Бортовая сеть велосипеда. Большая энциклопедия нефти и газа

Велосезон уже начался, и многих велосипедистов стали посещать мысли о создании бортовой сети для велосипеда. Чтобы на велосипедной прогулке можно было использовать фонарь, сигналы поворота, стоп сигналы или музыкальную систему, и не только во время движения. А, кроме того, нелишней была бы возможность зарядки телефона, смартфона или фотоаппарата. Вот одно из таких писем: «Здравствуйте. Предлагаю вам идею продукта для раздела авто-мото-вело (хотя он четко для «вело», конечно). Это некое универсальное зарядное устройство для подзарядки аккумуляторов и питания световых элементов на велосипедах с электрогенераторами. Проблема в том, что во время стоянки весь свет гаснет, т.к. нет аккума. Данное устройство должно подключаться к динамке, уметь подзаряжать небольшой аккумулятор, отображать уровень его заряда, ну и конечно запитывать при движении световые приборы».

Готового устройства у нас нет, но в этой статье мы расскажем, как на базе модулей Мастер Кит можно создать бортовую сеть для велосипеда.

В качестве источника берем обычный велосипедный генератор «бутылочного» типа, например, такой , как более универсальный:

Для минимальной бортовой сети нам понадобятся три модуля. Это BM037 , PW810 и NT800 .

BM037 представляет собой импульсный понижающий DC/DC преобразователь. В схеме он будет использоваться в качестве выпрямителя для преобразования переменного напряжения простого велосипедного генератора «бутылочного» типа в постоянное напряжение. При необходимости, вместо данного модуля можно использовать диодный выпрямитель с электролитическим конденсатором большой емкости.

PW810 - это импульсный универсальный DC/DC преобразователь. Модуль способен как уменьшать, так и повышать входное напряжение. Так как генератор при движении имеет нестабильное выходное напряжение, оно сильно зависит от скорости движения, с помощью этого преобразователя мы получим стабильное напряжение бортовой сети.

При использовании двух этих устройств мы сможем получить стабильное выходное напряжение от 5 В до 12 В. Необходимое напряжение устанавливается с помощью регулятора на модуле PW810. Но при таком включении при остановке напряжение, вырабатываемое генератором, в бортовой сети будет пропадать. Что бы этого не происходило, необходимо дополнить схему аккумулятором NT800. Такое включение позволит пользоваться бортовой сетью при остановках и увеличит мощность системы, что позволит подключать большее количество устройств. А в процессе движения на велосипеде будет происходить процесс зарядки аккумулятора.

Кроме того, в статье написано: Вместо NT800 можно использовать любой имеющийся у вас под рукой аккумулятор с рабочим напряжением 3.7 В, 6 В или 12 В.

Схему подключения модулей можно увидеть на рисунке:

Она получилась несложной. Ее сможет повторить любой человек, даже незнакомый с электроникой. Настройка схемы тоже не вызывает никакой сложности. Подключите лабораторный источник питания вместо генератора или раскрутите колесо, на котором установлен генератор. Теперь с помощью регулятора напряжения на модуле BM037 необходимо ограничить максимальное выходное напряжение до 26 В. С помощью регулятора напряжения на модуле PW810 необходимо выставить выходное напряжение используемого аккумулятора, в нашем случае 13.8 В. Теперь выведите кабель с аккумулятора на необходимые розетки, например, типа автомобильного прикуривателя, и используйте любые любимые гаджеты не переживая, что они разрядятся в самый неподходящий момент.

Если вам необходимо иметь в бортовой сети нестандартное напряжение ниже 12 В, например, 5 В или 2.4 В, можно подключить к клеммам аккумулятора понижающий DC/DC преобразователь PW841 :

Данный преобразователь оснащен двумя дисплеями: верхний служит для отображения выходного напряжения, нижний - для отображения потребляемого тока. Это позволит вам контролировать состояние и потребляемый ток подключенных устройств.

