Система подачи топлива. Инжекторные системы, описание и принцип работы. Инжекторная система — что это и как она работает

Рассмотрим инжектор двигателя (его устройство и принцип работы) взяв в качестве примера электронную систему распределенного впрыска.

Впрысковые инжекторные двигатели , которые производятся в настоящее время, оснащаются индивидуальными форсунками для каждого цилиндра. Форсунки соединены с топливной рампой, в которой под давлением находится топливо, подаваемое электрическим бензонасосом. В зависимости от времени в течении которого форсунки находятся в открытом положении, меняется количество впрыскиваемого топлива. Электронный блок управления (так называемые контроллер) регулирует открытие форсунок, основываясь на информации, полученной от различных датчиков.

Датчик массового расхода воздуха необходим для расчета циклового наполнения цилиндров. С помощью этого датчика происходит измерение массового расхода воздуха. Затем полученная информация пересчитывается программой в цилиндровое цикловое наполнение. В случае поломки датчика его показания системой не учитываются, и расчет производится по аварийным таблицам.

Датчик положения дроссельной заслонки рассчитывает фактор нагрузки на двигатель инжектор, а также его изменения в зависимости от оборотов двигателя, угла открытия дроссельной заслонки и циклового наполнения.

Датчик температуры охлаждающей жидкости необходим для определения коррекции топливоподачи и зажигания в зависимости от температуры, а также для управления вентилятором. В случае неисправности данного датчика его показания системой не учитываются, а показания температуры берутся в соответствии с таблицей в зависимости от времени работы двигателя инжектора.

Датчик определения положения коленчатого вала выполняет общую синхронизацию системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ является полярным датчиком. Если датчик включен не правильно, то инжекторный двигатель не будет заводится. В случае поломки датчика система не будет работать. Датчик определения положения коленчатого вала является единственным датчиком в системе , в случае поломки которого автомобиль не тронется с места. Неполадки в работе остальных датчиков не являются критическими и без них возможно своим ходом добраться до автосервиса.

Датчик кислорода определяет концентрацию кислорода в отработавших газах. Датчик посылает информацию в электронный блок управления для дельнейшей коррекции количества подаваемого топлива. Этот датчик используется исключительно в системах с каталитическим нейтрализатором под нормы токсичности Евро-2 и Евро-3. Причем для Евро-3 применяются два датчика кислорода, один устанавливается до катализатора, а второй после него.

Датчик детонации необходим для контроля за возможной детонацией. В случае обнаружения возможной угрозы детонации ЭБУ запускает алгоритм гашения детонации, при этом система корректирует угол опережения зажигания.

Существует еще ряд различных датчиков, которые необходимы для нормальной работы системы. Для различных моделей автомобилей подбирается определенная комбинация датчиков в зависимости от норм токсичности, системы впрыска и так далее.

Программа ЭБУ на основании произведенных опросов установленных датчиков в программе, осуществляет управление различными исполнительными механизмами. К ним относятся: модуль зажигания, бензонасос, форсунки, регулятор холостого хода, вентилятор системы охлаждения, клапан адсорбера системы улавливания паров бензина и прочие, в зависимости от модели автомобиля.

Если о большинстве названных устройств имеется хотя бы малейшее представление, то об адсорбере не специалист редко слышал. Адсорбер - элемент замкнутой цепи рециркуляции паров бензина. Согласно нормам Евро-2, контакт вентиляции бензобака с атмосферой запрещен, а бензиновые пары должны адсорбироваться (то есть собираться) и в процессе продувки направляться в цилиндры для дальнейшего дожига. При выключенном двигателе бензиновые пары из бака и впускного коллектора попадают в адсорбер, где они поглощаются. Во время запуска двигателя, по команде ЭБУ, адсорбер начинает продуваться потоком воздуха, который всасывается двигателем. Под действием воздушного потока, пары увлекаются в камеру сгорания и там дожигаются.

Виды инжекторных двигателей.

Системы впрыска зависят от места подачи топлива и количества форсунок. Они бывают трех типов:

  • одноточечная (моновпрыск). Одна форсунка устанавливается на впускной коллектор на все цилиндры.
  • многоточечный (распределенный). При таком типе двигателя, каждый цилиндр оснащается своей форсункой, подающей топливо в коллектор)
  • непосредственный. В этом случае топливо подается непосредственно в цилиндры с помощью форсунок. Примером могут служить дизельные инжекторные двигатели .

Системы впрыска инжекторных двигателей.

