Униполярный двигатель (генератор) высокого напряжения. "секреты свободной энергии холодного электричества"

Изучая диск Фарадея и т.н. "парадокс Фарадея", провел несколько простых опытов и сделал несколько интересных выводов. В первую очередь о том, на что следует обращать больше всего внимания для того, чтобы лучше понять процессы происходящие в этой (и подобных) униполярной машине.

Понимание принципа работы диска Фарадея помогает понять также то, как работают вообще все трансформаторы, катушки, генераторы, электродвигатели (в т.ч. униполярный генератор и униполярный двигатель) и т.п.

В заметке рисунки и подробное видео с разными опытами, иллюстрирующими все выводы без формул и подсчетов, "на пальцах".

Все нижеизложенное - попытка осмысления без претензий на академическую достоверность.

Направление силовых линий магнитного поля

Главный вывод который я для себя сделал: первое, на что стоит всегда обращать внимание в подобных системах - это геометрия магнитного поля , направление и конфигурация силовых линий.

Только геометрия силовых линий магнитного поля, их направление и конфигурация могут внести определенную ясность в понимание процессов, происходящих в униполярном генераторе или униполярном двигателе, диске Фарадея, а также любом трансформаторе, катушке, электродвигателе, генераторе и т.п.

Я для себя распределил степень важности так - 10% физики, 90% геометрии (магнитного поля) для понимания происходящего в этих системах.

Более подробно все описано в видео (см. ниже).

Надо понимать что диск Фарадея и внешняя цепь со скользящими контактами так или иначе образуют хорошо известную со школьных времен рамку - ее образует участок диска от его центра к месту соединения со скользящим контактом у его края, а также вся внешняя цепь (подходящие к контактам проводники).

Направление силы Лоренца, Ампера

Сила Ампера - частный случай силы Лоренца (см. Википедию).

Ниже на двух картинках показана сила Лоренца действующая на положительные заряды во всей цепи ("рамке") в поле магнита типа "бублик" для случая когда внешняя цепь жестко соединена с медным диском (т.е. когда скользящие контакты отсутствуют, и внешняя цепь напрямую припаяна к диску).

1 рис . - для случая когда вся цепь вращается внешним механическим усилием ("генератор").
2 рис . - для случая, когда через цепь подается постоянный ток от внешнего источника ("двигатель").

Нажмите на один из рисунков, чтобы увеличить.

Сила Лоренца проявляется (генерируется ток) только в участках цепи, ДВИГАЮЩИХСЯ в магнитном поле

Униполярный генератор

Итак, поскольку сила Лоренца, действующая на заряженные частицы диска Фарадея или униполярного генератора, будет действовать противоположно на разных участках цепи и диска, то для получения тока из этой машины следует приводить в движение (вращать) только те участки цепи (по возможности), направление силы Лоренца в которых будет совпадать. Остальные участки должны быть либо неподвижны, либо исключены из цепи, либо вращаться в противоположную сторону .

Вращение магнита не изменяет однородность магнитного поля вокруг оси вращения (см. последний раздел), поэтому стоит магнит или вращается - не играет роли (хотя идеальных магнитов не бывает, и неоднородность поля вокруг оси намагниченности, вызванная недостаточным качеством магнита , тоже оказывает некоторое влияние на результат).

Здесь важную роль играет то, какая часть всей цепи (включая подводящие провода и контакты) вращается, а какая неподвижна (т.к. только в движущейся части возникает сила Лоренца). А главное - в какой части магнитного поля находится вращающаяся часть, и из какого участка диска производится съем тока.

Например, если диск будет выступать далеко за пределы магнита, то в выступающей за край магнита части диска можно снять ток направления противоположного току который можно снять в части диска расположенной непосредственно над магнитом.

Униполярный двигатель

Все вышесказанное о генераторе справедливо и для режима "двигатель".

Подавать ток надо по возможности в те части диска, в которых сила Лоренца будет направлена в одну сторону. Именно эти участки надо освободить, предоставив возможность им свободно вращаться и "разорвать" цепь в соответствующих местах, поставив скользящие контакты (см. рисунки далее).