При желании аккумулятор можно оснастить модулем контроля заряда MP606 :

Модуль подключается параллельно клеммам аккумулятора. Несмотря на то, что модуль имеет очень низкое энергопотребление, всего 10 мА, при длительных стоянках рекомендуется предусмотреть его отключение. Данный модуль так же может пригодиться в любой другой технике, где используется аккумулятор, например скутер, автомобиль и т.п.

Тогда финальный вариант будет выглядеть согласно схеме:

BM037M - Импульсный регулируемый стабилизатор напряжения 1,2…37В/3,0А Импульсный стабилизатор с регулируемым выходным напряжением предназначен для установки в радиолюбительские устройства.…

Поставщик Производитель Наименование Цена
Триема KIT BM 037 2 руб.
Стандарт СИЗ Мастер Кит KIT BM037M 410 руб.
ДКО Электронщик Мастер Кит KIT BM037M 890 руб.
Ким Мастер Кит KIT BM037 914 руб.
ТаймЧипс M037-306B по запросу
Все 20 предложений от 16 поставщиков »

Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться .

  • Велосипедист не купит этот "генератор", если он продвинутый у него может быть динамо-втулка от Шимано, обычный возьмёт на Алиэкспрес батарею из 4-6 Литиевых элементов 18650. Причём возьмёт с Правильной фарой: http://ru.aliexpress.com/item/2015-N...398844341.html Обязателен задний габарит, можно с поворотниками (у меня правда самопал, в китайкорпусе за 3-4 $) ну и конечно же USB - питальник для сотового и экшн камеры.
  • Генератор бутылочного типа очень неудобен в сырую погоду, особенно на проселке. Есть в продаже динамо-втулки и для переднего и для заднего колеса. Они почти не тормозят движение и легко сопрягаются со светодиодами. Требуется только выпрямитель. Ток стабилизируется магнитопроводом генератора.
  • аккумулятор NT800 (1,3 А/ч. 12V = 15 Вт/ч. больше чем достаточно на один вечер чтобы запитать светодиодный свет и еще и на плеер останется.Заряжаться от генератора просто нет необходимости, проще прийти домой и подсоединиться к розетке (через зарядное устройство етствнно). Если вы вечерком куда то ездите на велике, то как правило недалеко. В этом случае вам нужна скорость и легкость движения, а генератор вас сильно затормозит. А потому ни какого генератора вам не надо, только акку. Если же вы в походе то какое либо движение по незнакомой местности в темное время вообще не допустимо. Поэтому имеет смысл использовать солнечные батареи для зарядки аккумуляторов днем, чтобы потом пользоваться накопленной энергией в палатке вечером. Генератор «бутылочного» типа самый неудобный из всех возможных. Он имел смысл до появления недорогих аккумуляторов и появления генераторов втулок, а сегодня этот металлолом надо просто беспощадно выкидывать и все. Но согласно тому что я написал ранее генератор на велосипеде вообще не нужен.
  • Интересно, а генераторы вот такого типа существует? Логично, что такой крошечный мотор-редуктор, умещающийся в раму и разработанный для нечестной борьбы в велоспорте, можно использовать и как генератор для подзарядки предложенных аккумуляторов, и как вспомогательный движитель на сложных участках.
  • Энергии не бывает много. Другой вопрос - какой ценой? Бутылочный генератор на велосипеде с приводом от шины - анахронизм! Втулка-генератор сильно усложняет конструкцию колеса, а, значит, снижает её надёжность, да и дорого. Проще организовать дополнительный привод от звёздочки на колесе к звёздочке на генераторе через цепь, а генератор закрепить на раме или вилке переднего колеса. Это под силу любому самоделкину. Тогда, может быть, сгодятся устройства, рекламируемые в обсуждаемой статье (если бюджет позволит;)
  • А я себе вот такую систему замутил: http://radiokot.ru/circuit/digital/automat/87/ (в конце статьи есть видео, как это всё выглядит). Система эта упрощённая, не лишена недостатков, тут нужно ещё долго размышлять, как её улучшить (и исправить корявое в плане дизайна исполнение - тоже). И прежде всего, главный процессорный модуль должен быть заменён на блок полноценного самодельного велокомпьютера (работа в этом направлении тоже проделана значительная). Теперь о том, какой хотелось бы видеть систему электрооборудования. Безусловно, в качестве генератора однозначно должна быть динамо-втулка (бутылка возможна, но только как резервный или вспомогательный генератор, а лучше её совсем выкинуть). Генератор должен питать фару и габариты, а в дневное время может использоваться для подзарядки АКБ (литиевой, свинцовые - не годятся из-за большой массы). Желательно реализовать систему поддержки яркости свечения фары на низких скоростях - путём автоматического включения отдельного светодиодного драйвера, питаемого от АКБ. Повороты и стопарь должны быть мощными и питаться от АКБ. Ну и система подзарядки внешних девайсов (гаджетов) должна быть (как от АКБ, так и от генератора в движении). Что касается ночных поездок, то с чего это они недопустимы? Не раз так ездил. До покупки динамо-втулки приходилось и на бутылке ночью по трассе ездить, и ничего... Да и ещё, тут высказывалось мнение, что генератор не нужен, что он будет тормозить движение. Два года езжу с динамо-втулкой, сопротивления движению - не ощутил. Дистанции в 10 - 15 и даже 30-40 км проезжаются точно так же, как и с простым передним колесом. Может, на 60-80 км почувствуется разница, но я не такой бугай, чтоб так далеко ездить, здоровья не хватит). А генератор просто необходим - это бесплатная вечная энергия. Если даже АКБ сядет в ноль - генератор будет работать, а значит, можно ехать в любое время суток, и можно подзарядить севший в дальнем походе телефон. З.Ы. Тут упоминали о динамо-втулках на заднее колесо. Сам хочу, но не могу такое найти, а хотелось бы... 6 Вт вместо трёх - это повеселее будет)
  • Ссылка что-то не открывается. Хотелось бы взглянуть на образчик описываемый.