Моновпрыск является самым простым видом. В нем небольшое количество управляющей электроники. Недостатком является его небольшая эффективность, поскольку управляющая электроника позволяет контролировать поступающую информацию с датчиков и, в случае необходимости, влиять на параметры впрыска. Достоинством одноточечного прыска является тот факт, что под него можно легко адаптировать карбюраторные двигатели обойдясь практически без существенных переделок конструкции или технологических изменений при производстве. Также монопрыск обладает по сравнению с карбюратором позволяет сэкономить топливо, является более экологически чистотым и является относительно стабильным и надежным по своим параметрам. Однако одноточечный впрыск уступает приёмистости инжекторного двигателя . Кроме того, в результате работы моновпрыска около 30% бензина остается в качестве осадка на стенках коллектора.

Безусловно, система моновпрыска является большим прорывом в сравнении с карбюраторной системой питания, однако в настоящее время уже не в состоянии удовлетворять современные требования.

Многоточечный впрыск является более совершенной системой подачи топлива, при которой оно подается отдельно к каждому цилиндру. Данная система подачи топлива значительно мощнее, экономичнее, но при этом и сложнее. Многоточечный впрыск позволяет увеличить мощность инжекторного двигателя примерно на 7-10 процентов. Основными достоинствами распределенного впрыска можно считать:

  • можно автоматически настроить подачу топлива при различных оборотах и в результате, улучшить наполнение цилиндров. Как следствие, это позволит при одинаковой мощности автомобиля разогнаться быстрее.
  • поскольку впрыск топлива происходит в непосредственной близости от впускного клапана, значительно уменьшается его количество, которое оседает на стенках впускного коллектора. В результате появляется возможность более точной регулировки подачи топлива.

Является более эффективным средством в оптимизации сгорания смеси и повышения КПД бензинового инжекторного двигателя . Его работа основывается на простых принципах:

  • топливо тщательнее распыляется, а значит лучше перемешивается с воздухом и более грамотно распоряжается готовой смесью на разных режимах работы двигателя. В результате, инжекторный двигатель с непосредственным впрыском потребляет меньший объем топлива, чем обычные «впрысковые» моторы. Это становится особенно заметно при спокойной езде на небольшой скорости;
  • при равных рабочих объемах двигателей, позволяет разгоняться значительно быстрее;
  • является более экологичным;
  • в результате большей степени сжатия и одновременного эффекта охлаждения воздуха при испарении топлива в цилиндрах, гарантируется более высокая литровая мощность.

Необходимо учитывать, что данный вид инжекторного двигателя требует качественный бензин с низким уровнем содержания серы и прочих механических примесей. Это является обязательным условием для обеспечения нормальной работы топливной системы.

Инжектор – это самый популярный электронно-механический узел в автомобилестроении. Устройство и принцип работы инжектора одновременно просты и сложны. Конечно, рядовому автовладельцу необязательно вникать в детали конструкции инжекторных систем и их программного обеспечения, но основные моменты знать не помешает.

Ниже мы расскажем о том, что такое инжектор, каков принцип его работы, и какие типы инжекторных форсунок чаще всего применяются на современных двигателях.

Такие вещи своими силами не ремонтируются, однако разбираться в устройстве инжектора стоит, хотя бы для того, чтобы не попасть впросак при оплате счета в автосервисе.

Инжектор (англ. - Injector) - это специальная форсунка, установленная на двигатель внутреннего сгорания , либо являющаяся частью целой инжекторной системы. Она выполняет функцию распылителя топлива (жидкого или газообразного).

Впервые данную разработку внедрили в производство специалисты компании Bosch, когда оснастили ею купе Goliath 700 Sport с двухтактным двигателем. Произошло это в 1951 году, а всего через 3 года это же сделал Mercedes (Mercedes-Benz 300 SL). Однако поначалу такие комплектующие были довольно дороги, так что широкое применение инжекторов началось только в 70-х годах. Инжекторная система быстро вытеснила карбюраторы (особенно в Европе, Америке и Японии) и на сегодняшний день большинство моделей автомобилей оснащаются именно этим устройством.

Инжекторная система впрыска топлива (Fuel Injection System) отличается тем, что она осуществляет прямой впрыск непосредственно в цилиндры или же во впускной коллектор. Делается это при помощи все той же форсунки, которые, в свою очередь, делятся на 2 категории, отличающиеся местом монтажа инжектора, а также принципом его работы:

  1. Моновпрыск – его еще называют центральным впрыском топлива. В данном случае инжектор представляет собой только одну форсунку, которая подает топливо во все цилиндры двигателя. При таком подходе сам инжектор крепится прямо на впускном коллекторе. Стоит заметить, что на сегодняшний день данная схема работы устарела и практически не используется автопроизводителями.
  2. Распределенный впрыск – это значит, что для каждого отдельного цилиндра подведена своя форсунка.