Остальные участки надо по возможности либо исключить, либо минимизировать их влияние.

Видео - опыты и выводы

Время разных этапов этого видео:

3 мин 34 сек - первые опыты

7 мин 08 сек - на что обращать главное внимание и продолжение опытов

16 мин 43 сек - ключевое объяснение

22 мин 53 сек - ГЛАВНЫЙ ОПЫТ

28 мин 51 сек - 2 часть, интересные наблюдения и еще опыты

37 мин 17 сек - ошибочный вывод одного из опытов

41 мин 01 сек - о парадоксе Фарадея

Что от чего отталкивается?

Мы с товарищем-электронщиком долго обсуждали эту тему и он высказал мысль построенную вокруг слова "отталкивается ".
Мысль, с которой я согласен - если что-то начинает движение, то оно от чего-то должно отталкиваться. Если что-то движется, то оно движется относительно чего-то.

Упрощенно говоря, можно сказать, что часть проводника (внешняя цепь или диск) отталкивается от магнита! Соответственно на магнит (через поле) действуют силы отталкивания. Иначе вся картина рушится и теряет логику. Про вращение магнита - см. раздел ниже.

На рисунках (можно кликнуть для увеличения) - варианты для режима "двигатель".
Для режима "генератор" работают те же принципы.

Здесь действие-противодействие происходит между двумя главными "участниками":

  • магнит (магнитное поле)
  • разные участки проводника (заряженные частицы проводника)

Соответственно, когда диск вращается, а магнит неподвижен , то действие-противодействие происходит между магнитом и частью диска .

А когда магнит вращается вместе с диском, то действие-противодействие происходит между магнитом и внешней частью цепи (зафиксированными подводящими проводниками). Дело в том, что вращение магнита относительно внешнего участка цепи - это тоже самое, что вращение внешнего участка цепи относительно неподвижного магнита (но в противоположную сторону). В этом случае медный диск в процессе "отталкивания" почти не участвует.

Выходит так, что в отличие от заряженных частиц проводника (которые могут двигаться внутри него), магнитное поле жестко связано с магнитом. В т.ч. вдоль окружности вокруг оси намагниченности.
И еще один вывод: сила притягивающая два постоянных магнита - не какая-то загадочная сила перпендикулярная силе Лоренца, а это сила Лоренца и есть. Все дело во "вращении" электронов и той самой "геометрии ". Но это уже другая история...

Вращение "голого" магнита

В конце видео есть забавный опыт, и вывод о том, почему часть электрической цепи можно заставить вращаться, а заставить вращаться магнит "бублик" вокруг оси намагниченности - не получается (при неподвижной электрической цепи постоянного тока).

Проводник можно разорвать в местах противоположного направления силы Лоренца, а магнит разорвать нельзя

Дело в том что магнит и весь проводник (внешняя цепь и сам диск) образуют связанную пару - две взаимодействующие системы , каждая из которых замкнута внутри себя . В случае с проводником - замкнута электрическая цепь , в случае с магнитом - "замкнуты" силовые линии магнитного поля .

При этом, в электрической цепи проводник можно физически разорвать , не нарушая самой цепи (поставив диск и скользящие контакты ), в тех местах, где сила Лоренца "разворачивается" в обратном направлении, "отпустив" разные участки электрической цепи двигаться (вращаться) каждый в свою, противоположную друг другу сторону, а разорвать "цепь" силовых линий магнитного поля или магнита, так чтобы разные участки магнитного поля "не мешали" друг другу - видимо невозможно (?). Никаких подобий "скользящих контактов" для магнитного поля или магнита кажется еще не придумали.

Поэтому и возникает проблема с вращением магнита - его магнитное поле представляет собой цельную систему, которая всегда замкнута в себе и неразрывна в теле магнита. В ней противоположные силы на участках, где магнитное поле разнонаправленно, взаимно компенсируются, оставляя магнит неподвижным.

