс атомов, входящих в его состав и их количества под воздействием электрических и магнитных полей. Некоторые результаты его применения указаны в работе . Данный метод обладает очень высокой достоверностью определения атомного состава исследуемого образца, но применение спектрометров ограничено стационарными условиями из-за их массо-габаритных показателей и высоких требований к квалификации обслуживающего персонала. Самым неприемлемым при эксплуатации батарей является то, что применение масс-спектроскопии подразумевает полное разрушение аккумуляторной батареи.

Под неразрушающими методами следует понимать способы и средства не нарушающие целостность объекта диагностирования . Очевидно, что при эксплуатации свинцовых аккумуляторных батарей именно эти методы целесообразно использовать для контроля их состояния. Работа неразрушающих методов основана на регистрации изменения параметрических характеристик батарей в различных условиях эксплуатации. ГОСТ классифицирует диагностирование по типу и времени воздействия: рабочим, тестовым и экспресс. Рабочим и тестовым диагностированием называют диагностирование при котором на батарею подаются, соответственно, рабочие и тестовые воздействия, а экспресс – диагностирование по ограниченному числу параметров за заранее установленное время.

Рабочее воздействие зависит от режима работы аккумуляторной батареи, а следовательно работоспособность может быть оценена по внутренним приборам контроля объекта вооружения и военной техники (ВВТ), на котором установлена батарея, например: амперметру, вольтметру, либо сигнальным лампам. Используя эти методы можно достоверно определить лишь как батарея принимает заряд и, довольно грубо, заряжена она или разряжена.

Основными параметрами, характеризующими технического состояния свинцовых стартерных батарей, являются их номинальная и резервная емкости , то есть количество электричества, которое может отдать батарея в заданных условиях. Именно по этой величине производится оценка технического состояния батареи и степень деградации ее аккумуляторов.

Методы тестового диагностирования, по типу воздействия условно можно классифицировать как периодические и внеплановые, которые предусматривают заведомо известное внешнее воздействие, чаще всего, в течение определенного времени. Время тестового воздействия в зависимости от его типа и способа варьируется в широких пределах, может достигать нескольких десятков часов.

Все диагностические мероприятия начинаются с визуального осмотра, и только после его проведения принимается решение о целесообразности дальнейшего диагностирования батарей. Визуальные методы позволяют выявлять явные неисправности на первых этапах диагностирования. Оценивается состояние выводов (наличие коррозии и износ), моноблока и общей крышки (наличие на них трещин и загрязнений). По результатам осмотра дается оценка о внешнем состоянии аккумуляторной батареи и целесообразности ее дальнейшего диагностирования без учета прямых измерений параметров, определяющих техническое состояние батарей.

Методы периодического контроля регламентированы инструкциями, приказами, руководствами и стандартами, основаны на измерениях параметров аккумуляторных батарей непосредственно на выводах, таких как электродвижущая сила (ЭДС), рабочее напряжение, разрядный ток, плотность электролита и его температура.

ЭДС является одним из основных параметров, характеризующих состояние батареи. Она зависит от химических и физических свойств активных веществ и концентрации их ионов в электролите. Величина равновесной ЭДС батареи зависит от количества последовательно соединенных аккумуляторов, плотности их электролита и, в меньшей степени, от его температуры . ЭДС не дает точную оценку о состоянии разряженности батареи, так как ЭДС ее аккумуляторов зависит только от физической природы элементов химической системы, но не от их количества Зависимость ЭДС батареи Е б описывается эмпирической формулой

E б = n (0,84+ρ)

где n – количество последовательно соединенных аккумуляторов;

ρ – плотность электролита, приведенная к 25 о С, используется при определении степени заряженности аккумуляторов в батарее.

Измерение ЭДС проводится вольтметром с большим входным сопротивлением, чтобы не разряжать батарею. На рисунке 3 представлено изменение равновесной ЭДС и электродных потенциалов аккумулятора в зависимости от плотности электролита.

1 – ЭДС; 2 – потенциал положительного электрода; 3 – потенциал отрицательного электрода

Рисунок 3 – Изменение равновесной ЭДС и электродных потенциалов свинцового аккумулятора в зависимости от плотности электролита

Из рисунка 3 по зависимости 1 видно, что зная плотность электролита в конце заряда или плотность заливаемого электролита при приведении сухозаряженных батарей, можно на приемлемом уровне оценивать их техническое состояние при дальнейшей эксплуатации. Явным недостатком данного метода является невозможность определить емкость батареи.

Напряжением аккумуляторной батареи является разность потенциалов на полюсных выводах при зарядных или разрядных процессах при наличии тока во внешней цепи. Напряжение аккумуляторной батареи естественно отличается от ее ЭДС. При разряде оно будет меньше ЭДС, а при заряде больше. На рисунке 4 изображены разрядная и зарядная характеристики. Из рисунка 4 видно, что плотность электролита уменьшается, а при заряде увеличивается. Плотность электролита изменяется по линейному закону до напряжения конца разряда U кр (рисунок 4 а). При достижении этого значения сернокислым свинцом закрываются поры активного вещества, доступ электролита прекращается, сопротивление увеличивается. Напряжение начинает резко падать. В соответствии со стандартом U кр ограничено значением 1,75 В, а по стандарту , в зависимости от величины разрядного тока, может достигать 1,6 В на один аккумулятор. Дальнейший разряд ведет к разрушению аккумулятора.

Рисунок 4 – Характеристики свинцового аккумулятора: а – разрядная; б – зарядная

Метод диагностирования по рабочему напряжению заключается в подключении к батарее низкоомной нагрузки известной величины. Далее через определенный промежуток времени (как правило на пятой секунде) фиксируют величину рабочего напряжения и, используя табличные величины, производят оценку технического состояния батареи (в зависимости от производителя измерительного устройства рабочее напряжение должно составлять, как правило, не менее 8,5-9 В). Недостатком данного метода является то, что к батарее подключается большая нагрузка (в зависимости от номинальной емкости батареи составляет 100-200 А), что негативно сказывается на фактической емкости батареи и ее сроке службы, если после измерения батарею сразу не отправить на заряд. Температуры, отличные от 25 ± 2 о С ведут к искажению результатов измерений. Данный метод не дает оценки емкости и прогноза срока службы диагностируемой батареи.

Согласно Руководству и приказу установлена следующая емкость в конце гарантийного срока службы батарей (в процентах к номинальной): для танковых – 90-100 (в зависимости от модификации), для автомобильных – 70. В свою очередь емкость, отдаваемая стартерными батареями в конце минимального амортизационного срока службы, составляет (в процентах к номинальной): для танковых – 70, для автомобильных 50. Причем срок службы батарей должен быть не менее пяти лет. По истечении этих сроков предписывается оценить величину отдаваемой фактической емкости по отношению к номинальной и принять решение о списании или продлении срока службы батареи на год.

В ВС РФ емкость батарей определяется в ходе проведения контрольно-тренировочного цикла (КТЦ) током десятичасового разряда .

КТЦ включает в себя:

Предварительный полный заряд батареи;

Контрольный разряд током десятичасового разряда;

Окончательный полный заряд.

Согласно ГОСТ емкость свинцовых стартерных батарей батарей определяется в режиме двадцатичасового режима разряда, причем должно быть соблюдено постоянство температуры (25 ± 2 о С) на протяжении 20-ти часов. На практике, в обычных условиях эксплуатации возникают трудности в поддержании температуры в заданных границах продолжительное время. Величина разрядного тока должна быть постоянной и составлять I ном 20 ± 2% (I ном 20 – номинальный ток 20-ти часового разряда) до падения напряжения на полюсных выводах батареи до величины 10,50 ± 0,05 В. Время разряда должно быть измерено и зафиксировано для дальнейших расчетов емкости батареи.

Очевидно, что при реализации данного метода возникает необходимость в стабилизированных источниках напряжения или тока, так как, согласно , предварительно нужно полностью зарядить батарею, подвергаемую контролю. Также необходим контроль температуры электролита аккумуляторов, причем измерять ее необходимо в одном из центральных аккумуляторов (температура должна находиться в пределах 25 ± 2 о С) в течение всего разряда. При конечной температуре отличной от 25 ± 2 о С следует воспользоваться температурной поправкой:

С 20 25 о С = С 20Т ,

где С 20 25 о С - расчетная емкость в режиме 20-ти часового режима разряда с учетом температурной поправки;

С 20Т – фактическая емкость батареи в режиме 20-ти часового режима при конечной температуре, отличной от 25 ± 2 о С;

Контроль резервной емкости осуществляется аналогично вышеописанному методу с отличием лишь в том, что величина разрядного тока составляет 25А ± 1%, а формула температурной поправки имеет следующий вид:

С р 25 о С = С р Т ,

где С р 25 о С – расчетная резервная емкость с учетом температурной поправки;

С рТ – фактическая резервная емкость батареи при конечной температуре, отличной от 25 ± 2 о С;

Т – фактическая температура электролита в центральном аккумуляторе в конце разряда.

Кроме того, со стороны обслуживающего персонала необходим контроль напряжения на полюсных выводах и регулировки разрядных токов, так как при разрядных процессах снижается плотность электролита и, соответственно, увеличивается внутреннее сопротивление аккумуляторов батареи.

Данный метод дает самую точную оценку емкости и состоянию батареи в целом, но требует наличия специального оборудования, больших временных, энергетических и трудовых затрат. Большие трудности вызывает и то, что для применения данного метода батарею предварительно нужно отключить от нагрузки и заменить подменным фондом. В то же время измерение температуры электролита аккумуляторов герметизированных батарей вообще невозможно, что в свою очередь ведет к существенному снижению достоверности полученных результатов. Вместе с тем в источнике говорится, что приемлемый критерий точности таких измерений должен составлять 3% и выше. В Руководстве вообще не представлена информация по способам контроля технического состояния герметизированных батарей и определения их емкости, несмотря на то, что поставки таких батарей в войска уже начались.

В последнее время, в связи с массовым производством герметизированных свинцовых аккумуляторных батарей с иммобилизованным электролитом и их широким применением в телекоммуникационных системах, большую значимость получили исследования в области разработки и создания новых способов определения технического состояния именно этих батарей.

Из-за резко возросших требованиями к аккумуляторным батареям, возникла необходимость в контроле их состояния при минимизации времени его проведения, а в некоторых случаях и в масштабе реального времени. В свою очередь это обуславливает проведение контроля технического состояния вне предписанных руководящими документами временных рамках. Очевидно, что данный контроль должен проводится оперативно, с максимальной достоверностью и минимальным временем. Важным аспектом еще является и то, что такие методы должны исключать отключение батареи от потребителей и перерывы в работе средств связи.

Методы внепланового контроля должны проводиться за минимальное время, ведь его основное предназначение – оценка состояния батарей в межрегламентные сроки. Очевидно, что именно измерение функциональных зависимостей и расчет на их основе величины емкости необходимо применять при внеплановом контроле.

Внутреннее сопротивление батареи является важным диагностическим параметром . Зная его величину в начальный момент и ее изменение в процессе эксплуатации можно с приемлемой достоверностью сделать прогноз остаточного ресурса. Однако остаточный ресурс зависит от множества характеристик, в числе основных: режим работы батареи, величины разрядных и зарядных токов, глубина циклирования, температурные условия эксплуатации, повышенная вибрация, воздействие других внешних факторов. Поэтому прогнозирование остаточного ресурса батареи является довольно сложной задачей.

Измерение внутреннего сопротивления представляет определенные трудности, ввиду его малой величины. Но при больших величинах разрядных токов имеет существенное значение. При расчете учитывают сопротивления пластин, сепараторов и электролита. Для ее регистрации применяют методы измерений постоянным и переменным током.

Методы измерения постоянным током основаны на применении закона Ома. На рисунке 5 представлено сопротивление свинцово-кислотной аккумуляторной батареи из 12 элементов емкостью 3 А×ч при разных режимах разряда.

Рисунок 5 – Сопротивление аккумуляторной батареи из 12 элементов емкостью
3 А×ч при разных режимах разряда.

Из рисунка 5 видно, что величина сопротивления источника тока не является истинным омическим и зависит от состояния заряда батареи и разрядного тока.

В ГОСТ описана методика измерения сопротивления применительно к свинцово-кислотным химическим источникам тока, которая заключается в регистрации изменения напряжения по двум разрядным величинам тока в заданных временных условиях по следующей формуле:

R полное = R Ω + R пол = (U 1 – U 2)/(I 2 – I 1), где

R Ω – активное сопротивление;

R пол – сопротивление поляризации;

U 1 , U 2 – регистрационные напряжения соответственно на 20 и 5 секундах разрядных токов I 1 , I 2 ;

I 1 , I 2 – соответственно величины разрядных токов 4С 10 и 20С 10 .