Помимо этого, существует несколько типов распределенного впрыска:

  • прямой (непосредственный) – при нем топливо впрыскивается сразу в камеру сгорания мотора;
  • одновременный – в этом случае все форсунки инжектора работают синхронно, в один момент подавая топливо во все цилиндры;
  • попарно-параллельный – осуществляется открытие форсунок парной схемой. Т. е. первая открывается перед впуском, а вторая – перед выпуском. Однако такой подход имеет место только в случае запуска мотора, тогда как в движении реализуется фазированная схема;
  • фазированный впрыск – это означает, что каждая отдельная форсунка инжектора открывается именно перед впуском.

Инжекторные форсунки различаются по способам впрыска:

  1. Электромагнитная;
  2. Электрогидравлическая;
  3. Пьезоэлектрическая.

Электромагнитная форсунка – довольно проста и ставится на бензиновые моторы (в большинстве случаев). Ею оснащают и двигатели с непосредственным впрыском. Ее главными составными частями являются оснащенный иглой электромагнитный клапан, а также сопло. В процессе функционирования на обмотку клапана подается электрический разряд. Частотой его подачи ведает специальный электронный блок управления. В ходе процесса происходит образование электромагнитного поля. Оно втягивает иглу, освобождает сопло и происходит впрыск, причем делается это одновременно со сжиманием пружины, которая разжимается после исчезновения электромагнитного поля и возвращает иглу в исходное положение.

Электрогидравлическая форсунка – применяется на дизельных моторах (в том числе с системой Common Rail). Основные элементы данной форсунки – это камера управления, дроссели (впускной и сливной) и электромагнитный клапан. Работают они благодаря разнице в давлении солярки на форсунку и поршень: иглу форсунки топливо прижимает к седлу, тогда как электромагнитный клапан закрыт (обесточен).

Когда блок управления открывает клапан, открывается и дроссель (сливной). Далее происходит заполнение топливной магистрали соляркой, вытекающей через дроссель. При этом начинает уменьшаться давление дизтоплива на поршень, тогда как на игле оно остается прежним. Из-за этого игла приподнимается и осуществляется впрыск.

Пьезоэлектрическая форсунка – это наиболее совершенный (в техническом отношении) вариант. Как правило, ею оснащают дизельные движки. У нее немало достоинств, среди которых скорость работы (по сравнению электромагнитным устройством она быстрее в 4 раза), а также предельно точная и выверенная дозировка. В данном случае применяется пьезокристалл, который изменяет свою длину под напряжением. Это устройство состоит из толкателя, пьезоэлемента, клапана и иглы.

Принцип работы схож с электрогидравлической форсункой. Здесь также применена схема с разницей в давлении топлива. Электрический ток удлиняет пьезоэлемент, который давит на толкатель. В результате переключающий клапан открывается, и топливо вливается в магистраль. Давление на иглу уменьшается, и она отходит вверх, производя впрыск.

Самый простой инжектор имеет в своей конструкции следующие элементы:

  1. Электронный блок управления;
  2. Бензонасос (электрический);
  3. Форсунки;
  4. Датчики;
  5. Регуляторы давления.

Как видно, ничего слишком сложного в конструкции инжектора нет, по крайней мере, это касается его механической части. Если коротко, то работа инжекторной системы впрыска происходит следующим образом:

  • Датчик расхода воздуха измеряет массу воздуха, поступающего в мотор.
  • Далее эта информация передается в блок управления инжектора, вместе с другими данными (температура силового агрегата, скорость вращения коленвала, температура воздуха, скорость и степень открытия дроссельной заслонки, и другие параметры).
  • Компьютер анализирует всю эту информацию и точно высчитывает то количество топлива (бензина, дизтоплива, газа), которое требуется для сжигания в поступившей массе воздуха.
  • Далее происходит подача электрического разряда (определенной длительности) на форсунки инжектора, которые открываются, пропуская топливо из топливной магистрали во впускной коллектор.

Наиболее сложная часть всей инжекторной системы – это электронный блок управления (сокращенно – ЭБУ). Он представляет собой микрокомпьютер, производящий вычисления по программе, внесенной в его память. Программа составлена таким образом, что успевает анализировать все параметры работы двигателя и реагировать на изменение информации, полученной от внешних датчиков.

Именно поэтому для корректной работы инжектора крайне важны следующие два компонента: каталитический нейтрализатор отработанных газов и датчик кислорода (лямбда-зонд).