Бортовая электрическая сеть

Бортовая электрическая сеть - это совокупность средств, обеспечивающих соединение источников и потребителей электрической энергии. Основными элементами электрической сети являются: со­единительные провода, средства зашиты цепей от перегрузок (пре­дохранители, автоматические выключатели), средства коммутации (выключатели, переключатели) и различные соединительные и рас­пределительные устройства. Соединение потребителей, в основном, осуществляется по однопроводной схеме. В качестве второго про­вода используется корпус автомобиля. Достоинствами такого соеди­нения являются уменьшение расхода меди, упрощение монтажа проводки, а недостатками - увеличенная возможность замыкания между проводами и корпусом.

Предохранители используются для защиты электрических цепей от перегрузок. На автомобилях широко применяются плавкие и термобиметаллические предохранители.

Плавкие предохранители имеют плавкую вставку, которая рассчитывается на длительное протекание тока номинального значения. При увеличении тока на 50% она расплавляется в течение 1 мин. Используемые в настоящее время плавкие предохранители делятся на цилиндрические, штекерные и пластинчатые. Цилиндрические предохранители - самые массовые на российских автомобилях. Их достоинством является простота определения сгоревшего предо­хранителя. Недостатком является ненадежность контакта при ослаб­лении прижимных лапок на блоке. Штекерные предохранители ме­ждународного стандарта имеют штекеры, залитые в корпус из цвет­ной пластмассы: светло-коричневый - 5 А; темно-коричне­вый - 7,5 А; красный - 10 А; синий - 15 А; желтый - 20 А; бе­лый - 25 А; зеленый - 30 А. Достоинствами этих предохранителей является компактность и надежность, недостатками - сложность ви­зуального определения сгорания предохранителя. Предохранители в виде пластинчатых вставок рассчитаны на ток 30 и 60 А. Они за­крепляются на блоках винтами.