На рисунке 6 изображен отклик химического источника тока на разрядный импульс постоянного тока.

Рисунок 6 – Отклик химического источника тока на разрядный импульс постоянного тока

К недостаткам данного метода можно отнести невозможность определения R пол, а также то, что достоверность результатов достигается лишь на батареях со степенью разряженности не более 90% . При большей разряженности батарей для определения нижней границы ΔU Ω , возникает острая необходимость в применении приборов, способных регистрировать отклик с высокой скоростью.

На рисунке 7 представлен резонансный мост для измерения сопротивления аккумуляторов переменным током, где В – батарея, подвергаемая измерениям. Согласно данная схема позволяет измерять величину внутреннего сопротивления 0,004 Ом с точностью 2%.

Рисунок 7 – Резонансный мост для измерения сопротивления аккумуляторов

Анализ работ показал, что методы измерения сопротивления переменным током применяются только для щелочных аккумуляторов и батарей на частоте 1 ± 0,1 кГц. Согласно измеренное переменным током сопротивление содержит как активную так и реактивную составляющую. Импеданс (полное сопротивление электрической цепи) для различных типов электрохимических систем и даже однотипных батарей будет различным. Хотя величина импеданса большинства зарубежных производителей оценивается на 1 ± 0,1 кГц и для довольно широкой номенклатуры импеданс будет равен R Ω . Сопротивление, полученное методом переменного тока будет всегда меньше измеренного при постоянном токе, так как исключает величину R пол. При частотной зависимости (кроме частот менее 3 Гц) переход к сопротивлению на постоянном токе крайне затруднителен из-за специфики электрохимических процессов.

Внутреннее сопротивление свинцово-кислотных батарей, полученное на переменном токе, нельзя использовать при расчете тока короткого замыкания и оценки чувствительности и селективности защитных аппаратов сети постоянного тока.

Величина тока короткого замыкания, рассчитанная по сопротивлению на постоянном токе, будет меньше, чем при переменном токе, что, в свою очередь, может привести к ошибочным результатам как при оценке технического состояния свинцово-кислотных батарей, так и при обеспечении требуемого уровня напряжения у потребителей постоянного тока при резком возрастании нагрузки.

В работе автором была доказана справедливость данного метода применительно к свинцово-кислотным батареям. Для этого им была рассмотрена эквивалентная схема в виде последовательной RLC-цепочки. По мнению автора, можно считать, что такой метод вычисления параметров эквивалентной схемы аккумулятора позволяет оценить значения их емкости с относительной погрешностью вычисления не более 15 %.

Экспресс-диагностирование как уже отмечалось выше основано на определении состояния батарей по ограниченному числу параметров за установленное время. Из рисунка 2 видно, что методы тестового и экспресс-диагностирования могут не только взаимозаменять друг друга при условии минимизации времени измерений и регистрации диагностических параметров, но и дополнять.

Статистические методы находят применение большей частью в научно-исследовательской деятельности, а также при построении различных систем мониторинга и основываются на обработке и систематизации различных данных, полученных в ходе наблюдения за изменениями в работе исследуемых батарей. На основании полученных данных строятся определенные зависимости, производится моделирование процессов и прогнозирование состояния батарей в различных условиях эксплуатации.

Таким образом можно сделать вывод, что существующая система диагностирования аккумуляторных батарей в ВС РФ не в полной мере отвечает современным требованиям по эксплуатации поступающих в войска герметизированных аккумуляторных батарей.

Одним из самых важных параметров батарей является ее резервная или номинальная емкость. Наиболее точным и быстро измеримым параметром батареи, способным дать достаточно точную оценку ее состояния является внутреннее сопротивление. Данный параметр может быть использован для прогнозирования состояния и остаточного ресурса батареи в режиме эксплуатации. Можно считать, что на настоящий момент еще не найдено путей достоверного определения внутреннего сопротивления батарей.

Наиболее точными и оперативными являются методы измерения параметров батареи с применением воздействия переменным и (или) постоянным током.

http://docs.cntd.ru/document/gost-20911-89 .
  • Кочуров, А.А Теоретические основы решения проблемы увеличения сроков службы аккумуляторных батарей при хранении и повышения эффективности способов их восстановления. [Текст] / А.А. Кочуров, Н.П. Шевченко, В.Ю. Гумелев. – Рязань: РВАИ, 2009. – 249 с.
  • Гумелев, В.Ю. Электрооборудование автомобильной техники. Электрооборудование автомобилей семейства «Мотовоз-1». Аккумуляторные батареи и энергоблок: устройство, обслуживание, предупреждение и устранение неисправностей. / В.Ю. Гумелев, Н.Л. Пузевич, А.В. Писарчук, В.Д. Рогачев [Электронный ресурс]. URL: http://r-lib.snauka.ru/wp-content/uploads/2013/10/Elektronnoe-posobie-AKB-MOTOVOZ-1.pdf
  • Свинцовые стартерные аккумуляторные батареи [Текст]: руководство. – М.: Воениздат, 1983. – 170 с.
  • Кочуров, А.А. О противоречиях в теории работы свинцового кислотного аккумулятора. [Электронный ресурс]. URL: http://www.mami.ru/science/autotr2009/scientific/article/s01/s01_24.pdf
  • Таганова, А.А. Диагностика герметичных химических источников тока. [Текст] / А.А. Таганова. – СПб: Химиздат, 2007. – 128 с.
  • Силовые установки и системы электрооборудования армейской автомобильной техники [Текст] / под общ. ред. В.Р. Бурячко. – Л.: ВОЛАТТ, 1980. – 493 с.
  • Чижков, Ю.П. Электрооборудование автомобилей. [Текст] / Ю.П. Чижков, А.В. Акимов. – М.: ООО Книжное издательство За рулем, 2007. – 336 с.
  • ГОСТ Р МЭК 60896-21-2013. Батареи свинцово-кислотные стационарные. Часть 21. Типы с регулирующим клапаном. Методы испытаний. – введ. 2013-11-22. – М.: Стандартинформ, 2014. – 35 с.
  • Министерство обороны РФ. Приказы. Об утверждении Руководства о нормах наработки (сроках службы) до ремонта и списания автомобильной техники и имущества в Вооруженных Силах Российской Федерации: приказ министра обороны РФ от 29 сентября 2006 года № 300.
  • Вайнел, Дж. Аккумуляторные батареи [Текст] / Дж. Вайнел. – М. –Л.: Госэнергоиздат, 1960. – 480 с.
  • ГОСТ Р МЭК 896-1-95. Свинцово-кислотные стационарные батареи. Общие требования и методы испытаний. Часть 1. Открытые типы.[Текст] – М.: Издательство стандартов, 1997. – 24 с.
  • ГОСТ Р МЭК 60285-2002. Аккумуляторы и батареи щелочные. Аккумуляторы никель-кадмиевые герметичные цилиндрические. – М.: Издательство стандартов, 2003. – 16 с.
  • ГОСТ Р МЭК 61436-2004. Аккумуляторы и аккумуляторные батареи, содержащие щелочной и другие некислотные электролиты. Аккумуляторы никель-металлгидридные герметичные. – М.: Издательство стандартов, 2004. – 11 с.
  • ГОСТ Р МЭК 61951-1-2004. Аккумуляторы и аккумуляторные батареи, содержащие щелочной и другие некислотные электролиты. Портативные герметичные аккумуляторы. Часть 1. Никель-кадмий. – М.: Издательство стандартов, 2004. – 20 с.
  • ГОСТ Р МЭК 61960-2007. Аккумуляторы и аккумуляторные батареи, содержащие щелочной и другие некислотные электролиты. Аккумуляторы и аккумуляторные батареи литиевые для портативного применения. – М.: Издательство стандартов, 2007. – 21 с.
  • Гусев Ю. П., Дороватовский Н. М., Поляков А. М. Оценка технического состояния аккумуляторных батарей электростанций и подстанций в процессе эксплуатации. Электро, 2002, № 5. с. 34 – 38.
  • Чупин, Д.С. Параметрический метод контроля эксплуатационных характеристик аккумуляторных батарей [Текст]: дис. канд. техн. наук / Чупин Д.С. – Омск, 2014. – 203 с.
  • Количество просмотров публикации: Please wait

    МИНИСТЕРСТВО ТОПЛИВА И ЭНЕРГЕТИКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

    ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ СТАЦИОНАРНЫХ СВИНЦОВО-КИСЛОТНЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ

    РД 34.50.502-91

    УДК 621.355.2.004.1 (083.1)

    Срок действия установлен

    с 01.10.92 до 01.10.97

    РАЗРАБОТАНО предприятием "УРАЛТЕХЭНЕРГО"

    ИСПОЛНИТЕЛЬ Б.А. АСТАХОВ

    УТВЕРЖДЕНО Главным научно-техническим управлением энергетики и электрификации 21.10.91 г.

    Заместитель начальника К.М. АНТИПОВ

    Настоящая Инструкция распространяется на аккумуляторные батареи, установленные на тепловых и гидравлических электростанциях и подстанциях энергосистем.

    Инструкция содержит сведения по устройству, техническим характеристикам, эксплуатации и мерам безопасности стационарных свинцово-кислотных батарей из аккумуляторов типа СК с поверхностными положительными и коробчатыми отрицательными электродами, а также типа СН с намазными электродами производства Югославии.

    Более подробные сведения приведены по аккумуляторам типа СК. По аккумуляторам типа СН в настоящей Инструкции приведены требования инструкции завода-изготовителя.

    Местные инструкции, составленные применительно к установленным типам батарей и существующим схемам постоянного тока, не должны противоречить требованиям настоящей Инструкции.

    Установка, эксплуатация и ремонт аккумуляторных батарей должны отвечать требованиям действующих Правил устройства электроустановок, Правил технической эксплуатации электрических станций и сетей, Правил техники безопасности при эксплуатации электроустановок электрических станций и подстанций и настоящей Инструкции.

    Технические термины и условные обозначения, используемые в Инструкции:

    АБ - аккумуляторная батарея;

    № А - номер аккумулятора;

    СК - стационарный аккумулятор для коротких и длительных режимов разряда;

    С 10 - емкость аккумулятора при 10-часовом режиме разряда;

    r - плотность электролита;

    ПС - подстанция.

    С введением в действие настоящей инструкции утрачивает силу временная "Инструкция по эксплуатации стационарных свинцово-кислотных аккумуляторных батарей" (М.: СПО Союзтехэнерго, 1980).

    Аккумуляторные батареи других зарубежных фирм должны эксплуатироваться в соответствии с требованиями инструкций заводов-изготовителей.

    1. УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ

    1.1. Аккумуляторное помещение должно быть постоянно заперто на замок. Лицам, осматривающим это помещение и работающим в нем, ключи выдаются на общих основаниях.

    1.2. В аккумуляторном помещении запрещается: курение, вход в него с огнем, пользование электронагревательными приборами, аппаратами и инструментом.

    1.3. На дверях аккумуляторного помещения должны быть сделаны надписи "Аккумуляторная", "Огнеопасно", "Запрещается курить" или вывешены знаки безопасности согласно требованиям ГОСТ 12.4.026-76 о запрещении пользоваться открытым огнем и курить.

    1.4. Приточно-вытяжная вентиляция помещения аккумуляторной батареи должна включаться во время заряда батареи при достижении напряжения 2,3 В на аккумулятор и отключаться после полного удаления газов, но не ранее чем через 1,5 ч после окончания заряда. При этом должна предусматриваться блокировка: при останове вытяжного вентилятора должно отключаться зарядное устройство.

    В режиме постоянного подзаряда и уравнительного заряда напряжением до 2,3 В на аккумулятор в помещении должна осуществляться вентиляция, обеспечивающая не менее чем однократный обмен воздуха в час. Если естественная вентиляция не может обеспечить требуемую кратность обмена воздуха, должна применяться принудительная вытяжная вентиляция.

    1.5. При работе с кислотой и электролитом необходимо использовать спецодежду: грубошерстный костюм, резиновые сапоги, резиновый или полиэтиленовый фартук, защитные очки, резиновые перчатки.

    При выполнении работ со свинцом необходимы брезентовый костюм или хлопчатобумажный с огнестойкой пропиткой, брезентовые рукавицы, защитные очки, головной убор и респиратор.

