Трехколесный велосипед с двумя рамами и маховиком. Инерция City Bike обещает выполнять всю работу велосипедиста Велосипед с инерционным двигателем

Главный лесничий герцога Баден-Вюртембергского Карл Фридрих Драйс барон фон Зауэрбронн (Karl Friedrich Christian Ludwig Freiherr Drais von Sauerbronn , 1785–1851) получил патент на двухколесный велосипед в 1817 году. После того как 12 июля 1817 года Драйс на своей машине проехал за час 15 километров, велосипед вошел в моду. И тут же изобретатели Старого и Нового Света начали наперегонки состязаться в усовершенствовании двухколесного «костотряса». К концу XIX века, когда велосипед уже имел современные формы, велоконструкторы успели получить несколько десятков тысяч патентов. Однако этот процесс, несмотря на кажущуюся его нелепость, продолжается и сейчас, в XXI веке. При этом патентуются не только курьезные модели велосипедов, но и вполне прогрессивные машины, имеющие неоспоримые достоинства по сравнению с каноническим двухколесным приспособлением для езды при помощи мускульных усилий.

Два колеса — много!

Некогда в цирке была популярна езда на одноколесном велосипеде, требующая от артистов немалой сноровки, поскольку данная конструкция весьма неустойчива. Сейчас, в связи с ростом популярности экстремальных развлечений, акробатом стал как минимум каждый пятый молодой человек. В связи с этим точно такие же, как и в цирке, монопеды, правда, с седлом, а иногда и с рулем, появились в широкой продаже. И экстремалы используют их для таких развлечений, как, например, соревнования по покорению Эйфелевой башни . Разумеется, поднимаются они по ступеням, а не по наружной стороне башни.

Однако оказалось, что и одноколесной конструкции вполне можно придать значительную устойчивость и применить ее для поездок отнюдь не спортивных и далеко не молодых людей. Изобретатель Олег Маханьков снабдил серийное велосипедное колесо четырьмя металлическими пластинами. Две из них постоянно параллельны земле. Две другие, благодаря шарнирам и пружинной подвеске, изменяют угол наклона в зависимости от рельефа дороги, скорости езды и положения тела наездника. К верхней параллельной пластине крепится ось колеса, к нижней — рама седла. Это приводит к тому, что центр тяжести конструкции существенно смещен вниз, в связи с чем достигается приемлемая устойчивость. При езде по ухабам за счет продуманной системы амортизации наездник, невзирая на рельеф, движется строго в горизонтальной плоскости.



Существует и принципиально иное расположение велосипедиста относительно колеса — он находится внутри, примостившись на небольшом сиденье, вращая педали и управляя диковинной конструкцией при помощи обычного руля. Качение внешнего колеса диаметром 1, 74 метра осуществляется за счет нейлоновых роликов. Велосипедист «карабкается» на переднюю часть колеса при помощи педалей, связанных с фрикционной передачей. Такая конструкция также устойчива за счет низкого центра тяжести. Правда, при торможении возникают проблемы: в этот момент необходимо отклониться назад, поскольку за счет инерции седока может крутануть так, что он окажется ногами вверх, головой вниз. Когда же происходит экстренное торможение, срабатывают выдвижные «лапы» с роликами на концах. Они предотвращают кувырок.

Такие велосипеды серийно выпускаются в Китае . Правда, изобретены они бразильцем Тито Лукасом Оттом (Tito Lucas Ott). Да и не велосипед он изобретал, а моноцикл с двигателем внутреннего сгорания. Не так давно его изобретение, в реализации которого прежде многие сомневались, было использовано как впрямую — в США налажен выпуск бензиновых моноциклов, так и с расчетом на силу мышц ног. И тут инициативу захватили китайцы, у которых суммарная сила мышц огромна, а с бензином и моторами намного хуже.