Термобиметаллические предохранители делятся на предохра­нители много- и однократного действия. В их состав входит биме­таллическая пластина, которая при повышении тока в результате нагрева изгибается и размыкает электрическую цепь. В предохра­нителях многократного действия после остывания биметаллической пластины электрическая цепь восстанавливается. В предохрани­телях однократного действия для восстановления электрической це­пи необходимо нажать специальную кнопку.

Коммутационная аппаратура включает в себя различные типы выключателей и переключателей.Основным коммутационным устройством на автомобиле явля­ются выключатель с приводом от замкового устройства - замок-выключатель. Замок-выключатель обеспечивает включение первич­ной цепи системы зажигания, контрольно-измерительных приборов, стартера, стеклоочистителя, радиоприемника и других устройств. На автомобилях с карбюраторным двигателем замок-выключатель называют выключателем зажигания, а на автомобилях с дизе­лем - выключателем приборов и стартера.

Система пуска

Система пуска предназначена для принудительного вращения вала ДВС и облегчения пуска ДВС. Наибольшее распространение получила электростартерная система пуска. Она состоит из аккумуляторной батареи, стартерной цепи (проводов, коммутационной аппаратуры), стартера, средств облегчения пуска и ДВС (рис. 2.1).

Рис. 2.1. Структурная схема электростартерной системы пуска

Стартер



Автомобильный стартер (рис. 2.2) служит для сообщения коленчатому валу двигателя определенной начальной частоты вращения. У карбюраторных двигателей эта частота должна быть равна 50-100 об/мин, у дизелей - 150-200 об/мин. Пусковой ток у стартеров различного типа достигает 100-800 А.

Рис. 2.2. Схема стартера с электромагнитным включением:

1 - аккумуляторная батарея; 2 - выключатель; 3 - обмотка тягового реле; 4 - подвижный сердечник (якорь);

5 - пружина; 6 - рычаг; 7 - шестерня; 8 - вал электродвигателя; 9 - маховик; 10 - электродвигатель

Стартер современного автомобиля состоит из электродвигате­ля 10, приводного механизма и тягового реле. Приводной механизм обеспечивает ввод и удержание шестерни 7 стартера в зацеплении с венцом маховика 9 во время пуска и предохранение якоря стартерного электродвигателя от разноса вращающимся маховиком ра­ботающего двигателя. Тяговое реле 3 является одновременно и ча­стью приводного механизма, обеспечивая его перемещение по оси вала якоря, и частью стартерной цепи, замыкая в конце хода якоря тягового электромагнита силовые контакты цепи питания стартерного электродвигателя. В качестве стартерного электродвигателя часто применяются электродвигатели постоянного тока с после­довательным возбуждением, так как в этом случае обеспечивается большой пусковой момент. Недостатком этих двигателей является значительная частота вращения при холостом ходе, что вызывает разрушение якоря. Данный недостаток частично устраняется ис­пользованием электродвигателей смешанного возбуждения, имею­щих дополнительную параллельную обмотку возбуждения. К общим недостаткам двигателей постоянного тока следует отнести повы­шенный износ электрических контактов в коллекторно-щеточном механизме, вызванный трением и искрением контактов. Коллектор, составленный из медных ламелей, является наиболее ответственным узлом электродвигателя. Коллекторы подвергаются значительным электрическим, тепловым и механическим нагрузкам. В стартерах применяют сборные цилиндрические коллекторы на металлической втулке (стартеры большой мощности), а также цилиндрические и торцовые - с пластмассовым корпусом. После пуска двигателя частота вращения коленчатого вала не должна передаваться через шестерню обратно на стартер. В про­тивном случае возможен разнос якоря стартера. Поэтому усилие от вала якоря к шестерне у большинства стартеров передается через муфту свободного хода (рже. 2.3), или обгонную муфту. Муфта обеспечивает передачу крутящего момента только в одном направ­лении - от вала якоря к маховику.