    1.6. Бутыли с серной кислотой должны быть в упаковочной таре. Переноска бутылей допускается в таре двумя рабочими. Переливание кислоты из бутылей необходимо производить только по 1,5-2,0 л кружкой из кислотостойкого материала. Наклон бутылей производить с помощью специального устройства, допускающего любой наклон бутыли и ее надежное закрепление.

    1.7. При приготовлении электролита кислоту вливают в воду тонкой струей при постоянном перемешивании мешалкой из кислотостойкого материала. Категорически запрещается вливать воду в кислоту. Допускается в готовый электролит доливать воду.

    1.8. Кислоту надлежит хранить и транспортировать в стеклянных бутылях с притертыми пробками или если горловина бутыли имеет резьбу, то с пробками на резьбе. Бутыли с кислотой, снабженные бирками с ее названием, должны находиться в отдельном помещении при аккумуляторной. Их следует устанавливать на полу в пластиковой таре или деревянных обрешетках.

    1.9. На всех сосудах с электролитом, дистиллированной водой и раствором двууглекислой соды должны быть сделаны надписи, указывающие их наименование.

    1.10. Работать с кислотой и свинцом должен специально обученный персонал.

    1.11. При попадании брызг кислоты или электролита на кожу необходимо немедленно снять кислоту тампоном из ваты или марли, место попадания промыть водой, затем 5%-ным раствором питьевой соды и снова водой.

    1.12. При попадании брызг кислоты или электролита в глаза необходимо промыть их большим количеством воды, затем 2%-ным раствором питьевой соды и снова водой.

    1.13. Кислота, попавшая на одежду, нейтрализуется 10%-ным раствором кальцинированной соды.

    1.14. Во избежание отравления свинцом и его соединениями должны быть приняты специальные меры предосторожности и определен режим работы в соответствии с требованиями технологических инструкций по этим работам.

    2. ОБЩИЕ УКАЗАНИЯ

    2.1. Аккумуляторные батареи на электростанциях находятся в ведении электроцеха, а на подстанциях в ведении службы подстанций.

    Обслуживание АБ должно быть возложено на специалиста-аккумуляторщика или специально обученного электромонтера. Приемкой АБ после монтажа и ремонта, ее эксплуатацией и техническим обслуживанием должно руководить лицо, ответственное за эксплуатацию электрооборудования электростанции или сетевого предприятия.

    2.2. При эксплуатации аккумуляторных установок должны обеспечиваться их длительная, надежная работа и необходимый уровень напряжения на шинах постоянного тока в нормальных и аварийных режимах.

    2.3. Перед вводом в эксплуатацию вновь смонтированной или вышедшей из капитального ремонта АБ должны проверяться емкость батареи током 10-часового разряда, качество и плотность электролита, напряжение аккумуляторов в конце заряда и разряда и сопротивление изоляции батареи относительно земли.

    2.4. Аккумуляторные батареи должны эксплуатироваться в режиме постоянного подзаряда. Подзарядная установка должна обеспечивать стабилизацию напряжения на шинах батареи с отклонением ±1-2%.

    Дополнительные аккумуляторы батарей, постоянно не используемые в работе, должны иметь отдельное устройство подзаряда.

    2.5. Для приведения всех аккумуляторов батареи в полностью заряженное состояние и для предотвращения сульфатации электродов должны проводиться уравнительные заряды батарей.

    2.6. Для определения фактической емкости батарей (в пределах номинальной емкости) должны выполняться контрольные разряды в соответствии с разд.4.5.

    2.7. После аварийного разряда батареи на электростанции последующий ее заряд до емкости, равной 90% номинальной, должен быть осуществлен не более чем за 8 ч. При этом напряжение на аккумуляторах может достигать значений до 2,5-2,7 В на аккумулятор.

    2.8. Для контроля за состоянием АБ намечаются контрольные аккумуляторы. Контрольные аккумуляторы должны ежегодно меняться, количество их устанавливается главным инженером энергопредприятия в зависимости от состояния батареи, но не менее 10% количества аккумуляторов в батарее.

    2.9. Плотность электролита нормируется при температуре 20 о С. Поэтому плотность электролита, измеренную при температуре отличающейся от 20°С, необходимо приводить к плотности при 20°С по формуле

    где r 20 - плотность электролита при температуре 20° С, г/см 3 ;

    r t - плотность электролита при температуре t , г/см 3 ;

    0,0007 - коэффициент изменения плотности электролита с изменением температуры на 1°С;

    t - температура электролита, °С.

    2.10. Химические анализы аккумуляторной кислоты, электролита, дистиллированной воды или конденсата должны проводиться химической лабораторией.

    2.11. Аккумуляторное помещение должно содержаться в чистоте. Пролитый на пол электролит должен немедленно удаляться с помощью сухих опилок. После этого пол должен протираться тряпкой, смоченной в растворе кальцинированной соды, а затем в воде.

    2.12. Аккумуляторные баки, изоляторы ошиновки, изоляторы под баками, стеллажи и их изоляторы, пластиковые покрытия стеллажей должны систематически протираться ветошью, сначала смоченной в воде или растворе соды, а затем сухой.

    2.13. Температура в аккумуляторном помещении должна поддерживаться не ниже +10°С. На подстанциях без постоянного дежурства персонала допускается понижение, температуры до 5°С. Не допускаются резкие изменения температуры в аккумуляторном помещении, чтобы не вызвать конденсации влаги и снижения сопротивления изоляции батареи.

    2.14. Необходимо вести постоянное наблюдение за состоянием кислотоупорной покраски стен, вентиляционных коробов, металлоконструкций и стеллажей. Все дефектные места должны подкрашиваться.

    2.15. Смазка техническим вазелином неокрашенных соединений должна периодически возобновляться.

    2.16. Окна в аккумуляторном помещении должны быть закрыты. Летом для проветривания и при зарядах разрешается открывать окна, если наружный воздух не запылен и не загрязнен уносами химических производств и если выше этажом не находятся другие помещения.

    2.17. Необходимо следить, чтобы у деревянных баков верхние края свинцовой обкладки не касались бака. При обнаружении соприкосновения края обкладки следует ее отогнуть для предотвращения попадания капель электролита с обкладки на бак с последующим разрушением древесины бака.

    2.18. Для снижения испарения электролита аккумуляторов открытого исполнения следует применять покровные стекла (или прозрачную кислотостойкую пластмассу).

    Необходимо следить за тем, чтобы покровные стекла не выходили за внутренние края бака.

    2.19. В аккумуляторном помещении не должны находиться какие-либо посторонние предметы. Допускается только хранение бутылей с электролитом, дистиллированной водой и с раствором соды.

    Концентрированная серная кислота должна храниться в помещении кислотной.

    2.20. Перечень приборов, инвентаря и запасных частей, необходимых при эксплуатации аккумуляторных батарей, приведен в приложении 1.

    3. ОСОБЕННОСТИ КОНСТРУКЦИИ И ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

    3.1. Аккумуляторы типа СК

    3.1.1. Положительные электроды поверхностной конструкции изготавливаются отливкой из чистого свинца в форму, позволяющую увеличить действующую поверхность в 7-9 раз (рис.1). Электроды изготавливаются трех размеров и обозначаются И-1, И-2, И-4. Их емкости находятся в соотношении 1:2:4.

    3.1.2. Отрицательные электроды коробчатой конструкции состоят из решетки свинцово-сурьмяного сплава, собранной из двух половинок. В ячейки решетки вмазывается активная масса, приготовленная из окислов свинцового порошка, и закрывается с обеих сторон листами перфорированного свинца (рис.2).

    Рис.1. Положительный электрод поверхностей конструкции:

    1 - активная часть; 2 – ушки

    Рис.2. Разрез отрицательного электрода коробчатой конструкции:

    а - штифтовая часть решетки; б - дырчатая часть решетки; в - готовый электрод;

    1 - перфорированные свинцовые листы; 2 - активная масса

    Отрицательные электроды делятся на средние (К) и боковые (КЛ-левые и КП-правые). Боковые имеют активную массу только с одной рабочей стороны. Изготавливаются трех размеров с тем же соотношением емкостей, как у положительных электродов.

    3.1.3. Конструктивные данные электродов приведены в табл.1.

    3.1.4. Для изоляции электродов различной полярности, а также создания между ними промежутков, вмещающих необходимое количество электролита, устанавливаются сепараторы (разделители) из мипласта (микропористый полихлорвинил), вставляемые в полиэтиленовые держатели.

    Таблица 1

    Тип Наименование электрода Размеры (без ушков), мм Номер
    электрода Высота Ширина Толщина аккумулятора
    И-1 Положительный 166±2 168±2 12,0±0,3 1-5
    K-1 Отрицательный средний 174±2 170±2 8,0±0,5 1-5
    КЛ-1 174±2 170±2 8,0±0,5 1-5
    И-2 Положительный 326±2 168±2 12,0±0,3 6-20
    К-2 Отрицательный средний 344±2 170±2 8,0±0,5 6-20
    КЛ-2 Отрицательные крайние, левый и правый 344±2 170±2 8,0±0,5 6-20
    И-4 Положительный 349±2 350±2 10,4±0,3 24-32
    К-4 Отрицательный средний 365±2 352±2 8,0±0,5 24-32
    КЛ-4 Отрицательные крайние, левый и правый 365±2 352±2 8,0±0,5 24-32

    3.1.5. Для фиксации положения электродов и предотвращения всплытия сепараторов в баки устанавливаются винипластовые пружины между крайними электродами и стенками бака. Пружины устанавливаются в стеклянные и эбонитовые баки с одной стороны (2 шт.) и в деревянные с двух сторон (6 шт.).

    3.1.6. Конструктивные данные аккумуляторов приведены в табл. 2.

    3.1.7. В стеклянных и эбонитовых баках электроды подвешиваются ушками на верхние кромки бака в деревянных баках - на опорные стекла.

    3.1.8. Номинальной емкостью аккумулятора считается емкость при 10-часовом режиме разряда, равная 36 х № А.

    Емкости при других режимах разряда составляют:

    при 3-часовом 27 х № А;

    при 1-часовом 18,5 х № А;

    при 0,5-часовом 12,5 х № А;

    при 0,25-часовом 8 х № А.

    3.1.9. Максимальный зарядный ток равен 9 х № А.

    Разрядный ток составляет:

    при 10-часовом режиме разряда 3,6 х № А;

    при 3-часовом - 9 х № А;

    при 1-часовом - 18,5 х № А;

    при 0,5-часовом - 25 х № А;

    при 0,25-часовом - 32 х № А.

    3.1.10. Наименьшее допустимое напряжение для батарей в режиме 3-10-часового разряда 1,8 В, в режиме 0,25-0,5-1-часового разряда - 1,75 В.

    3.1.11. Аккумуляторы поставляются потребителю в разобранном виде, т.е. отдельными деталями с незаряженными электродами.

    Номер Номи-

    нальная емкость,

    Размеры бака,

    мм, не более

    Масса аккуму-

    лятора без

    Объем электро- Мате-

    риал бака

    А·ч Длина Ширина Высота электролита,

    кг, не более

    положи- отрица-
    1 36 84 219 274 6,8 3 1 2 Стекло
    2 72 134 219 274 12 5,5 2 3 -
    3 108 184 219 274 16 8,0 3 4 -
    4 144 264 219 274 21 11,6 4 5 -
    5 180 264 219 274 25 11,0 5 6 -
    6 216 209 224 490 30 15,5 3 4 -
    8 288 209 224 490 37 14,5 4 5 -
    10 360 274 224 490 46 21,0 5 6 -
    12 432 274 224 490 53 20,0 6 7 -
    14 504 319 224 490 61 23,0 7 8 -
    16 576 349/472 224/228 490/544 68/69 36,5/34,7 8 9 Стекло/
    18 648 473/472 283/228 587/544 101/75 37,7/33,4 9 10 -
    20 720 508/472 283/228 587/544 110/82 41,0/32,3 10 11 -
    24 864 348/350 283/228 592/544 138/105 50/48 6 7 Дерево/
    28 1008 383/350 478/418 592/544 155/120 54/45,6 7 8 -
    32 1152 418/419 478/418 592/544 172/144 60 8 9 -
    36 1296 458/419 478/418 592/544 188/159 67 9 10 -

    Примечания:

    1. Аккумуляторы выпускаются до номера 148, в электроустановках высокого напряжения аккумуляторы выше номера 36, как правило, не используются.

    2. В обозначении аккумуляторов, например СК-20, цифры после букв означают номер аккумулятора.