С определенной натяжкой можно назвать велосипедом конструкцию, созданную американцем Брюсом Макленнаном Блэквеллом (Bruce MacLennan Blackwell), поскольку изобретатель снабдил маленькое колесо диаметром 25 сантиметров электромоторчиком, работающим от аккумулятора. Ни седла, ни руля поворота у моноцикла нет. Человек просто встает на две подножки, расположенные по бокам от колеса, и едет. Управление осуществляется при помощи отклонения тела в нужную сторону. Для увеличения скорости надо отклониться вперед, для торможения — назад. Проблема повышения устойчивости моноцикла решена при помощи использования высокоскоростного гироскопа. Решена в достаточной степени, поскольку Блэквелл, не будучи эквилибристом, до сих пор не только не сломал ни одной кости, но и не нажил синяков.

Минималисты

В связи с тем, что крупные города мира страдают от перегруженности транспортных артерий, в последнее время стала актуальна проблема создания компактных складных велосипедов. На них можно добраться до ближайшей станции метро, а потом, провезя велосипед под землей, доехать до места работы. В Англии создан велосипед, который можно сложить за 30 секунд и, что самое главное, спрятать его в чемодан, чтобы не торчали руль и педали. Пока это изобретение лондонцы не сметают с прилавков, а воспринимают лишь как игру блестящего ума.

Еще более компактный велосипед сконструировал Клайв Синклер (Clive Sinclair), известный изобретатель, в свое время создавший популярный компьютер Spectrum. Его велосипед, получивший название A-Bike , за двадцать секунд укладывается в кейс. В разобранном состоянии он похож на букву А (отсюда и название — A-Bike). При всем при том эта кроха способна выдерживать 120-килограммового седока и позволяет передвигаться со скоростью 24 км/час. Снизить вес велосипеда до 5 килограммов удалось за счет того, что большинство его деталей изготавливается из пластика.

Модель Синклера породила соревновательный эффект. Складные портативные велосипеды начали выпускать во Франции , в Японии и в Америке . Несомненно, такое средство передвижения было бы очень полезно и в Москве, несмотря на то, что столичное правительство судорожно накручивает вокруг Кремля все новые и новые транспортные кольца.

Самый же маленький и легкий велосипедик сделал электромонтер из Польши Збигнев Ружанек. Он весит всего 1,5 килограмма. Диаметр переднего колеса — 11, а заднего — 13 миллиметров. Велосипед всем хорош за исключением того, что он не имеет абсолютно никакой практической пользы. Ружанек сделал его исключительно для того, чтобы попасть в книгу рекордов Гиннесса . Бравый электрик проехал на своем хлипком аппарате 5 метров, прославился на весь мир, на том и успокоился.

Друзья парадокса

Есть изобретатели, которые с блеском доказывают, что механика сулит нам еще немало открытий чудных. К таковым относится физик-ядерщик Юрий Макаров . Выйдя на заслуженный отдых, он применил свой интеллектуальный потенциал для изобретения принципиально новых конструкций велосипедов. В одной из его моделей педали вращаются... в обратную сторону! Казалось бы, работа совершается та же самая, однако в ней участвуют другие группы мышц, более сильные. Поэтому на велосипеде Макарова можно развивать большую скорость при тех же самых усилиях. В другой модели установлена коробка автоматического переключения передач, а велосипедная цепь представляет собой лист Мёбиуса , что позволяет заметно увеличить КПД механизма. Есть модель-«тяжеловоз», при помощи которой изобретатель-пенсионер буксирует микроавтобус и перевозит 100-килограммовые грузы.

На Московском международном салоне промышленности Макарова наградили Большой золотой медалью «Архимед-99». Его велосипед экспонировался на выставке техники будущего в Милане. Этим все и закончилось. Отечественные велосипедостроители внедрять в производство машину Юрия Алексеевича категорически отказались, посчитав, что это самое будущее в нынешнем веке не наступит.

Инженер из Барнаула Геннадий Васильев за свой велосипед получил еще более высокую награду — Золотую медаль Международной женевской выставки изобретений по номинации «механика». Эта награда особо ценна, поскольку 15 последних лет в этой номинации лауреаты не назначались.