Рис. 2.3. Схема действия сил и роликовой муфте свободного хода

При включении стартера ролики муфты заклиниваются между обоймами муфты. Благодаря этому, крутящий момент от наружной ведущий обоймы передается роликами на внутреннюю обойму. Пос­ле запуска ДВС наружная обойма становится ведомой, ролики расклиниваются и муфта начинает пробуксовывать (ω > ω ). Основ­ными силами, действующими в роликовой муфте при включении стартера, являются: сила тяги F тяги1, действующая со стороны на­ружной обоймы на ролики; сила тяги F тяги2, действующая со сторо­ны роликов на внутреннюю обойму; сила трения F тр1 (F тр2) между поверхностями роликов и внешней обоймы (поверх­ностями роликов и внутренней обоймы); сила прижимной пружи­ны F . Муфта работает без пробуксовывания, если F тяги1 < F и F тяги2 < F



Одним из основных параметров муфты является угол закли­нивания α. В зависимости от него изменяются силы трения F , F и нагрузка, действующая на обоймы привода.

В стартерах большой мощности (более 5 кВт) роликовые муфты работаю: ненадежно. Поэтому для них разработаны специальные конструкции приводов. Примером таких конструкций является хра-повая муфта свободного хода. Принцип действия этой муфты следующий. При передаче вращающего момента от вала стартера к венцу маховика возникает осевое усилие, прижимающее ведомую и ведущую половины храповой муфты. Как только ДВС запускается, происходит пробуксовка храповой муфты. Во время пробуксовыва­ния ведущая половина отодвигается от ведомой и фиксируется в этом положении сухарями, смещающимися в радиальном направ­лении под действием центробежных сил. При выключении стартера ведомая половина прижимается к ведущей и при этом воздействует на сухари, заставляя их занять исходное положение.

Для увеличения вращающего момента на коленчатом валу при­меняется понижающая передача (с передаточным отношением 10-15), позволяющая использовать в стартерах быстроходные двигатели, требующие для своего производства небольшой расход активных материалов и имеющие малые габариты и массу. В настоящее время широкое распространение получают высокооборотные стартеры с встроенным редуктором. Редуктор устанавливается между ротором электродвигателя и шестерней, сидящей на выходном валу стартера. Наиболее перспективным редуктором является планетарный ре­дуктор Джемса (рис. 2.4). Его достоинствами является симметрич­ность передаваемых усилий и высокий КПД. При этом преиму­щества стартеров с редуктором проявляются, начиная с мощности примерно 1 кВт.

Рис. 2.4. Планетарный редуктор: 1 - сателлит; 2 - солнечное зубчатое колесо; 3 - коронное зубчатое колесо

Для маломощных стартеров, устанавливаемых на карбюратор­ных ДВС с небольшим рабочим объемом, применение редуктора не сокращает общую массу. Для них целесообразно применение не­посредственного привода.

Соотношение емкости аккумуляторной батареи автомобиля, мощности генератора и мощности потребителей электроэнергии – определяет энергетический баланс бортовой сети . Энергетический баланс в большой степени зависит от частоты вращения коленчатого вала двигателя на холостом ходу, передаточного отношения генераторного привода и режима эксплуатации автомобиля.

Автомобильную можно сравнить с резервуаром, из которого все потребители черпают электроэнергию, которая постоянно должна пополняться от генератора. В том случае если потребление электроэнергии превышает ее поступление – происходит разряд аккумуляторной батареи.

Нормальный энергетический баланс — это когда потребление электроэнергии равно её поступлению. В основном к нарушению нормального энергетического баланса приводит подключение дополнительных потребителей электроэнергии или экстремальный режим эксплуатации автомобиля. Из выше сказанного можно сделать вывод, что наибольшее влияние на энергетический баланс оказывают условия эксплуатации автомобиля и суммарное потребление электроэнергии.

Возьмем, к примеру, дальний свет фар. Он используется в основном при движении автомобиля с большими скоростями на загородных дорогах, когда высокая частота вращения вала двигателя. В городских условиях, когда скорость автомобиля небольшая и двигатель работает на низких частотах и холостом ходу, дальний свет фар автомобиля не используется.

Такие потребители электроэнергии не создают проблем в виду того, что они используются в основном при высоких оборотах вала двигателя, когда генератор автомобиля обеспечивает как заряд аккумуляторной батареи так и питание потребителей энергии.