    3.2. Аккумуляторы типа СН

    3.2.1. Положительные и отрицательные электроды состоят из решетки свинцового сплава, в ячейки которой вмазывается активная масса. Положительные электроды на боковых кромках имеют специальные выступы для подвески их внутри бака. Отрицательные электроды опираются на придонные призмы баков.

    3.2.2. Для предупреждения коротких замыканий между электродами, удержания активной массы и создания необходимого запаса электролита около положительного электрода используются комбинированные сепараторы из стекловолокна и листов мипласта. Листы мипласта по высоте на 15 мм больше высоты электродов. На боковые кромки отрицательных электродов установлены винипластовые обкладки.

    3.2.3. Баки аккумуляторов из прозрачной пластмассы закрыты несъемной крышкой. В крышке имеются отверстия для выводов и отверстие в центре крышки для заливки электролита, доливки дистиллированной воды, измерения температуры и плотности электролита, а также для выхода газов. Это отверстие закрывается фильтр-пробкой, задерживающей аэрозоли серной кислоты.

    3.2.4. Крышки и бак в месте соединения склеиваются. Между выводами и крышкой выполняется уплотнение из прокладки и мастики. На стенке бака имеются отметки максимального и минимального уровня электролита.

    3.2.5. Аккумуляторы выпускаются в собранном виде, без электролита, с разряженными электродами.

    3.2.6. Конструктивные данные аккумуляторов приведены в табл.3.

    Таблица 3

    Обозна- Одно-

    минутный толчок

    Количество электродов в аккумуляторе Габаритные

    размеры, мм

    Масса без электролита, кг Объем электролита, л
    тока, А положи- отрица- Длина Ширина Высота
    ЗСН-36* 50 3 6 155,3 241 338 13,2 5,7
    СН-72 100 2 3 82,0 241 354 7,5 2,9
    CH-108 150 3 4 82,0 241 354 9,5 2,7
    CH-144 200 4 5 123,5 241 354 12,4 4,7
    CH-180 250 5 6 123,5 241 354 14,5 4,5
    CH-216 300 3 4 106 245 551 18,9 7,6
    СН-228 400 4 5 106 245 551 23,3 7,2
    СН-360 500 5 6 127 245 550 28,8 9,0
    СН-432 600 6 7 168 245 550 34,5 13,0
    СН-504 700 7 8 168 245 550 37,8 12,6
    СН-576 800 8 9 209,5 245 550 45,4 16,6
    СН-648 900 9 10 209,5 245 550 48,6 16,2
    СН-720 1000 10 11 230 245 550 54,4 18,0
    СН-864 1200 12 13 271,5 245 550 64,5 21,6
    CH-1008 1400 14 15 313 245 550 74,2 25,2
    CH-1152 1600 16 17 354,5 245 550 84,0 28,8

    * Батарея напряжением 6 В из 3 элементов в моноблоке.

    3.2.7. Цифры в обозначении аккумуляторов и батареи ЭСН-36 означают номинальную емкость при 10-часовом режиме разряда в ампер-часах.

    Номинальная емкость при других режимах разряда приведена в табл.4.

    Таблица 4

    Обозначение Значения разрядного тока и емкости при режимах разряда
    5-часовом 3-часовом 1-часовом 0,5-часовом 0,25-часовом
    Ток, А Емкость, А ч Ток, А Емкость,
    А ч
    Ток, А Емкость,
    А ч
    Ток, А Емкость, А ч Ток, А Емкость, А ч
    ЗСН-36 6 30 9 27 18,5 18,5 25 12,5 32 8
    СН-72 12 60 18 54 37,0 37,0 50 25 64 16
    CH-108 18 90 27 81 55,5 55,5 75 37,5 96 24
    CH-144 24 120 36 108 74,0 74,0 100 50 128 32
    CH-180 30 150 45 135 92,5 92,5 125 62,5 160 40
    CH-216 36 180 54 162 111 111 150 75 192 48
    СН-288 48 240 72 216 148 148 200 100 256 64
    СН-360 60 300 90 270 185 185 250 125 320 80
    СН-432 72 360 108 324 222 222 300 150 384 96
    СН-504 84 420 126 378 259 259 350 175 448 112
    СН-576 96 480 144 432 296 296 400 200 512 128
    СН-648 108 540 162 486 333 333 450 225 576 144
    СН-720 120 600 180 540 370 370 500 250 640 160
    СН-864 144 720 216 648 444 444 600 300 768 192
    CH-1008 168 840 252 756 518 518 700 350 896 224
    CH-1152 192 960 288 864 592 592 800 400 1024 256

    3.2.8. Приведенные в табл.4 разрядные характеристики полностью соответствуют характеристикам аккумуляторов типа СК и могут быть определены так же, как указано в п.3.1.8, если им присвоить те же номера (№):

    3.2.9. Максимальный зарядный ток и наименьшее допустимое напряжение такие же, как для аккумуляторов типа СК, и равны значениям, указанным в пп.3.1.9 и 3.1.10.

    4. ПОРЯДОК ЭКСПЛУАТАЦИИ АККУМУЛЯТОРНЫХ БАТАРЕЙ

    4.1. Режим постоянного подзаряда

    4.1.1. Для АБ типа СК напряжение подразряда должно соответствовать (2,2 ±0,05) В на аккумулятор.

    4.1.2. Для АБ типа СН напряжение подразряда должно составлять (2,18 ±0,04) В на аккумулятор при температуре окружающего воздуха не выше 35°С и (2,14 ±0,04) В, если эта температура выше.

    4.1.3. Необходимые конкретные значения тока и напряжения не могут быть заданы заранее. Устанавливается и поддерживается среднее значение напряжения подзаряда и за батареей ведется наблюдение. Снижение плотности электролита в большинстве аккумуляторов свидетельствует о недостаточности тока подзаряда. При этом, как правило, необходимое напряжение подзаряда оказывается 2,25 В для аккумуляторов типа СК и не ниже 2,2 В для аккумуляторов типа СН.

    4.2. Режим заряда

    4.2.1. Заряд может производиться любым из известных методов: при постоянной силе тока, плавно убывающей силе тока, при постоянном напряжении. Метод заряда устанавливается местной инструкцией.

    4.2.2. Заряд при постоянной силе тока производится в одну или две ступени.

    При двухступенчатом заряде зарядный ток первой ступени не должен превышать для аккумуляторов типа СК 0,25×С 10 для аккумуляторов типа СН 0,2×С 10 . При повышении напряжения до 2,3-2,35 В на аккумулятор заряд переводится на вторую ступень, ток заряда при этом должен быть не более 0,12×С 10 для аккумуляторов типа СК и 0,05×С 10 для аккумуляторов типа СН.

    При одноступенчатом заряде ток заряда не должен превышать значения, равного 0,12×С 10 для аккумуляторов типов СК и СН. Заряд таким током аккумуляторов типа СН допускается только после аварийных разрядов.

    Заряд ведется до достижения постоянных значений напряжения и плотности электролита в течение 1 ч для аккумуляторов типа СК и 2 ч для аккумуляторов типа СН.

    4.2.3. Заряд при плавно убывающей силе тока аккумуляторов типов СК и СН проводят при начальном токе, не превышающем 0,25×С 10 , и конечном токе, не превышающем 0,12×С 10 . Признаки окончания заряда такие же, как для заряда при постоянной силе тока.

    4.2.4. Заряд при постоянном напряжении производится в одну или две ступени.

    Заряд в одну ступень производится при напряжении 2,15-2,35 В на аккумулятор. При этом начальный ток может значительно превышать значение 0,25×С 10 но затем он автоматически снижается ниже значения 0,005×С 10 .

    Заряд в две ступени производится на первой ступени током, не превышающим 0,25×С 10 , до напряжения 2,15-2,35 В на аккумулятор, а затем при постоянном напряжении от 2,15 до 2,35 В на аккумулятор.

    4.2.5. Заряд АБ с элементным коммутатором должен производиться в соответствии с требованиями местной инструкции.

    4.2.6. При заряде по пп.4.2.2 и 4.2.3 напряжение в конце заряда может достигать 2,6-2,7 В на аккумулятор, и заряд сопровождается сильным "кипением" аккумуляторов, что вызывает более усиленный износ электродов.

    4.2.7. На всех зарядах аккумуляторам должно быть сообщено не менее 115% емкости от снятой на предыдущем разряде.

    4.2.8. Во время заряда проводят измерения напряжения, температуры и плотности электролита аккумуляторов в соответствии с табл.5.

    Перед включением, через 10 мин после включения и по окончании заряда перед отключением зарядного агрегата измеряют и записывают параметры каждого аккумулятора, а в процессе заряда - контрольных аккумуляторов.

    Записываются также ток заряда, сообщаемая емкость нарастающим итогом и дата заряда.

    Таблица 5

    4.2.9. Температура электролита при заряде аккумуляторов типа СК не должна превышать 40°С. При температуре 40°С зарядный ток должен быть снижен до значения, обеспечивающего указанную температуру.

    Температура электролита при заряде аккумуляторов типа СН не должна превышать 35°С. При температуре выше 35°С заряд проводится током, не превышающим 0,05×С 10 , а при температуре выше 45°С - током 0,025×С 10 .

    4.2.10. Во время зарядов аккумуляторов типа СН при постоянной или плавно убывающей силе тока вентиляционные фильтр-пробки снимают.

    4.3. Уравнительный заряд

    4.3.1. Одинаковый ток подзаряда даже при оптимальном напряжении подзаряда батареи может быть недостаточным для поддержания всех аккумуляторов в полностью заряженном состоянии из-за различий в саморазряде отдельных аккумуляторов.

    4.3.2. Для приведения всех аккумуляторов типа СК в полностью заряженное состояние и для предотвращения сульфатации электродов должны проводиться уравнительные заряды напряжением 2,3-2,35 В на аккумулятор до достижения установившегося значения плотности электролита во всех аккумуляторах 1,2-1,21 г/см 3 при температуре 20°С.

    4.3.3. Частота проведения уравнительных зарядов аккумуляторов и их продолжительность зависят от состояния батареи и должны быть не реже одного раза в год с продолжительностью не менее 6 ч.

    4.3.4. При снижении уровня электролита до 20 мм над предохранительным щитком аккумуляторов типа СН производят доливку воды и уравнительный заряд для полного перемешивания электролита и приведения всех аккумуляторов в полностью заряженное состояние.

    Уравнительные заряды проводятся при напряжении 2,25-2,4 В на аккумулятор до достижения установившегося значения плотности электролита во всех аккумуляторах (1,240±0,005) г/см 3 при температуре 20°С и уровне 35-40 мм над предохранительным щитком.

    Продолжительность уравнительного заряда ориентировочно составляет: при напряжении 2,25 В 30 сут, при 2,4 В 5 сут.

    4.3.5. Если в АБ имеются единичные аккумуляторы с пониженным напряжением и сниженной плотностью электролита (отстающие аккумуляторы), то для них может проводиться дополнительный уравнительный заряд от отдельного выпрямительного устройства.

    4.4. Разряд батарей

    4.4.1. Аккумуляторные батареи, работающие в режиме постоянного подзаряда, в нормальных условиях практически не разряжаются. Они разряжаются только в случаях неисправности или отключения подзарядного устройства, в аварийных условиях или при проведении контрольных разрядов.

    4.4.2. Отдельные аккумуляторы или группы аккумуляторов подвергаются разряду при проведении ремонтных работ или при устранении неисправностей в них.

    4.4.3. Для аккумуляторных батарей на электростанциях и подстанциях расчетная длительность аварийного разряда устанавливается равной 1,0 или 0,5 ч. Чтобы обеспечить указанную длительность разрядный ток не должен превышать значений 18,5 х № А и 25 х № А соответственно.

    4.4.4. При разряде батареи токами, меньшими 10-часового режима разряда, не допускается определять окончание разряда только по напряжению. Слишком длительные разряды малыми токами опасны, так как могут привести к ненормальной сульфатации и короблению электродов.

    4.5. Контрольный разряд

    4.5.1. Контрольные разряды выполняются для определения фактической емкости аккумуляторной батареи и производятся 10 или 3-часовым режимом разряда.

    4.5.2. На тепловых электростанциях контрольный разряд батарей должен выполняться один раз в 1-2 года. На гидроэлектростанциях и подстанциях разряды должны выполняться по мере необходимости. В тех случаях, когда количество аккумуляторов недостаточно, чтобы обеспечить напряжение на шинах в конце разряда в заданных пределах, допускается осуществлять разряд части основных аккумуляторов.