  1. Каталитический нейтрализатор . Внешне он имеет сходство с сотами, которые покрыты специальным слоем. Его задача состоит в дожигании несгоревшего топлива, вылетающего из камеры сгорания вместе с выхлопными газами. Но он теряет эту способность в результате всего нескольких заправок этилированным бензином. Однако не только топливо может стать причиной неисправности. Часто нейтрализатор просто оплавляется в результате длительной езды на обогащенной смеси – соты попросту забиваются нагаром. Это происходит в результате поломки датчика кислорода или неисправностей в системе зажигания.
  2. Датчик кислорода . Чаще всего автомобили оснащают циркониевыми датчиками, которые прогреваются до рабочей температуры (свыше 300 °С) и подают блоку управления информацию о состоянии смеси, ориентируясь на состав выхлопа. Если смесь слишком богатая или бедная – компьютер корректирует подачу топлива, соответственно увеличивая или уменьшая его количество.

Видео о том, как работает инжектор

Внутреннего сгорания (ДВС) основан на сгорании небольшого количества топлива в ограниченном объеме. При этом высвобождающаяся энергия преобразуется за счет движения поршней в механическую энергию. Дозированное количество топлива обеспечивается карбюратором или специальным устройством – инжектором. Двигатели с такими устройствами называются инжекторными. Рабочий принцип инжекторного двигателя прост – подача в нужный момент времени нужного количества топлива в нужное место.

Как работает ДВС

Чтобы ясно понимать различие между двумя типами силовых устройств, необходимо предварительно коснуться того, как вообще работает ДВС. Существует несколько отличающихся типов, из которых самыми распространенными будут:

  1. бензиновые;
  2. дизельные;
  3. газодизельные;
  4. газовые;
  5. роторные.

Принцип работы мотора лучше всего можно понять на примере бензинового двигателя. Самый популярный из них – четырехтактный. Это означает, что весь цикл преобразования энергии, образующейся при сгорании топлива, в механическую осуществляется за четыре такта.
Устройство двигателя таково, что последовательность выполнения тактов следующая:

  • впуск – заполнение цилиндров топливом:
  • сжатие – подготовка топлива к сгоранию;
  • рабочий ход – преобразование энергии сгорания в механическую;
  • выпуск – удаление продуктов сгорания топлива.

Для обеспечения работы двигателя у каждого из них своя задача. Во время первого такта поршень опускается из верхнего положения до крайнего нижнего, открывается клапан (впускной) и цилиндр начинает заполняться топливно-воздушной смесью . Во втором такте клапана закрыты, а движение поршня происходит от нижнего положения к верхнему, смесь в цилиндре сжимается. Когда он доходит до верхнего положения, на свече проскакивает искра и поджигается смесь.

При ее сгорании образуется повышенное давление, которое заставляет двигаться поршень от верхнего положения к нижнему. После его достижения под действием инерции вращения коленвала поршень начинает двигаться опять вверх, при этом срабатывает выпускной клапан, продукты сгорания топлива выводятся наружу из цилиндра. Когда поршень дойдет до верхнего положения, закрывается выпускной, но зато открывается впускной клапан и весь цикл работы повторяется.

Все описанное выше можно увидеть на видео

О карбюраторе, его достоинствах и недостатках

Здесь необходимо сделать небольшое дополнение. Раз мы рассматриваем бензиновый мотор, то в нем подача бензина в цилиндры двигателя возможна различными способами. Исторически первой была разработана подача и дозировка бензина при помощи карбюратора. Это специальное устройство, которое обеспечивает необходимое количество топливно-воздушной смеси (ТВС) в цилиндрах.


Топливно-воздушной называется смесь воздуха и паров бензина. Она приготавливается в карбюраторе, специальном устройстве, для их смешивания в нужной пропорции, зависящей от режима работы двигателя. Будучи достаточно простым по своему устройству, карбюратор длительное время успешно работал с бензиновым мотором.
Однако по мере развития автомобиля выявились недостатки, с которыми в сложившихся к тому времени условиях уже было трудно мириться разработчикам двигателя. В первую очередь это касалось:

  • топливной экономичности. Карбюратор не обеспечивал экономного расходования бензина при внезапном изменении режима движения машины;
  • экологической безопасности. Содержание в отработанных газах токсичных веществ было достаточно высоким;
  • недостаточной мощности двигателя из-за несоответствия ТВС режиму движения автомобиля и его текущему состоянию.

Чтобы избавиться от отмеченных недостатков был реализован иной принцип подачи топлива в мотор – с помощью инжектора.

Про инжекторные моторы

У них есть еще одно название – впрысковые двигатели что, в общем-то, никоим образом не изменяет сути происходящих явлений. По выполняемой работе впрыск напоминает принцип, реализуемый в работе дизеля. В двигатель в нужный момент через форсунки инжектора впрыскивается строго дозированное количество топлива, и оно поджигается искрой со свечи, хотя при работе дизеля свеча не используется.