При этом, работа силы Лоренца, Ампера в неподвижно зафиксированном проводнике в поле магнита, уходит видимо не только на нагрев проводника, но и на искажение силовых линий магнитного поля магнита.

КСТАТИ! Интересно было бы провести опыт, в котором через неподвижный проводник, находящийся в поле магнита, пропустить огромный ток , и посмотреть - как будет реагировать магнит. Нагреется ли магнит, размагнитится ли, или может быть он просто разломается на куски (и тогда интересно - в каких местах?).


Все вышеизложенное - попытка осмысления без претензий на академическую достоверность.

Вопросы

Что осталось не до конца ясным и требует проверки:

1. Можно ли все-таки заставить вращаться магнит отдельно от диска?

Если дать возможность и диску, и магниту, свободно вращаться независимо друг от друга , и подать ток на диск через скользящие контакты, то будут ли и диск, и магнит вращаться? И если да, то в какую сторону будет вращаться магнит? Для эксперимента нужен большой неодимовый магнит - его у меня пока нет. С обычным магнитом не хватает силы магнитного поля.

2. Вращение разных частей диска в разные стороны

Если сделать свободно вращающимися независимо друг от друга и от неподвижного магнита - центральную часть диска (над "дыркой бублика" магнита), среднюю часть диска, а так же часть диска выступающую за край магнита, и подать ток через скользящие контакты (в т.ч. скользящие контакты между этими вращающимися частями диска) - будут ли центральная и крайняя часть диска вращаться в одну сторону, а средняя - в противоположную?

3. Сила Лоренца внутри магнита

Действует ли сила Лоренца на частицы внутри магнита, магнитное поле которого искажается внешними силами?



Униполярный двигатель - очень удачное применение сверхпроводящих магнитов, поскольку здесь требуется более высокая напряженность поля в большом объеме и отсутствует механическая реакция поля и ротора. Самая сложная криогенная проблема при сооружении больших сверхпроводящих магнитов связана с наличием сил взаимодействия между магнитом, находящимся при низкой температуре, и его окружением, находящимся при комнатной температуре. В случае униполярного двигателя эти силы отсутствуют.  


Фарадеем униполярного двигателя, были созданы сотни оригинальных униполярных машин. Но, пожалуй, самой замечательной униполярной машиной является наша планета Земля.  

Пожалуй, самым интересным МГД-двигателем является униполярный двигатель с жидким ротором планеты Земля. Этот МГД-двигатель расположен на границе твердого и жидкого ядра нашей планеты.  


Как и все электрические машины, униполярный двигатель имеет статор и ротор. Ротором двигателя планеты служит жидкая часть ядра и жидкая магма, двигающаяся в сферической оболочке между твердым ядром, твердой магмой и корой Земли.  

Отличие двигателя планеты от сферических гиродинов космических летательных аппаратов состоит в том, что униполярный двигатель Земли имеет жидкий ротор, внутренний статор и внешнюю оболочку. Обычно технические гиродины питаются переменным током высокой частоты, а гиродин планеты - униполярный двигатель.  


Активное сопротивление Л - сопротивление контура продольных токов ядра Земли, в котором протекают токи МГД-генератора и униполярного двигателя.  

Электромеханическая модель Земли состоит из двух электрических машин: МГД-генератора, преобразующего механическую энергию космических частиц в электрическую энергию, токов радиационных поясов (7рп) и токов в ядре (/) и униполярного двигателя, ротором которого является жидкая часть магмы, а статором - твердое ядро и литосфера. Обе машины объединены магнитным полем Земли и образуют электрическую машину - планету Земля.  

В ударном режиме ротор униполярного генератора, совместно с маховиком или без него, используется как накопитель кинетической энергии, которая при подключении нагрузки преобразуется в электрическую. Униполярные двигатели находят применение в установках, где требуется иметь минимальную индуктивность цепи якоря. При необходимости генерирования больших токов униполярные генераторы превосходят машины постоянного тока с коллектором, так как в них не требуется принимать мер для обеспечения удовлетворительной коммутации; кроме того, в них отсутствуют магнитные потери в стали и некоторые добавочные потери.  