    4.5.3. Перед контрольным разрядом необходимо провести уравнительный заряд батареи.

    4.5.4. Результаты измерений должны сравниваться с результатами измерений предыдущих разрядов. Для более правильной оценки состояния батареи необходимо, чтобы все контрольные разряды этой батареи проводились в одном и том же режиме. Данные измерений должны заноситься в журнал АБ.

    4.5.5. Перед началом разряда фиксируется дата разряда, напряжение и плотность электролита в каждом аккумуляторе и температура в контрольных аккумуляторах.

    4.5.6. При разряде на контрольных и отстающих аккумуляторах проводят измерения напряжения, температуры и плотности электролита в соответствии с табл.6.

    В течение последнего часа разряда напряжение аккумуляторов измеряется через 15 мин.

    Таблица 6

    4.5.7. Контрольный разряд производится до напряжения 1,8 В хотя бы на одном аккумуляторе.

    4.5.8. Если средняя температура электролита во время разряда будет отличаться от 20°С, то полученная фактическая емкость должна быть приведена к емкости при 20°С по формуле

    ,

    где С 20 - емкость, приведенная к температуре 20°С А×ч;

    С ф - емкость, фактически полученная при разряде, А×ч;

    a - температурный коэффициент, принимаемый по табл.7;

    t - средняя температура электролита при разряде, °С.

    Таблица 7

    4.6. Доливка аккумуляторов

    4.6.1. Электроды в аккумуляторах должны быть всегда полностью в электролите.

    4.6.2. Уровень электролита в аккумуляторах типа СК поддерживается на 1,0-1,5 см выше верхнего края электродов. При понижении уровня электролита должна производиться доливка аккумуляторов.

    4.6.3. Доливка должна производиться дистиллированной водой, проверенной на отсутствие содержания хлора и железа. Допускается использование парового конденсата, удовлетворяющего требованиям ГОСТ 6709-72 на дистиллированную воду. Вода может подаваться в придонную часть бака через трубку или в верхнюю его часть. В последнем случае рекомендуется провести подзаряд батареи с "кипением" для выравнивания плотности электролита по высоте бака.

    4.6.4. Доливки электролитом плотностью 1,18 г/см 3 аккумуляторов с плотностью электролита ниже 1,20 г/см 3 можно производить только при выявлении причин понижения плотности.

    4.6.5. Запрещается заливать поверхность электролита каким-либо маслом для уменьшения расхода воды и увеличения периодичности доливок.

    4.6.6. Уровень электролита в аккумуляторах типа СН должен быть в пределах от 20 до 40 мм над предохранительным щитком. Если доливка производится при снижении уровня до минимального, то необходимо провести уравнительный заряд.

    5. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ АККУМУЛЯТОРНЫХ БАТАРЕЙ

    5.1. Виды технического обслуживания

    5.1.1. В процессе эксплуатации через определенные промежутки времени для поддержания АБ в исправном состоянии должны проводиться следующие виды технического обслуживания:

    осмотры АБ;

    профилактический контроль;

    профилактическое восстановление (ремонт).

    Текущие и капитальные ремонты АБ выполняются по мере необходимости.

    5.2. Осмотры аккумуляторных батарей

    5.2.1. Текущие осмотры аккумуляторных батарей проводятся по утвержденному графику персоналом, обслуживающим батарею.

    Во время текущего осмотра проверяется:

    напряжением, плотность и температура электролита в контрольных аккумуляторах (напряжение и плотность электролита во всех и температура в контрольных аккумуляторах - не реже 1 раза в месяц);

    напряжение и ток подзаряда основных и добавочных аккумуляторов;

    уровень электролита в баках;

    правильность положения покровных стекол или фильтр-пробок;

    целостность баков, чистота баков, стеллажей и пола;

    вентиляция и отопление;

    наличие небольшого выделения пузырьков газа из аккумуляторов;

    уровень и цвет шлама в прозрачных баках.

    5.2.2. Если в процессе осмотра выявлены дефекты, которые могут быть устранены единолично осматривающим, он должен получить по телефону разрешение начальника электроцеха на проведение этой работы. Если дефект не может быть устранен единолично, способ и срок его устранения определяется начальником цеха.

    5.2.3. Инспекторские осмотры проводятся двумя работниками: лицом, обслуживающим батарею, и лицом, ответственным за эксплуатацию электрооборудования энергопредприятия, в сроки, определяемые местными инструкциями, а также после монтажа, замены электродов или электролита.

    5.2.4. Во время инспекторского осмотра проверяются:

    напряжение и плотность электролита во всех аккумуляторах батареи, температура электролита в контрольных аккумуляторах;

    отсутствие дефектов, приводящих к коротким замыканиям;

    состояние электродов (коробление, чрезмерный рост положительных электродов, наросты на отрицательных, сульфатация);

    сопротивление изоляции;

    5.2.5. При обнаружении во время инспекторского осмотра дефектов намечаются сроки и порядок их устранения.

    5.2.6. Результаты осмотров и сроки устранения дефектов заносятся в журнал аккумуляторной батареи, форма которого приведена в приложении 2.

    5.3. Профилактический контроль

    5.3.1. Профилактический контроль проводится в целях проверки состояния и работоспособности АБ.

    5.3.2. Объем работ, периодичность и технические критерии при профилактическом контроле приведены в табл.8.

    Таблица 8

    Наименование работы Периодичность Технический критерий
    СК СН СК СН
    Проверка емкости (контрольный разряд) 1 раз в 1-2 года на ПС и ГЭС 1 раз в год Должно быть соответствие заводским данным
    при необходимости Не менее 70% номинальной после 15 лет эксплуатации Не менее 80% номинальной после 10 лет эксплуатации
    Проверка работоспособности при разряде не более 5 с наибольшим возможным током, но не более чем 2,5 раза от значения силы тока одночасового режима разряда На ПС и ГЭС не менее одного раза в год - Результаты сопоставляются с предыдущими -
    Проверка напряжения, плотности, уровня и температуры электролита в контрольных аккумуляторах и аккумуляторах с пониженным напряжением Не реже одного раза в месяц - (2,2±0,05) В,

    (1,205±0,005) г/см 3

    (2,18±0,04) В,

    (1,24±0,005) г/см 3

    Химический анализ электролита на содержание железа и хлора из контрольных аккумуляторов 1 раз в год 1 раз в 3 года Содержание железа - не более 0,008%,

    хлора - не более 0,0003%

    Напряжение батареи, В: R из , кОм, не менее
    Измерение сопротивления изоляции батареи 1 раз в 3 мес 24 15
    Промывание пробок - 1 раз в 6 мес - Должен быть обеспечен свободный выход газов из аккумулятора

    5.3.3. Проверка работоспособности АБ предусматривается вместо проверки емкости. Допускается производить ее при включении ближайшего к АБ выключателя с наиболее мощным электромагнитом включения.

    5.3.4. При контрольном разряде пробы электролита должны отбираться в конце разряда, так как во время разряда ряд вредных примесей переходит в электролит.

    5.3.5. Внеплановый анализ электролита из контрольных аккумуляторов проводится при обнаружении массовых дефектов в работе батареи:

    коробление и чрезмерный рост положительных электродов, если не обнаружены нарушения режима работы батареи;

    выпадение светло-серого шлама;

    пониженная емкость без видимых причин.

    При внеплановом анализе, кроме железа и хлора, определяются следующие примеси при наличии соответствующих показаний:

    марганца - электролит приобретает малиновый оттенок;

    меди - повышенный саморазряд при отсутствии повышенного содержания железа;

    окислов азота - разрушение положительных электродов при отсутствии в электролите хлора.

    5.3.6. Проба отбирается резиновой грушей со стеклянной трубкой, доходящей до нижней трети аккумуляторного бака. Проба заливается в банку с притертой пробкой. Банка предварительно моется горячей водой и ополаскивается дистиллированной водой. На банку наклеивается этикетка с названием батареи, номером аккумулятора и датой отбора пробы.

    5.3.7. Предельное содержание примесей в электролите работающих аккумуляторов, не указанное в нормах, ориентировочно может быть принято в 2 раза больше, чем в свежеприготовленном электролите из аккумуляторной кислоты 1-го сорта.

    5.3.8. Сопротивление изоляции заряженной аккумуляторной батареи измеряется с помощью устройства контроля изоляции на шинах щита постоянного тока или вольтметром с внутренним сопротивлением не менее 50 кОм.

    5.3.9. Расчет сопротивления изоляции R из (кОм) при измерении вольтметром производится по формуле

    где Rв - сопротивление вольтметра, кОм;

    U - напряжение аккумуляторной батареи, В;

    U + ,U - - напряжение плюса и минуса относительно "земли", В.

    По результатам этих же измерений могут быть определены сопротивления изоляции полюсов R из + и R из - _ (кОм).

    ;

    5.4. Текущий ремонт аккумуляторов типа СК

    5.4.1. К текущему ремонту относятся работы по устранению различных неисправностей АБ, выполняемые, как правило, силами эксплуатационного персонала.

    5.4.2. Характерные неисправности аккумуляторов типа СК приведены в табл.9.

    Таблица 9

    Характеристика и признаки неисправности Вероятная причина Метод устранения
    Сульфатация электродов:

    пониженное разрядное напряжение, снижение емкости на контрольных разрядах,

    Недостаточность первого заряда;

    Пункты 5.4.3-5.4.6

    повышение напряжения при заряде (при этом плотность электролита ниже, чем у нормальных аккумуляторов); систематические недозаряды;
    во время заряда при постоянной или плавно убывающей силе тока газообразование начинается раньше, чем у нормальных аккумуляторов; чрезмерно глубокие разряды;
    температура электролита при заряде повышена при одновременном высоком напряжении; длительное время батарея оставалась разряженной;
    положительные электроды в начальной стадии светло-коричневого цвета, при глубокой сульфатации оранжево-коричневые, иногда с белыми пятнами кристаллического сульфата или если цвет электродов темно- или оранжево-коричневый, то поверхность электродов на ощупь твердая и песчаная, при нажатии ногтем дающая хрустящий звук; неполное покрытие электродов электролитом;
    часть активной массы отрицательных электродов вытеснена в шлам, оставшаяся в электродах масса на ощупь песчаная, а при чрезмерной сульфатации выпучивается из ячеек электродов. Электроды приобретают "белесый" оттенок, появляются белые пятна доливка аккумуляторов кислотой вместо воды
    Короткое замыкание:
    пониженное разрядное и зарядное напряжение, пониженная плотность электролита, Коробление положительных электродов; Необходимо немедленно обнаружить и устранить место короткого
    отсутствие газовыделения или отставание в газовыделении во время заряда при постоянной или плавно убывающей силе тока; повреждение или дефект сепараторов; замыкание наростами губчатого свинца замыкания согласно пп.5.4.9 – 5.4.11
    повышенная температура электролита при заряде при одновременно низком напряжении
    Положительные электроды покороблены Чрезмерно большое значение зарядного тока при приведении в действие батареи; Выправить электрод, который должен быть предварительно заряжен;
    сильная сульфатация пластин провести анализ электролита, и, если он окажется загрязненным, сменить его;
    короткое замыкание данного электрода с соседним отрицательным; проводить заряд в соответствии с настоящей инструкцией
    присутствие азотной или уксусной кислоты в электролите
    Отрицательные электроды покороблены Повторные перемены направления заряда при изменении полярности электрода;

    воздействие со стороны соседнего положительного электрода

    Выпрямить электрод в заряженном состоянии
    Усадка отрицательных электродов Большие значения зарядного тока или чрезмерный перезаряд при непрерывном газообразовании;

    недоброкачественные электроды

    Сменить дефектный
    электрод
    Разъедание ушек электродов на границе электролита с воздухом Присутствие хлора или его соединений в электролите или аккумуляторном помещении Проветрить аккумуляторное помещение и проверить электролит на присутствие хлора
    Изменение размеров положительных электродов Разряды до конечных напряжений ниже допустимых значений Вести разряд только до снятия гарантированной емкости;
    загрязнение электролита азотной или уксусной кислотой проверить качество электролита и в случае обнаружения вредных примесей сменить его
    Разъедание нижней части положительных электродов Систематическое недоведение заряда до конца, в результате чего после доливок электролит плохо перемешивается и происходит его расслоение Проводить процессы заряда в соответствии с данной инструкцией
    На дне баков значительный слой шлама темного цвета Систематические излишние заряда и перезаряды Произвести откачку шлама
    Саморазряд и газовыделение. Выявление газа из аккумуляторов, находящихся в состоянии покоя, через 2-3 ч после окончания заряда или во время процесса разряда Загрязнение электролита соединениями металлов меди, железа, мышьяка, висмута Проверить качество электролита и в случае обнаружения вредных примесей сменить его

    5.4.3. Определение наличия сульфатации по внешним признакам часто затруднено из-за невозможности осмотра пластин электродов в процессе эксплуатации. Поэтому сульфатацию пластин можно определить по косвенным признакам.