Весь цикл четырехтактного ДВС, рассмотренный ранее, остается неизменным. Основное отличие в том, что карбюратор готовит ТВС за пределами двигателя, и она потом поступает в цилиндры, а у инжекторного двигателя последних моделей бензин впрыскивается непосредственно в цилиндр.

Как это происходит, можно в деталях увидеть на видео

Подобное устройство мотора позволяет решить те проблемы, которые возникают при работе карбюратора. Использование инжектора обеспечивает по сравнению с карбюраторным вариантом следующие преимущества мотору:

  • повышение мощности на 7-10%;
  • улучшение показателей топливной экономичности;
  • снижение уровня токсичных веществ в составе выхлопных газов;
  • обеспечение оптимального количества топлива, зависящее от режима движения автомашины.

Это только основные достоинства, которые позволяет получить инжекторный двигатель. Однако у каждого достоинства есть и свои недостатки. Если карбюраторный мотор чисто механический и его можно отремонтировать практически в любых условиях, то для управления инжекторным требуется сложная электроника и целая система датчиков, из-за чего работы (регламентные и ремонтные) необходимо проводить в условиях сервисного центра.

Устройство впрыска

Если посмотреть, как выглядит устройство ДВС с впрыском вместо карбюратора, то можно выделить:

  • контроллер впрыска – электронное устройство, содержащее программу для работы всех составных узлов системы;
  • форсунки. Их может быть как несколько, так и одна, в зависимости от используемой системы впрыска;
  • датчик расхода воздуха, определяющий наполнение цилиндров в зависимости от такта. Сначала определяется общее потребление, а потом программно пересчитывается необходимое количество для каждого цилиндра;
  • датчик дроссельной заслонки (ее положения), устанавливающий текущее состояние движения и нагрузку на двигатель;
  • датчик температуры, контролирующий степень нагрева охлаждающей жидкости, по его данным корректируется работа двигателя и при необходимости начинается работа вентилятора обдува;
  • датчик фактического нахождения коленчатого вала обеспечивающий синхронизацию работы всех составных узлов системы;
  • датчик кислорода, определяющий его содержание в выхлопных газах;
  • датчик детонации контролирующий возникновение последней, для ее устранения по его сигналам меняется значение опережения зажигания.


Вот примерно так выглядит в общих чертах система, обеспечивающая впрыск топлива, принцип работы должен быть вполне понятен из ее состава и назначения отдельных элементов.

Виды впрысковых систем

Несмотря на достаточно простое описание работы инжекторного мотора, приведенное ранее, существует несколько разновидностей, осуществляющий подобный принцип работы.

Одноточечный впрыск

Это самый простой вариант реализации принципа впрыска. Он практически совместим с любым карбюраторным двигателем, разница заключается в применении впрыска вместо карбюратора. Если карбюратор во впускной коллектор подает ТВС, то при одноточечном впрыске во впускной коллектор впрыскивается через форсунку бензин.

Как и в случае с карбюраторным мотором, при такте впуск двигатель всасывает готовую топливно-воздушную смесь, и его работа практически не отличается от работы обычного двигателя. Преимуществом такого мотора будет лучшая экономичность.

Многоточечный впрыск

Представляет дальнейший этап совершенствования инжекторных моторов. Топливо по сигналам от контроллера подается к каждому цилиндру, но тоже во впускной коллектор, т.е. ТВС готовится вне цилиндра и уже в готовом виде поступает в цилиндр.
В таком варианте реализации принципа инжекторного двигателя возможно обеспечить многие из преимуществ, присущие впрысковому двигателю и отмеченные ранее.

Непосредственный впрыск

Является следующим этапом развития инжекторных двигателей. Впрыск топлива выполняется прямо в камеру сгорания, чем обеспечивается наилучшая эффективность работы ДВС. Итогом такого подхода является получение максимальной мощности, минимального расхода топлива и наилучших показателей экологической безопасности.

Инжекторный ДВС является следующим этапом в развитии бензинового мотора, значительно улучшающий его показатели. В моторах, использующих систему впрыска топлива, возрастает мощность, а также экономическая эффективность их работы, они отличаются значительно меньшим отрицательным влиянием на окружающую среду.

Неисправности инжектора (форсунок) встречаются как на , так и на двигателях. В схеме устройства системы питания инжекторного двигателя форсунка является элементом, который отвечает за впрыск распыленной порции топлива в камеру сгорания под определенным давлением.