Момент вращения Земли вокруг своей оси создается токами ее ядра, а электромеханическое преобразование энергии в МГД-двигателе происходит в зоне наибольшей концентрации энергии магнитного поля - в зоне на границе твердого ядра и его жидкой части и магмы. В униполярном двигателе планеты развиваются огромные электромагнитные силы и моменты, которые как и в обычных электрических машинах, должны быть приложены к железным участкам твердого ядра.  

Довольно точно можно сказать, что наибольшее применение в настоящее время сверхпроводящие магниты нашли в области физических исследований. В промышленности они применяются в униполярных двигателях и генераторах. Униполярный двигатель представляет очень простое устройство, в котором проводящий диск вращается между полюсами магнита.  

Магнитные двигатели (двигатели на постоянных магнитах) являются наиболее вероятной моделью «вечного двигателя». Еще в давние времена была высказана эта идея, но так никто его не создал. Многие устройства дают ученым возможность приблизиться к изобретению такого двигателя. Конструкции подобных устройств еще не доведены до практического результата. С этими устройствами связано много различных мифов.

Магнитные двигатели не расходуют энергию, являются агрегатом необычного типа. Силой, двигающей мотор, является свойство магнитных элементов. Электродвигатели также применяют магнитные свойства ферромагнетиков, но магниты приводятся в движение электрическим током. А это является противоречием основному принципиальному действию вечного двигателя. В двигателе на магнитах используется магнитное влияние на объекты. Под действием этих объектов начинается движение. Небольшими моделями таких двигателей стали аксессуары в офисах. На них двигаются постоянно шарики, плоскости. Но там для работы применены батарейки.

Ученый Тесла занимался серьезно проблемой образования магнитного двигателя. Его модель была выполнена из катушки, турбины, проводов для соединения объектов. В обмотку закладывался маленький магнит, захватывающий два витка катушки. Турбине давали небольшой толчок, раскручивали ее. Она начинала движение с большой скоростью. Такое движение называлось вечным. Двигатель Тесла на магнитах стал идеальной моделью вечного двигателя. Его недостатком стала необходимость начального задания скорости турбине.

По закону сохранения электропривод не может содержать более 100% КПД, энергия частично тратится на трение в двигателе. Такой вопрос должен решать магнитный двигатель, у которого постоянные магниты (роторный тип, линейный, униполярный). В нем осуществление механического движения элементов идет от взаимодействия магнитных сил.

Принцип работы

Многие инновационные магнитные двигатели применяют работу трансформации тока во вращение ротора, являющееся механическим движением. Вместе с ротором вращается вал привода. Это дает возможность утверждать, что всякий расчет не даст результата КПД равного 100%. Агрегат не получается автономным, он имеет зависимость. Такой же процесс можно увидеть в генераторе. В нем крутящий момент, который образуется от энергии движения, создает выработку электроэнергии на пластинах коллектора.

1 — Линия раздела магнитных силовых линий, замыкающихся через отверстие и внешнюю кромку кольцевого магнита
2 — Катящийся ротор (Шарик от подшипника)
3 — Немагнитное основание (Статор)
4 — Кольцевой постоянный магнит от громкоговорителя (Динамика)
5 — Плоские постоянные магниты (Защелки)
6 — Немагнитный корпус

Магнитные двигатели применяют другой подход. Необходимость в дополнительных источниках питания сводится к минимуму. Принцип работы легко объяснить «беличьим колесом». Для производства демонстративной модели не нужны специальные чертежи или прочностной расчет. Нужно взять постоянный магнит, чтобы его полюса находились на обеих плоскостях. Магнит будет главной конструкцией. К ней добавляется два барьера в виде колец (внешний и внутренний) из немагнитных материалов. Между кольцами располагают стальной шарик. В магнитном двигателе он станет ротором. Силами магнита шарик притянется к диску противоположным полюсом. Этот полюс не будет менять свое положение при движении.