    Явным признаком сульфатации является специфический характер зависимости зарядного напряжения по сравнению с исправным аккумулятором (рис.3). При заряде засульфатированного аккумулятора напряжение сразу и быстро в зависимости от степени сульфатации достигает максимального значения и только по мере растворения сульфата начинает снижаться. У исправного аккумулятора напряжение по мере заряда увеличивается.

    5.4.4. Систематические недозаряды возможны из-за недостаточности напряжения и тока подзаряда. Своевременное проведение уравнительных зарядов обеспечивает предотвращение сульфатации и позволяет устранить незначительную сульфатацию.

    Устранение сульфатации требует значительных затрат времени и не всегда является успешным, поэтому целесообразней не допустить ее возникновения.

    5.4.5. Незапущенную и неглубокую сульфатацию рекомендуется устранять проведением следующего режима.

    Рис.3. Кривая зависимости напряжения от времени начала заряда глубоко засульфатированного аккумулятора

    После нормального заряда батарею разряжают током десятичасового режима до напряжения 1,8 В на аккумулятор и оставляют в покое на 10-12 ч. Затем батарея заряжается током 0,1 · С 10 до газообразования и выключается на 15 мин, после чего подвергается заряду током 0,1 I зар.макс до наступления интенсивного газообразования на электродах обеих полярностей и достижения нормальной плотности электролита.

    5.4.6. При запущенной сульфатации рекомендуется проводить указанный режим заряда в разбавленном электролите. Для этого электролит после разряда разбавляют дистиллированной водой до плотности 1,03-1,05 г/см 3 , заряжают и перезаряжают, как указано в п.5.4.5.

    Эффективность режима определяется по систематическому росту плотности электролита.

    Заряд ведется до получения установившейся плотности электролита (обычно меньшей 1,21 г/см 3) и сильного равномерного газовыделения. После этого доводят плотность электролита до 1,21 г/см 3 .

    Если сульфатация оказалась настолько значительной, что указанные режимы могут оказаться безрезультатными, чтобы восстановить работоспособность батареи, необходима замена электродов.

    5.4.7. При появлении признаков короткого замыкания аккумуляторы в стеклянных баках должны быть тщательно осмотрены с просвечиванием переносной лампой. Аккумуляторы в эбонитовых и деревянных баках осматриваются сверху.

    5.4.8. В аккумуляторах, работающих при постоянном подзаряде с повышенным напряжением, на отрицательных электродах могут образовываться древовидные наросты губчатого свинца, которые могут вызвать короткое замыкание. При обнаружении наростов на верхних кромках электродов необходимо их соскоблить полоской стекла или другого кислотостойкого материала. Профилактику и удаление наростов в других местах электродов рекомендуется выполнять небольшими перемещениями сепараторов вверх и вниз.

    5.4.9. Короткое замыкание через шлам в аккумуляторе в деревянном баке со свинцовой обкладкой можно определить по результатам измерения напряжения между электродами и обкладкой. При наличии замыкания напряжение будет равно нулю.

    У исправного аккумулятора, находящегося в покое, напряжение плюс-обкладка близко к 1,3 В, а минус-обкладка - к 0,7 В.

    При обнаружении замыкания через шлам необходимо шлам откачать. При невозможности немедленной откачки необходимо попытаться разравнять шлам угольником и устранить соприкосновение с электродами.

    5.4.10. Для определения короткого замыкания можно пользоваться компасом в пластмассовом корпусе. Компас перемещается вдоль соединительных полос над ушками электродов сначала одной полярности аккумулятора, затем другой.

    Резкое изменение отклонения стрелки компаса с двух сторон электрода указывает на короткое замыкание этого электрода с электродом другой полярности (рис.4).

    Рис.4. Отыскание коротких замыканий с помощью компаса:

    1 - отрицательный электрод; 2 - положительный электрод; 3 - бак; 4 - компас

    Если в аккумуляторе окажутся еще короткозамкнутые электроды, стрелка будет отклоняться около каждого из них.

    5.4.11. Коробление электродов возникает главным образом при неравномерном распределении тока между электродами.

    5.4.12. Неравномерное распределение тока по высоте электродов, например при расслоении электролита, при чрезмерно больших и длительных зарядных и разрядных токах ведет к неравномерному ходу реакций на различных участках электродов, что приводит к возникновению механических напряжений и короблению пластин. Наличие в электролите примесей азотной и уксусной кислоты усиливает окисление более глубоких слоев положительных электродов. Поскольку двуокись свинца занимает больший объем, чем свинец, из которого она образовалась, имеет место рост и искривление электродов.

    Глубокие разряды до напряжения ниже допустимого также ведут к искривлению и росту положительных электродов.

    5.4.13. Короблению и росту подвержены положительные электроды. Искривление отрицательных электродов имеет место главным образом в результате давления на них со стороны соседних покоробленных положительных.

    5.4.14. Выправить покоробленные электроды можно только удалением их из аккумулятора. Исправлению подлежат электроды, незасульфатированные и полностью заряженные, так как в этом состоянии они мягче и легче поддаются правке.

    5.4.15. Вырезанные покоробленные электроды обмывают водой и помещают между гладкими досками твердой породы (бук, дуб, береза). На верхнюю доску устанавливается груз, увеличиваемый по мере правки электродов. Запрещается правка электродов ударами киянки или молотка непосредственно или через доску во избежание разрушения активного слоя.

    5.4.16. Если покоробленные электроды не опасны для соседних отрицательных электродов, допускается ограничиться мерами, предупреждающими возникновение короткого замыкания. Для этого с выпуклой стороны покоробленного электрода прокладывается дополнительный сепаратор. Замена таких электродов производится при очередном ремонте батареи.

    5.4.17. При значительном и прогрессирующем короблении необходимо заменить все положительные электроды в аккумуляторе новыми. Замена только покоробленных электродов новыми не допускается.

    5.4.18. К числу видимых признаков неудовлетворительного качества электролита относится его цвет:

    цвет от светло- до темно-коричневого указывает на присутствие органических веществ, которые во время эксплуатации быстро (по крайней мере частично) переходят в уксуснокислые соединения;

    фиолетовый цвет электролита указывает на присутствие соединений марганца, при разряде батареи эта фиолетовая окраска исчезает.

    5.4.19. Главным источником вредных примесей в электролите во время эксплуатации является доливочная вода. Поэтому для предупреждения попадания в электролит вредных примесей для доливки должна использоваться дистиллированная или равноценная ей вода.

    5.4.20. Применение электролита с содержанием примесей выше допустимых норм влечет за собой:

    значительный саморазряд в случае присутствия меди, железа, мышьяка, сурьмы, висмута;

    увеличение внутреннего сопротивления в случае присутствия марганца;

    разрушение положительных электродов вследствие присутствия уксусной и азотной кислот или их производных;

    разрушение положительных и отрицательных электродов при действии соляной кислоты или соединений, содержащих хлор.

    5.4.21. При попадании в электролит хлоридов (могут быть внешние признаки - запах хлора и отложения светло-серого шлама) или окислов азота (внешние признаки отсутствуют) аккумуляторы подвергаются 3-4 циклам разряд-заряд, во время которых за счет электролиза эти примеси, как правило, удаляются.

    5.4.22. Для удаления железа аккумуляторы разряжают, загрязненный электролит удаляют вместе со шламом и промывают дистиллированной водой. После промывки аккумуляторы заполняют электролитом плотностью 1,04-1,06 г/см 3 и заряжают до получения неизменных значений напряжения и плотности электролита. Затем раствор из аккумуляторов удаляется, заменяется свежим электролитом плотностью 1,20 г/см 3 и аккумуляторы разряжают до 1,8 В. В конце разряда электролит проверяют на содержание железа. При благоприятном анализе аккумулятора нормально заряжаются. В случае неблагоприятного анализа цикл обработки повторяется.

    5.4.23. Для удаления загрязнения марганцем аккумуляторы разряжают. Электролит заменяется свежим и аккумуляторы нормально заряжают. Если загрязнение свежее, достаточно одной замены электролита.

    5.4.24. Медь из аккумуляторов с электролитом не удаляется. Для ее удаления аккумуляторы заряжают. При заряде медь переносится на отрицательные электроды, которые после заряда заменяются. Установка новых отрицательных электродов к старым положительным ведет к ускоренному выходу из строя последних. Поэтому такая замена целесообразна при наличии в запасе старых исправных отрицательных электродов.

    При обнаружении большого количества загрязненных медью аккумуляторов целесообразней заменить все электроды и сепараторы.

    5.4.25. Если в аккумуляторах отложения шлама достигли уровня, при котором расстояние до нижней кромки электродов в стеклянных баках сократились до 10 мм, а в непрозрачных до 20 мм, необходима откачка шлама.

    5.4.26. В аккумуляторах с непрозрачными баками проверить уровень шлама можно с помощью угольника из кислотостойкого материала (рис.5). Вынимается сепаратор из середины аккумулятора и приподнимается несколько сепараторов рядом и в зазор между электродами опускается угольник до соприкосновения со шламом. Затем угольник поворачивается на 90° и поднимается вверх до соприкосновения с нижней кромкой электродов. Расстояние от поверхности шлама до нижней кромки электродов будет равно разнице измерений по верхнему концу угольника плюс 10 мм. Если угольник не проворачивается или проворачивается с трудом, то шлам или уже соприкасается с электродами, или близок к этому.

    5.4.27. При откачке шлама одновременно удаляется и электролит. Чтобы заряженные отрицательные электроды на воздухе не разогревались и не потеряли емкость при откачке, необходимо предварительно заготовить потребное количество электролита и залить его в аккумулятор сразу после откачки.

    5.4.28. Откачку производят с помощью вакуум-насоса или воздуходувки. Шлам откачивают в бутыль, через пробку, в которую пропускают две стеклянные трубки диаметром 12-15 мм (рис.6). Короткая трубка может быть латунной диаметром 8-10 мм. Для пропуска шланга из аккумулятора иногда приходится вынимать пружины и даже вырезать по одному боковому электроду. Шлам необходимо осторожно размешивать угольником из текстолита или винипласта.

    5.4.29. Чрезмерный саморазряд является следствием низкого сопротивления изоляции батареи, высокой плотности электролита, недопустимо высокой температуры аккумуляторного помещения, коротких замыканий, загрязнения электролита вредными примесями.

    Последствия саморазряда от трех первых причин обычно не требуют специальных мер для исправления аккумуляторов. Достаточно найти и устранить причину понижения сопротивления изоляции батареи, привести в норму плотность электролита и температуру помещения.

    5.4.30. Чрезмерный саморазряд из-за коротких замыканий или из-за загрязнения электролита вредными примесями, если он допущен в течение длительного времени, приводит к сульфатации электродов и к потере емкости. Электролит должен быть заменен, а дефектные аккумуляторы десульфатированы и подвергнуты контрольному разряду.

    Рис.5 Угольник для измерения уровня шлама

    Рис.6. Схема откачки шлама вакуум-насосом или воздуходувкой:

    1 - резиновая пробка; 2 -стеклянные трубки; 3, 4 - резиновые шланги;

    5 - вакуум-насос или воздуходувка

    5.4.31. Переполюсовка аккумуляторов возможна при глубоких разрядах батареи, когда отдельные аккумуляторы, имеющие пониженную емкость, полностью разрядятся, а затем зарядятся в обратном направлении током нагрузки от исправных аккумуляторов.

    Переполюсованный аккумулятор имеет обратное по знаку напряжение до 2 В. Такой аккумулятор снижает разрядное напряжение батареи на 4 В.

    5.4.32. Для исправления переполюсованный аккумулятор разряжают, а затем заряжают небольшим током в правильном направлении до достижения постоянного значения плотности электролита. Потом разряжают током 10-часового режимам повторно заряжают и так повторяют, пока напряжение не достигнет неизменного в течение 2 ч значения 2,5-2,7 В, а плотность электролита значения 1,20-1,21 г/см 3 .