Точное дозирование, герметичность и своевременное срабатывание инжекторной форсунки обеспечивают устойчивую и исправную работу двигателя на всех режимах его работы. Если форсунка «льет» (пропускает лишнее топливо в момент, когда его подача не требуется), снижается эффективность распыла горючего (нарушается форма факела) и возникают другие неисправности инжектора, тогда , теряет мощность, расходует много топлива и т.п.

Читайте в этой статье

Что указывает на возможные проблемы с инжектором

Сразу отметим, что причин нестабильной работы двигателя может быть много, начиная от забитого , поломки , вышедшей из строя свечи зажигания или неисправной катушки до , проблем с и т.д. Наряду с этим одним из главных признаков неисправности форсунок является , а также расход бензина или солярки (зависимо от типа двигателя), который заметно увеличивается. Еще необходимо отметить неустойчивую работу ДВС в режиме холостого хода, похожую на так называемое «троение» двигателя.

При езде возможно достаточно частое проявление одного или сразу нескольких симптомов:

  • наличие рывков, сильно замедленны реакции при нажатии на педаль газа;
  • явные провалы и потеря динамики при попытках резкого ускорения;
  • машина может дергаться на ходу, при сбросе газа, а также после смены режима нагрузки на мотор;

Необходимо добавить, что подобную неисправность необходимо устранять безотлагательно, так как проблемы с инжектором негативно сказываются не только на ресурсе двигателя и трансмиссии, но и на общей безопасности движения. На автомобиле с неисправными форсунками водитель может испытать серьезные трудности при обгоне, на крутых подъемах и т.п.

Самостоятельная проверка форсунок

Начнем с того, что автомобильные форсунки делятся на несколько типов, из которых в разное время широкое применение нашли два вида: механические форсунки и электромагнитные (электромеханические) инжекторы.

Электромагнитные форсунки имеют в основе специальный клапан, который осуществляет открытие и закрытие форсунки для подачи топлива под воздействием управляющего импульса двигателем. Механические форсунки открываются в результате роста давления топлива в форсунке. Добавим, что на современных авто зачастую устанавливаются электромагнитные устройства.

Чтобы проверить форсунки своими руками без снятия с машины можно воспользоваться несколькими способами. Наиболее простым и доступным способом, который позволяет быстро проверить инжекторные форсунки не снимая их с машины, является анализ шумов, издаваемых двигателем в процессе работы.

Определить неисправную форсунку на слух по звуку работы ДВС можно в том случае, если из блока цилиндров доносится приглушенный высокочастотный звук. Это указывает на необходимость чистки инжектора или неисправность форсунок.

Как проверить подачу питания на форсунки

Указанную проверку производят в том случае, если сами форсунки исправны, но какой-либо из инжекторов не работает при включении зажигания.

  • для диагностики от инжектора отключается колодка, после чего к нужно подключить два провода;
  • другие концы проводов крепятся к контактам форсунки;
  • затем нужно включить зажигание и зафиксировать наличие или отсутствие вытекания топлива;
  • если горючее течет, тогда данный признак указывает на проблемы в электрической цепи;

Еще одним из диагностических приемов является проверка инжектора при помощи мультиметра. Данный способ позволяет измерить сопротивление на форсунках не снимая их с двигателя.

  1. Перед началом работ необходимо выяснить, какой импеданс (сопротивление) имеют форсунки, установленные на конкретном автомобиле. Дело в том, что встречаются инжекторные форсунки как с высоким, так и с низким сопротивлением.
  2. Следующим шагом станет выключение зажигание, а также сбрасывание минусовой клеммы с АКБ.
  3. Далее потребуется отключить электрический разъем на форсунке. Для этого необходимо использовать отвертку с тонким концом, при помощи которой нужно отщелкнуть специальный зажим, расположенный на колодке.
  4. После отсоединения разъема переводим мультиметр в нужный режим работы для замера сопротивления (омметр), подключаем контакты мультиметра к соответствующим контактам форсунки для измерения импеданса.
  5. Сопротивление между крайним и центральным контактом форсунки с высоким импедансом должно быть в рамках от 11-12 до 15-17 Ом. Если на автомобиле применяются форсунки с низким сопротивлением, тогда показатель должен быть от 2 до 5 Ом.

Если замечены явные отклонения от допустимых норм, тогда форсунку нужно демонтировать с двигателя для подробной диагностики. Также возможна замена форсунки на заведомо исправную, после чего оценивается работа двигателя.

Комплексная диагностика работы форсунок на рампе

Для такой проверки топливную рейку понадобится снять с мотора вместе с закрепленными на ней форсунками. После этого нужно присоединить все электрические контакты к рампе и форсункам в том случае, если таковые отключались перед снятием. Также необходимо вернуть на место минусовую клемму АКБ.