Статор включает в себя пластину, изготовленную из экранируемого материала. На нее по траектории кольца закрепляют постоянные магниты. Полюса магнитов находятся перпендикулярно в виде диска и ротора. В итоге, при приближении статора к ротору на некоторое расстояние, появляется отталкивание и притяжение в магнитах поочередно. Оно создает момент, переходит во вращательное движение шарика по траектории кольца. Запуск и торможение осуществляется движением статора с магнитами. Такой метод магнитного двигателя действует, пока магнитные свойства магнитов будут сохраняться. Расчет делается относительно статора, шариков, управляющей цепи.

На таком же принципе работают действующие магнитные двигатели. Самыми известными стали магнитные двигатели на тяге магнитов Тесла, Лазарева, Перендева, Джонсона, Минато. Так же известны двигатели на постоянных магнитах: цилиндровые, роторные, линейные, униполярные и т.д. У каждого двигателя своя технология изготовления, основанная на магнитных полях, образующихся вокруг магнитов. Вечных двигателей не бывает, так как постоянные магниты утрачивают свои свойства через несколько сотен лет.

Магнитный двигатель Тесла

Ученый исследователь Тесла стал одним из первых, кто изучал вопросы вечного двигателя. В науке его изобретение называется униполярным генератором. Сначала расчет такого устройства сделал Фарадей. Его образец не произвел стабильности работы и должного эффекта, не достиг необходимой цели, хотя принцип действия был сходным. Название «униполярный» дает понять, что по схеме модели проводник находится в цепи полюсов магнита.

По схеме, обнаруженной в патенте, видна конструкция из 2-х валов. На них помещены 2 пары магнитов. Они образуют отрицательное и положительное поля. Между магнитами находятся униполярные диски с бортами, которые применяются как образующие проводники. Два диска друг с другом имеют связь тонкой лентой из металла. Лента может использоваться для вращения диска.

Двигатель Минато

Этот тип двигателя также использует магнетическую энергию для самостоятельного движения и самовозбуждения. Образец двигателя разработан японским изобретателем Минато более 30 лет назад. Двигатель обладает высокой эффективностью, характеризуется бесшумной работой. Минато утверждал, что магнитный самовращающийся двигатель такого исполнения выдает КПД более 300%.

Ротор изготовлен в форме колеса или дискового элемента. На нем находятся магниты, расположенные под определенным углом. Во время приближения статора с мощным магнитом создается момент вращения, диск Минато вращается, применяет отторжение и сближение полюсов. Скорость вращения и крутящий момент мотора зависит от расстояния между ротором и статором. Напряжение мотора подается по цепи реле прерывателя.

Для предохранения от биения и импульсных движений при вращении диска применяют стабилизаторы, оптимизируют расход энергии управляющего электрического магнита. Негативной стороной можно назвать то, что нет данных по свойствам нагрузки, тяге, которые применяются реле управления. Также периодически необходимо производить намагничивание. Об этом Минато в своих расчетах не упоминал.

Двигатель Лазарева

Русский разработчик Лазарев сконструировал действующую простую модель двигателя, применяющего магнитную тягу. Роторный кольцар включает в себя резервуар с пористой перегородкой на две части. Эти половины между собой сообщаются трубкой. По этой трубке поступает поток жидкости из нижней камеры в верхнюю. Поры создают перетекание вниз за счет гравитации.

При расположении колеса с расположенными на лопастях магнитами под напором жидкости возникает постоянное магнитное поле, двигатель вращается. Схема двигателя Лазарева роторного типа применяется при разработке простых устройств с самовращением.

Двигатель Джонсона

Джонсон в своем изобретении применял энергию, которая генерируется потоком электронов. Эти электроны находятся в магнитах, образуют цепь питания двигателя. Статор двигателя соединяет в себе множество магнитов. Они располагаются в виде дорожки. Движение магнитов и их расположение зависит от конструкции агрегата Джонсона. Компоновка может быть роторной или линейной.