Велосипед Васильева способен развивать скорость в 75 км/час. При этом педали крутить не надо, они совершают линейные возвратно-поступательные движения. Секрет столь высокой эффективности механизма заключается в том, что в нем применен «принцип юлы». Припомним, как в годы нашего золотого детства мы раскручивали юлу до запредельных скоростей, юла приобретала свойства гироскопа. Такая передача давно известна в машиностроении, и называется она шарико-винтовой. Условно говоря, она представляет собой «разболтанную» пару винт–гайка, промежутки между которыми заполнены шариками. Если сверху давить на винт, гайка начинает вращаться. При этом изобретатель не слепо скопировал известную передачу, а модернизировал ее, так что вполне можно говорить о «передаче Васильева».

В Женеве на «нового Кулибина» обрушилась лавина предложений от иностранных фирм о сотрудничестве. Ему приглянулся бельгийский машиностроительный концерн. Однако вскоре у Васильева создалось ощущение, что компаньоны намереваются, как говорят в российских деловых кругах, кинуть его. И он вернулся домой, чтобы внедрить своего чудо-коня в российское производство. Однако родина встретила Васильева неприветливо. Уже четыре года он пытается найти взаимопонимание в различных инстанциях.

А велосипед Федора Сычева из Набережных Челнов позволяет без больших физических затрат подниматься на гору. Это достигается за счет использования кривошипно-шатунного механизма с большим рычагом. И у него точно такая же история с внедрением изобретения в производство. Можно предположить, из-за того, что наша страна имеет преимущественно равнинный рельеф. В странах Закавказья, а, тем более, в Непале ему цены бы не было.

А вот канадские производители велосипедов, компания Ktrak Cycle , позаботились о велосипедистах на славу. Известно, что зима в Канаде не менее снежная, чем, скажем, в Сибири . А по сугробам и льду на велосипеде кататься не слишком весело. И тогда остроумные канадцы заменили переднее колесо лыжей, а заднее — гусеничным приводом. Конструкция достаточно проста, и утяжеляет велосипед всего на два с половиной килограмма. Тем не менее, усовершенствованный таким образом велосипед без особых проблем едет не только по снегу, но и по песку — что также непросто для обычных «байков». Востребованность изобретения оказалась такова, что уже на выставке Interbike, где новинка впервые была представлена публике, нашлось немало желающих приобрести эту систему. Главная же ценность пакета Ktrak в том, что вам не нужно приобретать новый велосипед: достаточно переоборудовать уже имеющийся в наличии горный велик. А весной вы снова поставите на него колеса, и, как ни в чем не бывало, поедете по любимым оврагам и перелескам.

Весьма полезную модель велосипеда придумали в американском университете Пердью (Purdue University). Велосипед имеет два задних колеса, которые в неподвижном состоянии располагаются под углом друг к другу, соединяясь вверху и расходясь внизу. За счет этого получается устойчивый трехколесный велосипед, на который с легкостью садится и начинает крутить педали ребенок либо не обученный езде «чайник». По мере увеличения скорости и обретения велосипедом инерционной устойчивости задние колеса соединяются в единое колесо. При остановке происходит обратный процесс — колеса внизу «растопыриваются».

На арене эксцентрики!

В этой номинации у нас всего два кудесника велосипедостроения. Но каких!

Тим Пикенс (Tim Pickens), президент британской фирмы Orion Propulsion , занимающейся разработками в области ракетостроения, в начале 2006 года прикрепил на свой серийный велосипед реактивный двигатель, который используется для коррекции орбиты спутников. К счастью, он заправил его не ракетным топливом, благодаря чему не улетел под облака. В качестве топлива бесстрашный Пикенс использовал мазут, в связи с чем тяги хватило только на то, чтобы за пять секунд разогнать мистера Пикенса лишь до скорости 100 км/час.