  1. Рампу необходимо разместить в подкапотном пространстве так, чтобы получилось поставить под каждой из форсунок мерную емкость с нанесенной шкалой.
  2. Нужно подключить к рампе трубки подачи топлива и дополнительно проверить надежность их крепления.
  3. Следующим шагом является включение зажигания, после чего необходимо немного провернуть двигатель стартером. Данную операцию лучше проводить с помощником.
  4. Пока помощник вращает двигатель, проконтролируйте эффективность работы всех инжекторов. Подача горючего должна быть одинаковой на всех форсунках.
  5. Завершающим этапом станет выключение зажигания и проверка уровня топлива в емкостях. Указанный уровень должен быть равнозначным в каждой емкости.

Большее или меньшее количество горючего в мерных емкостях укажет на неисправность форсунки или необходимость очистки одного или нескольких инжекторов. Если форсунка демонстрирует недолив, тогда элемент нужно чистить или менять. Подтекание топлива после отключения зажигания укажет на то, что форсунка «льет» и потеряла герметичность.

Кроме самостоятельной проверки можно воспользоваться услугой диагностики инжектора в автосервисе. Данную операцию совершают на специальном проверочном стенде. Проверка форсунки на стенде позволяет точно определить не только эффективность подачи горючего, но и форму факела во время распыла топлива.

Как самому очистить форсунки без снятия с двигателя

В процессе диагностики частой причиной неустойчивой работы мотора является то, что инжекторные форсунки забились. Существует несколько способов очистки форсунок, среди которых может использоваться механический, ультразвуковой или очистка при помощи специальных химических составов.

В ряде случаев заливка в топливный бак специальной присадки-очистителя инжектора достаточно для того, чтобы нормализовать работу всей системы. Также рекомендуется с определенной периодичностью раскручивать мотор до высоких оборотов и разгонять автомобиль до 110-130 км/ч. на ровных отрезках пути. В таком режиме нужно проехать 10-20 километров. Продолжительная работа форсунок под нагрузкой позволяет реализовать так называемую самоочистку.

Напоследок добавим, что перечисленные выше способы очистки позволяют удалить только незначительные загрязнения. Серьезно забитый инжектор необходимо чистить механически, составами под давлением или ультразвуком. Что касается промывки форсунок, специалисты рекомендуют промывать инжектор каждые 30-40 тыс. пройденных километров.

Чистку инжектора стоит делать для профилактики, а не после появления признаков неисправности. Если автомобиль эксплуатируется в режиме городской езды на топливе сомнительного качества, тогда интервал профилактических мер следует сократить применительно к индивидуальным условиям эксплуатации.

Читайте также

Когда и для чего нужно снимать топливные форсунки с двигателя. Снятие форсунок на бензиновом и дизельном моторе: особенности процесса демонтажа.

  • Чистка инжектора автомобиля без снятия форсунок. Способы очистки форсунок со снятием на кавитационном стенде. Ультразвуковая и гидродинамическая кавитация.


  • Инжекторный двигатель - что мы о нем знаем? Именно им оснащается любая современная машина. Реализация ресурса такого двигателя внутреннего сгорания (ДВС) рассчитана на экономный расход топлива, минимизацию его выхлопа в окружающую среду. Проведем небольшой экскурс по изучению агрегата.

    За счет чего он работает?

    Работают тактами; каждый такт обеспечивает операцию:

    1. Заполнение горючим цилиндров.
    2. Сжатие его поршнем для сгорания.
    3. Рабочий ход - получение механической энергии путем детонации горючего вещества.
    4. Вывод переработанного сырья в атмосферу.

    Наиболее востребованными автопромом являются 4-х на бензиновой тяге. На их примере изучим принцип работы инжекторного двигателя.

    При первом такте поршень максимально опускается вниз - через клапан подается перемешанный с воздухом бензин. Далее, поршень поднимается до упора, закрывая клапан и сжимая смесь. После этого свеча отсекает искру - она запускает детонацию сдавленного вещества.

    Повышение температуры в камере и образование газов продвигают поршень вперед, а коленвал за счет инерции возвращает его на верхнюю позицию. При высокой скорости оборотов давление нагнетается еще больше, открывается выходной клапан. Продукты переработки бензина устремляются к нему.

    Для более рационального функционирования используется комплекс датчиков, которые определяют получаемую на механизмы нагрузку, рассчитывают порции компонентов детонирующей смеси для обеспечения движения с циклом, равным такту.

    Программная «начинка» их устроена так, что каждый срабатывает параллельно режимам мотора, отслеживает изменения в циклах и подстраивается под них. Такая функциональность позволяет подстраивать расход горючего под индивидуальный стиль вождения, повысить КПД.