1 — Магниты якоря
2 — Форма якоря
3 — Полюса магнитов статора
4 — Кольцевая канавка
5 — Статор
6 — Резьбовое отверстие
7 — Вал
8 — Кольцевая втулка
9 — Основание

Магниты прикрепляются к особой пластине, обладающей большой магнитной проницаемостью. Одинаковые полюса магнитов статора поворачиваются в сторону ротора. Этот поворот создает отторжение и притяжение полюсов по очереди. Совместно с ними смещаются элементы ротора и статора между собой.

Джонсон организовал расчет воздушного промежутка между ротором и статором. Он дает возможность коррекции усилия и магнитной совокупности взаимодействия в направлении увеличения или снижения.

Магнитный двигатель Перендева

Двигатель самовращающейся модели Перендева так же является примером применения работы магнитных сил. Создатель этого мотора Брэди оформил патент и создал фирму еще до начала уголовного дела на него, организовал работу на поточной основе.

При анализе принципа работы, схемы, чертежей в патенте можно понять, что статор и ротор выполнены в форме внешнего кольца и диска. На них по траектории кольца располагают магниты. При этом соблюдают угол, определенный по центральной оси. Из-за взаимного действия поля магнитов образуется момент вращения, осуществляется их перемещение друг относительно друга. Цепь магнитов рассчитывается путем выяснения угла расхождения.

Синхронные магнитные двигатели

Главным видом электрических двигателей является синхронный вид. У него обороты вращения ротора и статора одинаковые. У простого электромагнитного двигателя эти две части имеют в составе обмотки на пластинах. Если изменить конструкцию якоря, вместо обмотки установить постоянные магниты, то получится оригинальная эффективная рабочая модель двигателя синхронного типа.

1 — Стержневая обмотка
2 — Секции сердечника ротора
3 — Опора подшипника
4 — Магниты
5 — Стальная пластина
6 — Ступица ротора
7 — Сердечник статора

Статор сделан по привычной конструкции магнитопровода из катушек и пластин. В них образуется магнитное поле вращения от электрического тока. Ротор образует постоянное поле, взаимодействующее с предыдущим, и образует момент вращения.

Нельзя забывать о том, что относительное нахождение якоря и статора имею возможность изменяться в зависимости от схемы двигателя. Например, якорь может быть сделан в форме наружной оболочки. Для запуска двигателя от сети питания применяется схема из магнитного пускателя и реле тепловой защиты.

До сих пор не решена загадка движения униполярного двигателя Фарадея. Дело в том, что изобретенный им двигатель вращается вопреки физическим законам. Ученые не могут пока преодолеть парадокс движущей силы в его двигателе, в котором функционирует вращающийся магнит-ротор.

Взгляните на фото, как выглядит простой двигатель Фарадея, сделанный из винта, батарейки, провода, и магнитного диска.

Любой человек, знакомый с элементами электротехники, знает, что обычные электродвигатели состоят из неподвижного статора и вращающегося ротора. В качестве статора используются два вида магнитов: постоянный или электромагнит (постоянный или переменный). Как правило в моторах устанавливается переменный электромагнит. Вращение ротора происходит за счет притягивания и отталкивания его от статора, таким образом ротору передается непрерывное движение.

Если ротор притягивается к статору, то и статор притягивается к ротору. Если ротор отталкивается от статора, то и статор отталкивается от ротора. На двигателе Фарадея отсутствует статор. Ротору в этом случае не от чего отталкиваться. В соответствии с известными законами физики двигатель не должен вращаться. А он вращается.

Униполярный двигатель впервые был продемонстрирован Майклом Фарадеем в 1821 году в Королевском институте в Лондоне.

Рассмотрим несколько конструкций двигателей на неодимовых магнитах. На обычных магнитах такой двигатель не работает.

Первая модель одна из наиболее простейших, такой мотор можно сделать за минуту. В качестве ротора используется обыкновенный саморез и соединенный с ним неодимовый магнит. Ток подается непосредственно от одного полюса батарейки и через провод.

Вторая разработка мотора на неодимовых магнитах, создание которого понятно из видео

Третий вариант двигателя на магните. Неодимовые магниты в этом магазине.