    5.4.33. Повреждения стеклянных баков начинаются обычно с трещин. Поэтому при регулярных осмотрах батареи дефект можно обнаружить в начальной стадии. Наибольшее количество трещин появляется в первые годы эксплуатации батареи из-за неправильной установки изоляторов под баки (разной толщины или отсутствия прокладок между дном бака и изоляторами), а также из-за деформации стеллажей, сделанных из сырой древесины. Трещины могут также появляться из-за местного нагрева стенки бака, вызванного коротким замыканием.

    5.4.34. Повреждения деревянных баков, выложенных свинцом, наиболее часто возникают из-за повреждений свинцовой обкладки. Причинами являются: плохая пропайка швов, дефекты свинца, установка подпорных стекол без желобков, при замыкании положительных электродов с обкладкой непосредственно или через шлам.

    При замыкании положительных электродов на обкладку на ней формируется двуокись свинца. В результате обкладка теряет свою прочность и в ней могут появиться сквозные отверстия.

    5.4.35. При необходимости вырезки дефектного аккумулятора из работающей батареи его сначала шунтируют перемычкой сопротивлением 0,25-1,0 Ом, рассчитанной на прохождение нормального тока нагрузки. Разрезают вдоль соединительную полосу с одной стороны аккумулятора. В разрез вставляют полоску изоляционного материала. Если устранение неисправности требует длительного времени (например, устранение переполюсованного аккумулятора, шунтирующий резистор заменяют медной перемычкой (рис.7), рассчитанной на ток аварийного разряда.

    Рис.7. Схема шунтирования дефектного аккумулятора:

    1 - дефектный аккумулятор; 2 - исправные аккумуляторы; 3 - параллельно

    включенный резистор; 4 - медная перемычка; 5 - соединительная полоса;

    6 - место разреза соединительной полосы

    5.4.36. Поскольку применение шунтирующих резисторов недостаточно хорошо зарекомендовало себя в эксплуатации, предпочтительно применение аккумулятора, включаемого параллельно дефектному, для вывода последнего в ремонт.

    5.4.37. Замена поврежденного бака на работающей батарее выполняется при шунтировании аккумулятора резистором с вырезкой только электродов.

    Заряженные отрицательные электрода в результате взаимодействия оставшегося в порах электролита и кислорода воздуха окисляются с выделением большого количества тепла, сильно разогреваясь.

    Поэтому при повреждении бака с вытеканием электролита в первую очередь вырезаются отрицательные электроды и помещаются в бак с дистиллированной водой, а после замены бака устанавливаются после положительных электродов.

    5.4.38. Вырезку из аккумулятора одного положительного электрода для правки на работающей батарее допускается производить в многоэлектродных аккумуляторах. При малом количестве электродов во избежание переполюсования аккумулятора при переходе батареи в режим разряда необходимо шунтировать его перемычкой с диодом, рассчитанным на разрядный ток.

    5.4.39. Если в батарее обнаружен аккумулятор с пониженной емкостью при отсутствии короткого замыкания и сульфатации, то следует с помощью кадмиевого электрода определить, электроды какой полярности имеют недостаточную емкость.

    5.4.40. Проверка емкости электродов производится на аккумуляторе, разряженном до 1,8 В в конце контрольного разряда. В таком аккумуляторе потенциал положительных электродов по отношению к кадмиевому электроду должен быть примерно равным 1,96 В, а отрицательных 0,16 В. Признаком недостаточности емкости положительных электродов служит понижение их потенциала менее 1,96 В, а отрицательных электродов - повышение их потенциала более 0,2 В.

    5.4.41. Измерения производятся на аккумуляторе, включенном на нагрузку вольтметром с большим внутренним сопротивлением (более 1000 Ом).

    5.4.42. Кадмиевый электрод (может быть стержень диаметром 5-6 мм и длиной 8-10 см) за 0,5 ч до начала измерений необходимо опустить в электролит плотностью 1,18 г/см 3 . При перерывах в измерениях следует не допускать высыхание кадмиевого электрода. Новый кадмиевый электрод должен быть выдержан в электролите в течение 2-3 сут. После измерений электрод тщательно промывается водой. На кадмиевый электрод должна быть надета перфорированная трубка из изоляционного материала.

    5.5. Текущий ремонт аккумуляторов типа СН

    5.5.1. Характерные неисправности аккумуляторов типа СН и методы их устранения приведены в табл.10.

    Таблица 10

    Признак неисправности Вероятная причина Метод устранения
    Течь электролита Повреждение бака Замена аккумулятора
    Пониженное разрядное и зарядное напряжение. Пониженная плотность электролита. Повышение температуры электролита Возникновение короткого замыкания внутри аккумулятора Замена аккумулятора
    Пониженное разрядное напряжение и емкость на контрольных разрядах Сульфатация электродов Проведение тренировочных циклов разряд-заряд
    Понижение емкости и разрядного напряжения. Потемнение или помутнение электролита Загрязнение электролита посторонними примесями Промывка аккумулятора дистиллированной водой и смена электролита

    5.5.2. При смене электролита аккумулятор разряжают 10-часовым режимом до напряжения 1,8 В и выливают электролит, затем заливают его дистиллированной водой до верхней отметки и оставляют на 3-4 ч. После этого выливают воду, заливают электролит плотностью (1,210±0,005) г/см 3 , приведенной к температуре 20°С, и заряжают аккумулятор до достижения постоянных значений напряжения и плотности электролита в течение 2 ч. После заряда корректируют плотность электролита до (1,240 ± 0,005) г/см 3 .

    5.6. Капитальный ремонт аккумуляторных батарей

    5.6.1. Капитальный ремонт АБ типа СК включает следующие работы:

    замену электродов, замену баков или выкладку их кислотостойким материалом, ремонт ушек электродов, ремонт или замену стеллажей.

    Замена электродов должна производиться, как правило, не ранее чем через 15-20 лет эксплуатации.

    Капитальный ремонт аккумуляторов типа СН не производится, аккумуляторы заменяются. Замена должна производиться не ранее чем через 10 лет эксплуатации.

    5.6.2. Для проведения капитального ремонта целесообразно приглашать специализированные ремонтные предприятия. Ремонт выполняется согласно действующим технологическим инструкциям ремонтных предприятий.

    5.6.3. В зависимости от условий работы батареи в капитальный ремонт выводится вся батарея целиком или часть ее.

    Количество аккумуляторов, выводимых в ремонт по частям, определяется из условия обеспечения минимально допустимого напряжения на шинах постоянного тока для конкретных потребителей данной батареи.

    5.6.4. Для замыкания цепи батареи при ремонте ее по группам должны быть изготовлены перемычки из изолированного гибкого медного провода. Сечение провода выбирается таким, чтобы его сопротивление (R) не превышало сопротивления группы отключенных аккумуляторов:

    ,

    где п - количество отключенных аккумуляторов.

    На концах перемычек должны быть зажимы типа струбцин.

    5.6.5. При частичной замене электродов необходимо руководствоваться следующими правилами:

    не допускается в одном и том же аккумуляторе устанавливать одновременно старые и новые, а также разной степени износа электроды одной полярности;

    при замене в аккумуляторе новыми только положительных электродов допускается оставлять старые отрицательные, если они проверены кадмиевым электродом;

    при замене отрицательных электродов новыми не допускается оставлять в данном аккумуляторе старые положительные электроды во избежание их ускоренного выхода из строя;

    не допускается вместо специальных боковых электродов ставить нормальные отрицательные электроды.

    5.6.6. Рекомендуется формировочный заряд аккумуляторов с новыми положительными и старыми отрицательными электродами для большой сохранности отрицательных электродов вести током не более 3 А на один положительный электрод И-1, 6А на электрод И-2 и 12 А на электрод И-4.

    6. ОСНОВНЫЕ СВЕДЕНИЯ ПО МОНТАЖУ АККУМУЛЯТОРНЫХ БАТАРЕЙ, ПРИВЕДЕНИЮ ИХ В РАБОЧЕЕ СОСТОЯНИЕ И ПО КОНСЕРВАЦИИ

    6.1. Сборка аккумуляторов, монтаж батарей и приведение их в действие должны производиться силами специализированных монтажных или ремонтных организаций, либо специализированной бригадой энергопредприятия согласно требованиям действующих технологических инструкций.

    6.2. Сборку и установку стеллажей, а также соблюдение технических требований к ним следует производить согласно ТУ 45-87. Кроме того, необходимо стеллажи полностью покрывать полиэтиленовой или другой пластиковой кислотостойкой пленкой толщиной не менее 0,3 мм.

    6.3. Измерение сопротивления изоляции, не залитой электролитом аккумуляторной батареи, ошиновки, проходной доски производится мегаомметром на напряжении 1000-2500 В; сопротивление должно быть не менее 0,5 МОм. Таким же образом может быть измерено сопротивление изоляции, залитой электролитом, но незаряженной батареи.

    6.4. Электролит, заливаемый в аккумуляторы типа СК, должен иметь плотность (1,18±0,005) г/см 3 , а в аккумуляторы типа СН (1,21 ± 0,005) г/см 3 при температуре 20°С.

    6.5. Электролит должен готовиться из серной аккумуляторной кислоты высшего и первого сорта по ГОСТ 667-73 и дистиллированной или равноценной ей воды по ГОСТ 6709-72.

    6.6. Необходимые объемы кислоты (V k ) и воды (V В ) для получения требуемого объема электролита (V Э ) в кубических сантиметрах могут быть определены по уравнениям:

    ; ,

    где r э и r к - плотности электролита и кислоты, г/см 3 ;

    т э - массовая доля серной кислоты в электролите, %,

    т к - массовая доля серной кислоты, %.

    6.7. Например, для составления 1 л электролита плотностью 1,18 г/см 3 при 20° необходимое количество концентрированной кислоты с массовой долей 94% плотностью 1,84 г/см 3 и воды будет:

    V к = 1000 × = 172 см 3 ; V в = 1000 × 1,18 = 864 см 3 ,

    где m э = 25,2% берется по справочным данным.

    Соотношение полученных объемов составляет 1:5, т.е. на одну часть объема кислоты необходимо пять частей воды.

    6.8. Для приготовления 1 л электролита плотностью 1,21 г/см 3 при температуре 20°С из такой же кислоты необходимо: кислоты 202 см 3 и воды 837 см 3 .

    6.9. Приготовление большого количества электролита производится в баках из эбонита или винипласта либо в деревянных, выложенных свинцом или пластиком.

    6.10. В бак сначала заливают воду в количестве не более 3/4 его объема, а затем кислоту кружкой из кислотостойкого материала вместимостью до 2 л.

    Заливку производят тонкой струей, постоянно перемешивая раствор мешалкой из кислотостойкого материала и контролируя его температуру, которая не должна превышать 60°С.

    6.11. Температура электролита, заливаемого в аккумуляторы типа С(СК), должна быть не выше 25°С, а в аккумуляторы типа СН не выше 20 °С.

    6.12. Батарея, залитая электролитом, оставляется в покое на 3-4 ч для полной пропитки электродов. Время после заливки электролитом до начала заряда не должно превышать 6 ч во избежание сульфатации электродов.

    6.13. Плотность электролита после заливки может несколько понизиться, а температура повыситься. Это явление нормальное. Повышать плотность электролита путем доливки кислоты не требуется.

    6.14. В рабочее состояние АБ типа СК приводятся следующим образом:

    6.14.1. Изготовленные на заводе электроды аккумуляторов должны быть подвергнуты формированию после монтажа батареи. Формирование представляет собой первый заряд, который отличается от обычных нормальных зарядов своей длительностью и особым режимом.

    6.14.2. Во время формировочного заряда свинец положительных электродов переводится в двуокись свинца РbО 2 , имеющую темно-коричневый цвет. Активная масса отрицательных электродов переводится в чистый свинец губчатого строения, имеющий серый цвет.

    6.14.3. За время формировочного заряда батарее типа СК необходимо сообщить не менее девятикратной емкости десятичасового режима разряда.

    6.14.4. При заряде положительный полюс зарядного агрегата должен быть присоединен к положительному полюсу батареи, а отрицательный - к отрицательному полюсу батареи.

    После заливки аккумуляторы имеют обратную полярность, что необходимо учитывать при установке начального напряжения зарядного агрегата во избежание чрезмерного "броска" зарядного тока.

    6.14.5. Значения тока первого заряда, приходящиеся на один положительный электрод, должны быть не более:

    для электрода И-1-7 А (аккумуляторы № 1-5);

    для электрода И-2-10 А (аккумуляторы № 6-20);

    для электрода И-4-18 А (аккумуляторы № 24-148).