А кубанский пенсионер Евгений Михайлов использует для перемещения в пространстве сконструированного им велосипеда конскую тягу. Процедура такова. Михайлов сажает «на облучок» велосипеда специально обученного коня, прикрепляет к его копытам педали, и конь начинает их крутить. И крутит так усердно, что конструкция несется по проселочной дороге со скоростью 70 км/час. Велосипедист управляет машиной при помощи руля, а поддает газа вожжами. Есть коробка передач на три скорости. Вот только тормоза пока отсутствуют. Потому что конструктору сейчас не до таких мелочей. Он загорелся идеей создать конный аэроплан того же принципа действия. Остается не вполне понятным, как на эти эксперименты смотрят кубанские защитники животных?

сеть переменного «ока в качестве балластных, заменяющих резисторы, но тогда они не за^жаются, а пеоеээряжаюгся 100 раз в секунду, а запасенная конденсатором энергия используотся во внешней цепи

Но если в рукоятку сковороды спрягать ионисгор - конденсатор с двойным электрическим слоем, - а в днише разместить нагревательный элемент, то такое «чудо* может стать реальностью

Дело в том, что удельный заряд иочисторов в десятки тысяч раз пре восходит заряд обычных конденсэ-тоээв, и они все шире применяются в качестве накопителей энергии в самых разнообразных устройствах, даже играют роль сгартерных аккумуляторов в автомобилях. Так что с куском мяса или котлетами справятся запросто.

Велосглон

ВЕЛОСИПЕД С МАХОВИКОМ

«Я любитель быстрой езды на велосипеде, но ставить мотор на свой байк не хочу - и внешний вид пор-тит и шумит сильно, - пишет наш постоянный читатель Егор Масальский иэ Орска. - Вот я и придумал выход: что, если поставить на велосипед маховик? Махови^ный двигатель бесшумный, его легко спрятать под красивым кожухом. Маховик можно раскручивать дома, перед вь i-еадом на проулку, а в поездке подзаряжать его при спуске с горки*.

Идея маховичного (инерционного) двигателя известна В Англии был даже построен опытный образец тролле!i6yca, маховик которого раскручивался на остановках от уличной электросети. Е прошлом

номере нашего журнапа, в спецвыпуске «Шаг в будущее»» мы описывали {)аботу школьника иэ С тэгута Дмитрия Ковалева, который не только подложил идею инерционного автобуса для перевозки пассажиров иэ Сургута до поселка Федоровский но рассчитал параметры, которыми должен обладать махивичный движок. iКстати, предлагаем и Егору вернуться к своей идее и прикинуть какими численными параметрами - массой, размерами и скоростью - должен обладать велосипедный маховичок)

У инерционных приводов много привлекательных свойств - большой запас энергии, бесшумчосто работы, чистота, но есгь и недостатки Главный - сдерживающий широкое их применение в технике - это сложный привод от маховика к раздаточному валу. Ведь маховиг вращается с постоянной огромной скоростью, и жесткое сцепление, нагример шестеренчатое, не пойдет, а фрикционы часто ropw и неэкономичны, переводят много энергии в тепло. Кстати, велосипедный маховик легко подключать к колесу Достаточно между колесом и маховиком ввести передвточный ролик, как показано на рисунке. Механизм этот тоже далек от совершенства, но про« - и вполне функционален, в отличие от предлагаемого Егором хра повика и звездочек.

Это могло бы сделать идею Егора осуществимой. Но, увы, не только в механике дело. Оценивая идею Егора Масальского как любопытную, эксперты ПБ вспомнили о так называемом гироскопическом эффекте Любое вращающееся тело, и маховик не исключение, стрраетоя сохранить свое положение в пространстве И если для массивного автобу

Рассмотрим их в порядке убывания размеров и массы. Наибольший интерес представляет оригинальный проект маленького городского легкового автомобиля конструкции Д. В. Рабенхорста с супермаховичным двигателем. Масса автомобиля чуть более 500 кг и включает 150 кг полезного груза.