В приведенном примере суммарное действие всех факторов оказалось весьма благоприятным для энергетического баланса автомобиля.

Теперь рассмотрим другой пример – неблагоприятный.

В автомобиле включены противотуманные фары, наружное освещение автомобиля и обогрев заднего стекла салона. Такое бывает, например, когда туман. Данные потребители используются в автомобиле преимущественно при низкой частоте вращения вала двигателя. В таком режиме генератор не может отдавать полную мощность.

В этом примере факторы складываются неблагоприятным образом для энергетического баланса.

Функции блока управления бортовой сетью

До появления блока управления бортовой сетью, все его функции выполняли несколько отдельных блоков управления и реле. В современных автомобилях блок управления бортовой сетью, прежде всего, контролирует потребление электроэнергии различными потребителями. При всем этом, он следит за уровнем выходного напряжения на выводах АКБ . Если выходное напряжение аккумуляторной батареи снижается до определенного значения, блок управление увеличивает частоту вращения вала двигателя на холостом ходу, что способствует увеличению частоты вращения генератора и, следовательно, способствует восстановлению нормального состояния бортовой сети автомобиля.

Если перед блоком управления бортовой сетью возникает выбор — возможность пуска двигателя или работа потребителей энергии, то блок отключает на некоторое время потребителей.

Как правило, в автомобилях аккумуляторная батарея выполняет функции питания потребителей энергии и пуска двигателя. Это значит, что в любой ситуации все потребители электроэнергии питаются от одной батареи.

С течением времени число комплектующих компонентов в автомобиле увеличивается, повышаются требования к холодному пуску двигателя. По этой причине под вопросом оказалась надежность электроснабжения от одной батареи. Выход из положения – применение в автомобиле дополнительной батареи или применение двух батарей, которые работают на общую бортовую сеть.

Дополнительная батарея

На современных автомобилях – кемперах некоторые потребители (например: холодильник, автономный отопитель, приборы внутреннего освещения, аудио и видео техника и т.п.) подключены к отдельной сети. Питается эта сеть от собственной батареи.

В этом случае потребители электроэнергии не влияют на запас энергии, предназначенной для пуска двигателя.

Во время работы двигателя обе батареи подключены параллельно и получают зарядку от генератора. Когда двигатель останавливается, дополнительная батарея при помощи разделительного реле отключается от основной.

Бортовая сеть с двумя батареями

Существуют автомобили с 2 – батарейной бортовой сетью. У них одна батарея предназначена только для пуска двигателя, а все остальные потребители электроэнергии подключены ко второй батарее. Благодаря такому разделению функций, даже при полностью разряженной сетевой батарее, обеспечивается надежный пуск двигателя.

Мощности автомобильных потребителей электроэнергии

Основные потребители:

Система зажигания – 20Вт.

Система впрыска топлива – 50….70Вт.

Топливный насос – 50….70Вт.

Управление двигателем – 10Вт.

У автомобилей с разветвленной бортовой сетью при включении зажигания потребляется мощность до 240Вт (20А).

Длительные потребители:

Противотуманные фары – по 35….55Вт.

Автономный отопитель – 20….60Вт.

Габаритные огни – по 4Вт.

Аудиосистема – 10….15Вт.

Подсветка – по 2Вт.

Стеклоочиститель – 60….90Вт.

Фонари освещения номерного знака – по 5Вт.

Вентилятор системы охлаждения – 80….600Вт.

Стояночные огни – по 3….5Вт.

Вентилятор салона – 80Вт.

Фары ближнего света – по 45Вт.

Фары дальнего света – по 55Вт.

Обогреватель стекла – 120Вт.

Задние габаритные огни – по 5Вт.

Дополнительные фары – по 55Вт.

Кратковременные потребители:

Указатели поворота – по 21Вт.

Стартер – 800….3000Вт.

Сигналы торможения – по 21Вт.

Прикуриватель – 100Вт.