    6.14.6. Весь цикл формирования проводится в следующем порядке:

    непрерывный заряд до сообщения батарее 4,5-кратной емкости 10-часового режима разряда. Напряжение на всех аккумуляторах должно быть не менее 2,4 В. У аккумуляторов, на которых напряжение не достигло 2,4 В, проверяется отсутствие коротких замыканий между электродами;

    перерыв на 1 ч (батарея отключается от зарядного агрегата);

    продолжение заряда, во время которого батарее сообщается номинальная емкость.

    Затем повторяется чередование одночасового покоя и заряд с сообщением однократной емкости, пока батарея не получит девятикратную емкость.

    В конце формировочного заряда напряжение аккумуляторов достигает 2,5-2,75 В, а приведенная к температуре 20°С плотность электролита - 1,20-1,21 г/см 3 и остаются неизменными в течение не менее 1 ч. При включении батареи на заряд после часового перерыва происходит обильное выделение газов - "кипение" одновременно во всех аккумуляторах.

    6.14.7. Запрещается вести формировочный заряд током, превышающим вышеуказанные значения, во избежание коробления положительных электродов.

    6.14.8. Допускается ведение формировочного заряда при сниженном зарядном токе или ступенчатым режимом (сначала максимально допустимым током, а затем сниженным), но при обязательном сообщении 9-кратной емкости.

    6.14.9. В течение времени, пока батарея не получит 4,5-кратную номинальную емкость, перерывы заряда не допускаются.

    6.14.10. Температура в аккумуляторном помещении не должна быть ниже +15°С. При более низких температурах формирование аккумуляторов затягивается.

    6.14.11. Температура электролита в течение всего времени формирования батареи не должна превышать 40°С. Если температура электролита окажется выше 40°С следует снизить зарядный ток наполовину, а если это не поможет, заряд прерывается до тех пор, пока температура не снизится на 5-10°С. Для предупреждения перерывов заряда до сообщения аккумуляторам 4,5-кратной емкости необходимо тщательно контролировать температуру электролита и принимать мери к ее снижению.

    6.14.12. Во время заряда на каждом аккумуляторе измеряют и записывают напряжение, плотность и температуру электролита через 12 ч, на контрольных аккумуляторах через 4 ч, а в конце заряда через каждый час. Записываются также ток заряда и сообщаемая емкость.

    6.14.13. В течение всего времени заряда должен проводиться контроль за уровнем электролита в аккумуляторах и при необходимости производиться доливка. Не допускается оголение верхних кромок электродов, так как это ведет к их сульфатации. Доливки ведутся электролитом плотностью 1,18 г/см 3 .

    6.14.14. После окончания формировочного заряда из аккумуляторного помещения удаляют пропитанные электролитом опилки и протирают баки, изоляторы и стеллажи. Протирку проводят сначала сухой ветошью, затем смоченной в 5%-ном растворе кальцинированной соды, далее смоченной дистиллированной водой и в заключение сухой ветошью.

    Покровные стекла снимаются, промываются в дистиллированной воде и устанавливаются на место так, чтобы они не выходили за внутренние края баков.

    6.14.15. Выполняется первый контрольный разряд батареи током 10-часового режима, емкость аккумуляторов на первом цикле должна быть не менее 70% номинальной.

    6.14.16. Номинальная емкость обеспечивается на четвертом цикле. Поэтому аккумуляторные батареи в обязательном порядке подвергаются еще трем циклам разряд-зарядов. Разряды ведутся током 10-часового режима до напряжения 1,8 В на аккумулятор. Заряды ведутся ступенчатым режимом до достижения постоянного значения напряжения не ниже 2,5 В на аккумулятор, постоянного значения плотности электролита (1,205±0,005) г/см 3 , соответствующей температуре 20°С, в течение 1 ч при соблюдении температурного режима АБ.

    6.15. В рабочее состояние АБ типа СН приводятся следующим образом:

    6.15.1. Аккумуляторные батареи включают на первый заряд при температуре электролита в аккумуляторах не выше 35°С. Значение тока при первом заряде равно 0,05 · С 10 .

    6.15.2. Заряд производят до достижения постоянных значений напряжения и плотности электролита в течение 2 ч. Общая продолжительность заряда должна быть не менее 55 ч.

    В течение времени, пока батарея не получит двукратной емкости 10-часового режима, перерывы заряда не допускаются.

    6.15.3. Во время заряда на контрольных аккумуляторах (10% количества их в батарее) производят измерения напряжения, плотности и температуры электролита сначала через 4 ч, а после 45 ч заряда через каждый час. Температура электролита в аккумуляторах должна поддерживаться не выше 45°С. При температуре 45°С зарядный ток снижают наполовину или прерывают заряд до тех пор, пока температура не снизится на 5-10°С.

    6.15.4. По oкончании заряда перед отключением зарядного агрегата измеряют и записывают в ведомость напряжение и плотность электролита каждого аккумулятора.

    6.15.5. Плотность электролита аккумуляторов в конце первого заряда при температуре электролита 20°С должна быть (1,240 ± 0,005) г/см 3 . Если она более 1,245 г/см 3 , производят ее корректировку добавлением дистиллированной воды и продолжают заряд в течение 2 ч до полного перемешивания электролита.

    Если плотность электролита менее 1,235 г/см 3 , корректировку производят раствором серной кислоты плотностью 1,300 г/см 3 и продолжают заряд в течение 2 ч до полного перемешивания электролита.

    6.15.6. После отключения батареи с заряда, через час корректируют уровень электролита в каждом аккумуляторе.

    При уровне электролита над предохранительным щитком менее 50 мм добавляет электролит плотностью (1,240 ± 0,005) г/см 3 , приведенной к температуре 20°С.

    При уровне электролита над предохранительным щитком более 55 мм избыток отбирают резиновой грушей.

    6.15.7. Первый контрольный разряд проводят током 10-часового режима до напряжения 1,8 В. При первом разряде батарея должна обеспечить отдачу 100% емкости при средней температуре электролита в процессе разряда 20°С.

    При неполучении 100% емкости проводятся тренировочные циклы заряд-разряд 10-часовым режимом.

    Емкости 0,5 и 0,29-часовьпс режимов могут быть гарантированы только на четвертом цикле заряд-разряд.

    При средней температуре электролита, во время разряда отличающейся от 20°С, полученную емкость приводят к емкости при температуре 20°С.

    При разряде на контрольных аккумуляторах проводят измерения напряжения, температуры и плотности электролита. В конце разряда измерения проводят на каждом аккумуляторе.

    6.15.8. Второй заряд батареи проводится в две ступени: током первой ступени (не выше 0,2С 10) до напряжения 2,25 В на двух-трех аккумуляторах, током второй ступени (не выше 0,05С 10) заряд ведется до достижения постоянных значений напряжения и плотности электролита в течение 2 ч.

    6.15.9. При проведении второго и последующих зарядов на контрольных аккумуляторах проводят измерения напряжения, температуры и плотности электролита в соответствии с табл.5.

    По окончании заряда поверхность аккумуляторов насухо протирают, вентиляционные отверстия в крышках закрывают фильтр-пробками. Подготовленная таким образом батарея готова к эксплуатации.

    6.16. При выводе из работы на длительный срок АБ должна быть полностью заряжена. Для предотвращения сульфатации электродов из-за саморазряда АБ должна заряжаться не реже одного раза в 2 мес. Заряд проводится до достижения постоянных значений напряжения и плотности электролита аккумуляторов в течение 2 ч.

    Так как саморазряд уменьшается при снижении температуры электролита, желательно, чтобы температура окружающего воздуха была как можно ниже, но не достигала температуры замерзания электролита и составляла для электролита плотностью 1,21 г/см 3 минус 27°С, а для 1,24 г/см 3 минус 48°С.

    6.17. При демонтаже аккумуляторов типа СК с последующим использованием их электродов АБ полностью заряжается. Вырезанные положительные электроды отмываются дистиллированной водой и укладываются в штабеля. Вырезанные отрицательные электроды помещают в баки с дистиллированной водой. В течение 3-4 сут воду меняют 3-4 раза и через сутки после последней смены воды извлекают из баков и укладывают в штабеля.

    7. ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ

    7.1. По каждой аккумуляторной батарее должна иметься следующая техническая документация:

    проектные материалы;

    материалы по приемке батареи из монтажа (протоколы анализа воды и кислоты, протоколы по формировочному заряду, по циклам разряд-заряд, контрольным разрядам, протокол измерения сопротивления изоляции батареи, акты приемки);

    местная инструкция по эксплуатации;

    акты приемки из ремонта;

    протоколы плановых и внеплановых анализов электролита, анализов вновь получаемой серной кислоты;

    действующие государственные стандарты технических условий на серную аккумуляторную кислоту и дистиллированную воду.

    7.2. С. момента ввода батареи в эксплуатацию на нее заводится журнал. Рекомендуемая форма журнала приведена в приложении 2.

    7.3. При проведении уравнительных зарядов, контрольных разрядов и последующих зарядов, измерениях сопротивления изоляции запись ведется на отдельных листах в журнале.

    Приложение 1

    ПЕРЕЧЕНЬ ПРИБОРОВ, ИНВЕНТАРЯ И ЗАПАСНЫХ ЧАСТЕЙ, НЕОБХОДИМЫХ ДЛЯ ЭКСПЛУАТАЦИИ АККУМУЛЯТОРНЫХ БАТАРЕЙ

    Для обслуживания АБ должны быть следующие приборы:

    денсиметр (ареометр), ГОСТ 18481-81, с пределами измерений 1,05-1,4 г/см 3 и ценой деления 0,005 г/см 3 – 2 шт.;

    термометр ртутный стеклянный, ГОСТ 215-73, с пределами измерений 0-50°С и ценой деления 1°C - 2 шт.;

    термометр метеорологический стеклянный, ГОСТ 112-78, с пределами измерений от -10 до +40 °С - 1 шт.;

    вольтметр магнитоэлектрический класса точности 0,5 со шкалой 0-3 В - 1 шт.

    Для выполнения ряда работ и обеспечения безопасности при этом должен быть следующий инвентарь:

    кружки фарфоровые (полиэтиленовые) с носиком 1,5-2 л - 1 шт.;

    переносная лампа взрывозащищенного исполнения - 1 шт.;

    резиновая груша, резиновые шланги - 2-3 шт.;

    очки защитные - 2 шт.;

    резиновые перчатки - 2 пары;

    резиновые сапоги - 2 пары;

    резиновый фартук - 2 шт.;

    грубошерстный костюм - 2 шт.

    Запасные части и материалы:

    баки, электрода, покровные стекла – 5% общего количества аккумуляторов;

    свежий электролит – 3%;

    дистиллированная вода - 5%;

    растворы питьевой и кальцинированной соды.

    При централизованном хранении количество инвентаря, запасных частей и материалов может быть уменьшено.

    Приложение 2

    ФОРМА ЖУРНАЛА АККУМУЛЯТОРНОЙ БАТАРЕИ

    1. УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ

    2. ОБЩИЕ УКАЗАНИЯ

    3. ОСОБЕННОСТИ КОНСТРУКЦИИ И ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

    3.1. Аккумуляторы типа СК

    3.2. Аккумуляторы типа СН

    4. ПОРЯДОК ЭКСПЛУАТАЦИИ АККУМУЛЯТОРНЫХ БАТАРЕЙ

    4.1. Режим постоянного подзаряда

    4.2. Режим заряда

    4.3. Уравнительный заряд

    4.4. Разряд батарей

    4.5. Контрольный разряд

    4.6. Доливка аккумуляторов

    5. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ АККУМУЛЯТОРНЫХ БАТАРЕЙ

    5.1. Виды технического обслуживания

    5.2. Осмотры аккумуляторных батарей

    5.3. Профилактический контроль

    5.4. Текущий ремонт аккумуляторов типа СК

    5.5. Текущий ремонт аккумуляторов типа СН

    5.6. Капитальный ремонт аккумуляторных батарей

    6. ОСНОВНЫЕ СВЕДЕНИЯ ПО МОНТАЖУ АККУМУЛЯТОРНЫХ БАТАРЕЙ, ПРИВЕДЕНИЮ ИХ В РАБОЧЕЕ СОСТОЯНИЕ И ПО КОНСЕРВАЦИИ

    7. ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ

    Приложение 1. Перечень приборов, инвентаря, запасных частей, необходимых для эксплуатации аккумуляторных батарей

    Приложение 2. Форма журнала аккумуляторной батареи