Мощность двигателя автомобиля, исходя из данных по шинам и аэродинамике автомобилей США начала 70-х годов, при крейсерской скорости 90 км/ч составляет около 3,35 кВт. При проектировании автомобиля предполагалось движение в течение 2 ч, что составляет путь пробега 180 км и запас энергии в маховике 6,7 кВт/ ч.

Подробный анализ движения автомобиля с инерционным двигателем в городе позволил сделать следующие выводы :

1)энергия, затрачиваемая на разгон автомобиля, в 3 раза больше энергии, затрачиваемой на преодоление расстояния, равного пути разгона, на установившейся скорости;

2)системой рекуперативного торможения, доступной маховичным силовым агрегатам, восстанавливается 25% всей энергии;

3)полезно может использоваться лишь около 75% всей энергии маховика.

Исходя из этого, Д. В. Рабенхорст увеличивает необходимый запас энергии, а следовательно, и общую массу супермаховика на 33%.

В качестве трансмиссии выбрана гидростатическая с приводом на четыре мотор-колеса.

Д. В. Рабенхорст отмечает, что в автомобиле с инерционным двигателем отсутствуют такие необходимые для обычного автомобиля агрегаты и системы, как сцепление, приводной вал, дифференциал, полуоси, тормозная система, аккумуляторы, стартер и генератор, система охлаждения, топливная система. Автомобиль с инерционным двигателем может быть приведен в движение практически мгновенно, так как ускорения при разгоне весьма велики.

Для разгона маховика применяется электродвигатель авиационного типа, который подключают к сети. Время разгона составляет 20-25 мин.

Массы важнейших узлов автомобиля Д. В. Рабенхорста (рис. 69) следующие: маховик - 100 кг; корпус маховика и подвеска - 25 кг; электродвигатель авиационного типа - 18,4 кг; гидронасос - 37,5 кВт - 11,4 кг; четыре гидравлических мотор- колеса общей мощностью 37,5 кВт -10 кг; контрольное оборудование и приборы - 9 кг; ходовая система - 175 кг; полезный груз-150 кг; кузов - 270 кг. Итого полная масса автомобиля около 600 кг.

Эксплуатационные данные следующие: крейсерская скорость 90 км/ч; путь пробега 180 км; путь пробега по городу с учетом частых остановок 170 км; максимальная скорость свыше 110 км/ч; время разгона от 0 до 100 км/ч 15 с; стоимость пробега 0,6 долл. (54 коп. по курсу 1972 г.) на 100 км.

Рис. 69. Маховичный автомобиль д-ра Д. В. Рабенхорста (США) : 1-мотор-колесо; 2-электродвигатель-генератор; 3-супермаховик

Данные маховичного силового агрегата автомобиля Д. В. Рабенхорста: объем маховика 14 дм3; полезно используемая масса 75 кг; полезно используемая энергия 6,7 кВт/ ч; начальная частота вращения маховика 23 700 об/мин, конечная - 11 900 об/мин; мощность потерь менее 0,01 кВт. Снижение потерь энергии до столь малой величины достигают помещением супермаховика в герметичный вакуумированный корпус с выводом вала магнитной муфтой (рис. 70). Выбег маховика (свободное вращение) будет длиться свыше 1000 ч или более 41 суток. Для сравнения выбег маховика гиробуса фирмы «Эрликон» - 12 ч, а маховика рекуператора фирмы «Кларк» около недели.


Рис. 70. :

1-супермаховик; 2-магнитная муфта; 3-электродвигатель-генератор; 4-амортизатор; 5-подшипник; 6- герметичный вакуумированный корпус: 7-магнитный подпятник

Подшипники супермаховика с сухой смазкой воспринимают нагрузку только гироскопическую или динамическую при тряске, а вес супермаховика воспринимается магнитной подвеской из сильных постоянных магнитов. Валы электродвигателя и супермаховика соединяются магнитной муфтой; при свободном выбеге муфта расцепляется, и потери на вращение электродвигателя устраняются. Характерно, что как электродвигатель, так и подшипники супермаховика находятся в обычных атмосферных условиях, а не в вакууме, что существенно улучшает условия их работы.