Можно и так, не обязательно ставить магниты на батарейку:

Четвертая модель двигателя на неодимовых магнитах на видео, в котором вращается сама батарейка вместе с магнитом.

МАЙКЛ ФАРАДЕЙ (1791-1867)

Английский физик и химик. Майкл Фарадей родился в 1791 году в Ньюингтоне, Англия. Он происходил из бедной семьи и в значительной степени был самоучкой. Посвященный в возрасте четырнадцати лет изучению переплетчика и книготорговца, он использовал эту возможность и много читал. В возрасте двадцати лет он присутствовал на лекциях известного британского ученого сэра Хамфри Дэви, который его очаровал. Он написал Дэви и, наконец, получил работу в качестве помощника.

Несколько лет спустя Фарадей уже делал важные открытия самостоятельно. Ему не хватало хорошей математической основы, но он был непревзойденным как физик-экспериментатор. Первое важное открытие в области электричества, Фарадей сделал в 1821. Два года назад Эрстед обнаружил, что магнитная стрелка отклоняется, когда электрический ток течет через проводник, расположенный близко. Фарадей подумал, что если магнитная стрелка будет прикреплена, шнур будет двигаться. Во время работы над этой идеей ему удалось построить устройство, в котором шнур вращается вокруг магнита, пока электрический ток проходит через кабель. Фактически, Фарадей изобрел первый электродвигатель, первое устройство, которое использует электричество для перемещения объектов. Хотя он очень примитивен, Двигатель Фарадея был прародителем всех электродвигателей, которые в настоящее время используются. Это был огромный прорыв, но его практическое значение оставалось ограниченным, поскольку единственным известным источником электрического тока были примитивные химические батареи. Фарадей был убежден, что должен быть какой-то способ, чтобы использовать магнетизм для генерирования электрического тока, и упорно искал такого метода. Оказалось, что неподвижный магнит не генерирует электрический ток в соседнем проводнике, но в 1831 году Фарадей обнаружил, что если магнит проходит через замкнутую проволочную петлю, ток течет через кабель. Это явление называется электромагнитной индукцией, и открытие закона, регулирующего это явление (закон Фарадея), широко рассматривается как величайшее достижение Фарадея. Открытие Фарадея имело большое значение по двум причинам. Прежде всего, закон Фарадея имеет фундаментальное значение в теории электромагнетизма. Во-вторых, электромагнитная индукция может быть использована для генерации электрического тока, как показал сам Фарадей, построив первый генератор. Современные электрогенераторы, которые обеспечивают электроэнергией наши города и фабрики, конечно, гораздо сложнее, но все они основаны на одном и том же принципе электромагнитной индукции.

Фарадей также внес большой вклад в химию. Он изобрел метод сжижения газов и обнаружил множество различных химических веществ, включая бензол. Еще важнее его открытия в области электрохимии (изучение влияния электрического тока на химические соединения). В результате тщательно проведенных экспериментов Фарадей установил два закона электролиза, которые были названы в его честь. Эти законы составляют основу электрохимии. Он также популяризировал многие важные термины, используемые в этой области, такие как анод, катод, электрод и ион. Фарадей представил такие важные понятия для физики, как линии напряженности магнитного поля и линии напряженности электрического поля. Подчеркивая важность не столько магнитов, сколько полей между ними, он подготовил почву для многих достижений современной физики, в том числе уравнений Максвелла. Фарадей также обнаружил, что изменяется плоскость поляризации света, проходящего через магнитное поле. Это открытие было важно, потому что это был первый сигнал, что есть связь между светом и магнетизмом.

Фарадей был не только очень талантливым человеком, но и очень красивым. Он также был очень хорошим научным пропагандистом. Тем не менее он оставался скромным и не придавал значения славе, деньгам и почестям. Он не принял титул дворянина или позицию председателя Британского королевского общества, которую он предложил. Его брак был долгим и счастливым, но бездетным. Он умер в 1867 году недалеко от Лондона.