Фонари заднего хода – по 21….25Вт.

Звуковой сигнал 25….100Вт.

Дополнительные сигналы торможения – по 21Вт.

Свечи накаливания – по 100Вт.

Омыватель фар – 60Вт.

Электропривод антенны – 60Вт.

Стеклоподъемники – по 150Вт.

Бортовая сеть самолета подразделяется на:

1. Электросеть постоянного тока;

2. Электросеть переменного тока.

1) Электросеть постоянного тока выполнена по однопроводной системе, т.е. в качестве минусового провода используется корпус самолета, а энергия от источников передается к центральной плюсовой шине №1 , расположенной на специальной текстолитовой панели за приборной доской. От шины №1 идут магистральные провода к шинам, соединяющие плюсовые клеммы АЗС на ЦЭЩ .

2) Электросеть переменного тока состоит из однопроводной системы однофазного переменного тока, напряжением 115В , частотой 400Гц и трех проводной системы трехфазного переменного тока напряжением 36В , частотой 400Гц .

Энергия от преобразователей ПО и ПТ подводится к распределительной коробке "РК-115В,36В" , установленной в грузовой кабине, правый борт, шп.№5 . В ней расположены предохранители типа СП . И затем энергия поступает по проводам к потребителям.

В состав бортсети входят:

1. Электропроводка - она выполнена проводом БПВЛ (бортовой провод с виниловой изоляцией в лакированной оплетке) сечением от 0,5 до 25 мм 2 . В центре соединения всех электрожгутов находится центральный распределительный щиток (ЦРЩ ), расположенный на левом борту, шп.№5,6 . Минусовые провода подключаются к корпусу самолета вблизи потребителей.

2. Аппаратура защиты и управления:

1) АЗС - автомат защиты сети (5-40 А );

2) СП - плавкий предохранитель (1-5 А );

3) ИП - инерционно плавкий предохранитель (15,50,100,150 А ).

3. Монтажно-установочная арматура:

1) ЦЭЩ - центральный электрощиток - в центре приборной доски;

2) ЛПУ - левый пульт управления - на левом борту;

3) ЦПУ - центральный пульт управления.

4. Коммутационная аппаратура - включатели В-45, 2В-45 ,нажимные переключателиПНГ-45 , кнопки 205к , микровыключатели КВ-6 , реле РП , контакторы КМ .

5. Металлизация самолета - надежное электрическое соединение всех металлических частей самолета.

Металлизация обеспечивает:

1) создание сплошного минусового провода;

2) выравнивание потенциала статического электричества;

3) создание эффективного противовеса для радиостанций;

4) уменьшение помех радиоприему;

5) увеличение пожарной безопасности.

Эксплуатация бортовой При эксплуатации бортовой сети самолета нужно

электрической сети: помнить, что защита электрических цепей должна

быть выполнена предохранителями и автоматами

АЗС в строгом соответствии с токами номинальной нагрузки. В случае отказа в работе агрегата или прибора прежде всего нужно обратить внимание на защиту цепи. Неисправный предохранитель следует заменить исправным при обесточенной цепи, установив ручку выключения в положение "Выключено" . Если цепь защищена автоматом АЗС , то неисправность в ней обнаруживается по включенному положению рукоятки.

После замены предохранителя и осмотра прибора, агрегата (если это возможно) нужно повторно включить цепь, установив рукоятку выключателя или АЗС в положение "Включено" . Повторное перегорание предохранителя или выключения АЗС указывает на неисправность прибора, агрегата или цепи. В этом случае нужно выключить, доложить диспетчеру и продолжать полет, согласно принятому решению.

Перед полетом нужно тщательно осмотреть исправность электрических жгутов, надежность и прочность их крепления на борту хомутами, плотность затяжки штепсельных разъемов. На левом борту в пассажирской (грузовой) кабине за шп.№5 расположен комплект запасных предохранителей, электрических ламп, радиоламп и полупроводниковых приборов. При осмотре нужно убедиться, что этот запас укомплектован полностью.