Для предохранения от тряски и уменьшения гироскопических воздействий корпус супермаховика подвешен на упругих амортизаторах.

Следующим по величине (вернее по малости) является маховичный велосипед, созданный проф. Висконсинского университета в США. А. Франком. Велосипед, конечно, не самоцель. Благодаря опытам на этом велосипеде А. Франк нашел оптимальные соотношения и определил экономичность установки маховика на автомобиле. Маховик предполагается установить дополнительно, в помощь основному двигателю. Проф. А. Франк считает, что установка маховика на стандартный автомобиль с мощностью двигателя в 75 кВт позволит кратковременно развить мощность до 225 кВт, а расход горючего свести всего к 2,5 л на 100 км пути. При этом дополнительные расходы на установку маховика составят около 100-200 долларов. «Вы едете по неровной местности, не ощущая дополнительной нагрузки на педали» - сообщил профессор после езды на своем велосипеде.

Маховик соединяется с задним колесом велосипеда фрикционным конусом, контактирующим с шиной (рис. 71, a). Перемещением конуса в осевом направлении меняется диаметр его рабочей зоны, контактирующей с колесом, и вследствие этого меняется скорость движения велосипеда. На рис. 71, б показан велосипед англичанина Г. Бата, маховик которого накапливает энергию при «подпрыгивании» пассажира на седле и выделяет ее для помощи в езде.


Рис. 71. :

а-(привод велосипеда американца проф. А. Франка (1-маховик; 2-ведущее колесо велосипеда; 3-конический фрикцион); б-велосипед англичанина Г. Бата с маховиком (1-цепной привод движения седла; 2-маховик; 3-(педали ножного привода)

И наконец, самый маленький представитель маховичных автомобилей - микромобиль для обучения детей правилам уличного движения на автогородках. Микромобиль разработан в Курском политехническом институте. Один из вариантов микромобиля, показанный на рис. 72, содержит маховик массой около 10 кг, разгоняемый электродвигателем до 6000 об/мин. Маховик установлен в задней части микромобиля и так же, как и на велосипеде проф. Франка, контактирует при помощи фрикциона с задним колесом автомобиля.


Рис. 72. :

1-маховик; 2-рукоять управления; 3-фрикционная передача на колесо

Первый вариант микромобиля, еще очень несовершенный, проходит с пассажиром до полукилометра с одной раскрутки маховика. Раскрутка же производится включением разгонного электромотора в обычную электросеть посредством штепсельной розетки и вилки.

В настоящее время ведется разработка усовершенствованного варианта микромобиля, способного пройти несколько километров пути с одной раскрутки маховика.

Во всех рассмотренных случаях маховик играет роль двигателя машины. И нельзя не заметить, что мощность маховичного двигателя значительно меньше мощности обычных двигателей для автомобилей, да и стоимость пробега одного и того же пути на маховичных автомобилях меньше. Это происходит в первую очередь потому, что маховичный двигатель, в отличие от обычных, способен эффективно рекуперировать механическую энергию. А

Практически все конструкции привода велосипедов имеют общий недостаток, снижающий их кпд. Этот порок заключается в неэкономичном расходовании мускульной энергии при смене усилий с одной ноги на другую во время прохождения педалями «мёртвых точек» (вертикального положения шатунов). Большая часть мускульного усилия в этот момент направлена к оси вращения педалей и не столько совершает полезную работу, сколько повышает износ подшипников каретки.

Не зря велосипедисты перед началом движения выводят шатуны из вертикального положения. В результате рабочий ход начинается при частичной потере мускульной энергии, что вызывает преждевременную усталость велосипедиста. Предлагаемое усовершенствование велосипедного привода устраняет этот недостаток, позволяя любителям дальних поездок ехать в экономичном режиме, рационально используя мускульную энергию, расходуя её почти как при обычной ходьбе.

Для этого в конструкции привода используется устройство прерывания взаимодействия шатунов с ведущей звёздочкой, обеспечивающее свободное и быстрое прохождение шатунов с педалями секторов около «мёртвых точек» за счёт инерции. Общий вид конструкции привода велосипеда с инерционным прерывающим устройством показан на рисунке 1, где шатуны 1 (с педалями) закреплённые на кареточном валу 2, имеют подвижное (скользящее) соединение с ведущей звёздочкой 3 за счёт взаимодействия шипов, выполненных на втулке 4, закреплённой на правом шатуне, и диаметральных пазов - на ведущей звёздочке 3.

Пазы позволяют шатунам быстро проходить неэффективную зону, а спиральная пружина изгиба 5 - смягчает удар в конце их свободного хода. Как видно из рисунка привода, конструктивному изменению подвергается только соединение ведущей звёздочки с правым шатуном, поэтому подобный привод можно изготовить на любой модели велосипеда. Для этого из стали ЗОХГСА изготавливается втулка с выступами согласно чертежу поз.4, которая приваривается к шатуну, снятому с кареточного вала и доработанному в соответствии с чертежом поз.1.

Ведущая звёздочка тоже дорабатывается - в ней выполняются пазы под выступы втулки. Пружина изготавливается «на холодную» из углеродистой проволоки диаметром 4 - 5 мм и содержит один неполный виток. Концы пружины можно загнуть в домашних условиях после нагрева места изгиба проволоки над газовой горелкой. Направляющая шайба 10 изготавливается согласно чертежу из любой стали. При установке ведущей звёздочки в её пазы вставляются шипы втулки 4, на которых крепится шайба 10 тремя винтами М4.

Ограничитель 6, выполненный из мягкой проволоки и закреплённый на ведущей звёздочке путём загиба концов на её перемычках-лучах, препятствует отходу от плоскости звёздочки пружины при её напряжённом состоянии во время работы. Далее правый шатун 1 с ведущей звёздочкой обычным способом закрепляется на валу 2 кареточного узла велосипеда с помощью клина 9. При установке пружины один её конец устанавливается в подходящее отверстие на ведущей звёздочке, а другой загнутый конец обхватывает шатун около педали.

Для расширения регулировки усилия пружины 5 на ведущей звёздочке дополнительно сверлится ряд отверстий по диаметру проволоки для установки в них отогнутого конца пружины. Работает привод следующим образом. В начальный период, например при установке правой "ноги на правую педаль, находящуюся в верхнем положении, шатуны 1 совместно с валом 2 и втулкой 4 поворачиваются до рабочего взаимодействия шипа втулки с ведущей звёздочкой 3, при этом пружина 5 сжимается и создаёт крутящий момент на ведущей звёздочке. После приложения мускульного усилия к правой педали ведущая звёздочка приводится во вращение - и велосипед разгоняется.

При приближении правой педали к крайнему нижнему положению происходит прерывание рабочего взаимодействия шатунов (шипа втулки) с ведущей звёздочкой путём задержки вращения шатунов относительно ведущей звёздочки после снижения усилия на педаль за счёт обратного действия пружины и инерционного движения велосипеда. При этом пружина поддерживает вращение звёздочки и отводит её от взаимодействия с шатунами.

В результате в начале следующего рабочего цикла шатуны переходят область вертикального положения с некоторым обратным угловым смещением относительно ведущей звёздочки, что обеспечивает свободный переход вертикального положения и очередное аккумулирование пружины уже для левого кривошипа. Далее процесс работы привода повторяется. Свободный переход педалями крайних верхних и нижних положений исключает потери мускульной энергии при смене циклов их работы, что повышает кпд привода.

В установившемся режиме работы происходит задержка вращения шатунов, а затем они эффективно подталкивают ведущую звёздочку. В результате вращение педалей осуществляется в экономичном «толкательном» режиме. Такой режим работы позволяет без излишних усилий и длительное время поддерживать высокую скорость, что подобно поддержанию вращения маховика прерывистым касательным усилием. Задержка вращения шатунов способствует компенсации инерционных сил, действующих на ноги велосипедиста в области «мёртвых точек» при их быстром вращательном перемещении.

На экономичность и стабильность работы привода влияет усилие аккумулирования пружины, которое подбирается в зависимости от массы и физической подготовки самого велосипедиста. Если после рабочего хода шатуны не отводятся от ведущей звёздочки - то надо установить более упругую пружину. И наоборот, если для свободного перехода педали верхнего положения к ней прикладывается заметное мускульное усилие и при рабочем ходе отсутствует рабочее взаимодействие шатунов с ведущей звёздочкой - то упругость пружины необходимо снизить.

Это можно сделать путём подбора диаметра пружинной проволоки. Для нормальной работы привода величина обратного перемещения кривошипов должна быть меньше их начального углового смещения. При таких условиях в переходных процессах работы поддерживается начальный крутящий момент на ведущей звёздочке, что дополнительно усиливает демпфирующие свойства пружины для сглаживания пиковых нагрузок при толкательном вращении ведущей звёздочки.

При освоении поездок на велосипеде с таким приводом от велосипедиста требуется определённое внимание за контролем равномерности вращения ведущей звёздочки со свободным ходом шатунов. При получении определённых навыков равномерность вращения ведущей звёздочки и величина обратного перемещения шатунов поддерживаются автоматически и не представляют каких-либо затруднений и дискомфорта.

Экспериментальные ходовые испытания в пределах 3500 км подтвердили экономичность и надёжность работы привода. По сравнению с обычным велосипедом заметно снижается утомляемость при дальних поездках, что расширяет возможности велосипедиста. Возможно, подпружинивание педалей относительно ведущей звёздочки также может занять своё место в большом спорте, как и подпружинивание задней части лезвия относительно пятки ботинок беговых коньков.

«Экономичный» велопривод: 1-доработанный правый шатун с педалью; 2 - вал каретки; 3-доработанная ведущая звёздочка цепной передачи; 4 - втулка (сталь ЗОХГСА, круг 55); 5 - пружина кручения (углеродистая проволока 05); 6 - ограничитель пружины (мягкая проволока диаметром 4); 7-приводная цепь; 8-приводная звёздочка; 9 - клин крепления шатуна на валу; 10-направляющая шайба (сталь, лист s3); 11 -крепёж шайбы к втулке (винт М4, 3 шт.); 12 - кареточный узел

Концептуальная версия футуристического электрического инерционного велосипеда City Bike (Городской велосипед), которая была разработана дизайнером Девраем Бхадра, представляет собой традиционный велосипед, который кроме того, что является экологически чистым, приносит большое удовольствие во время езды по улицам.
Покрытие данного изобретения выполнено из стекловолокна, при этом сам скелет велосипеда произведен из углеродного волокна. Такая конструкция делает это транспортное средство довольно легким. При этом, в колеса велосипеда встроены небольшие двигатели, которые избавляют его от веса спиц и, соответственно, уменьшают трение и сопротивление во время движения.

Согласно идее разработчика, этот же механизм позволяет повысить контроль велосипедистом каждого из колес, ведь питание передается непосредственно от двигателей колесам, что позволяет City Bike оставаться стабильным в условиях изменения скорости движения. Инерция, которая вырабатывается во время движения, идеально настроена на каждого из велосипедистов. Таким образом, благодаря использованию всей системы, велосипедисты разной комплектации и размеров могут максимально комфортно управлять этим велосипедом.

Инерция этого транспортного средства передается с рабочей цепи, главной передачи и колес, в результате чего у пользователя во время езды возникает иллюзия маневрирования даже в условиях нахождения в стационарном положении на месте. Данная система работает аналогично маятнику, поэтому водитель имеет возможность управлять велосипедом на разных скоростях по-разному.