    В чём особенности устройства?

    Изучение конструкции позволит подробнее разобраться, как работает инжекторный двигатель. Компоненты, характерные для этого типа:

    • Блок электронного управления (ЭБУ);
    • Регулятор давления;
    • Форсунки;
    • Бензонасос;
    • Датчики.

    Взаимодействие перечисленного: датчики получают данные о состоянии механики или процессах, их обрабатывает процессор и передает управляющие команды. Форсункам выделяется ограниченный заряд, который их открывает. Результат - смесь из топливного отдела попадает в отсек впускного коллектора.

    Чтобы схема этого процесса стала более понятной, проведем краткий экскурс по устройству некоторых узлов, из которых состоит двигатель инжектор.

    ЭБУ

    Основная его функция - бесперебойно выдавать команды составляющим автомобиля на основании обработанной информации. В нее входят:

    • факторы окружающей среды (температура, влажность, пр.);
    • степень нагрузки на механику (при подъеме на горку, передвижение по плохой дороге, др.);
    • режим мотора (холостой/скоростной ход, учет нагрузки при переходе на полный привод, т. д.).

    При несовпадениях исходной программе компьютер задает исполняющим элементам корректировки. Блок способен проводить диагностику. Об отказе любого механизма-исполнителя, его некорректном функционировании водитель оповещается путем индикации CheckEngine на приборной панели. Сведения об ошибках собираются в памятном отделе, что при серьезных поломках помогает их оперативному обнаружению и устранению.

    Виды заложенных устройств памяти:

    • Однократно программируемое постоянное запоминающее (ППЗУ) - содержит базовый программный код («мозг» автомашины). Его чип находится на плате панели, при выходе из строя легко меняется новым. При любых сбоях вложенные коды остаются храниться на нем.
    • Оперативное запоминающее (ОЗУ) - временный резервуар, применяемый для обработки задач по текущему сеансу. Устройство впаяно к плате; по прекращению подачи электричества из аккумулятора вся информация с него стирается.
    • Электрически программируемое (ЭПЗУ) - содержит временные данные и кодировку средств защиты от угона. В качестве питания использует вшитый аккумулятор, подзаряжаемый при движении. Через него сравниваются вшитые коды электронной блокировки и те же параметры иммобилайзера. При их несовпадении запуск инжекторного двигателя невозможен.

    Форсунки

    Через них производится выплеск порций топливной массы в коллекторное и цилиндровое отделения, причем открытие/закрытие клапана в течение секунды повторяется многократно.

    По способу аппаратного управления и используемого количества деталей подразделяют на категории:

    1. Дроссельный моновпрыск (TBI)- подача сырья для детонации осуществляется одной деталью. Подаваемая струя не синхронизируется со срабатыванием клапана впуска. Управляющие сигналы на форсуночное сообщение производятся из внутриколлекторного чипа. Принцип распространен на старых моторах 90-х годов выпуска.
    2. Впрыск с распределением (MFI) - используется во всех современных автомобилях с бортовым компьютером. Передача горючего происходит комплектно: одна форсунка - один цилиндр. Форсунковый блок крепится поверх коллектора, а весь процесс синхронизируется с ЦБУ, согласно с тем, как работает система зажигания инжекторного двигателя. При сравнении сводных характеристик предшественников - КПД увеличен до 10%.

    MFI-элементы по подаче струи бывают: электрогидравлические, электромагнитные, пьезоэлектрические. Они применяются при распределении впрыска:

    • Одновременном (синхронное наполнение всех цилиндров);
    • Попарно-параллельном - одна пара поршней принимает нижнее положение, другая - верхнее. Залив топлива и вывод продуктов сгорания производятся так же;
    • Двухстадийном (фазовом)- передача горючего в камеры сгорания производится в две операции.
    • Непосредственном - применяется в конструкциях моторов, подразумевающих сжигание сверхобедненного кислородом состава.

    Важный факт: технология TBI сегодня практически не распространена, так как она менее экономичная и ненадежная!

    Каталитический нейтрализатор

    Это устройство позволяет сократить в выводимых газах содержание веществ, как окиси углерода и азота, за счет преобразования их в углеводороды. Не управляется ЭБУ, но взаимодействует с центром обработки через датчик, определяющий процент кислорода в выхлопных скоплениях. При избыточной подаче горючего контроллер получает сведения от датчика и корректирует ее.

    В нейтрализаторе установлены керамические элементы со встроенными катализаторами:

    • окислительными (платиновый и палладиевый);
    • восстановительным родиевым;
    • селективными;
    • накопительными.

    На заметку: этилированный бензин губителен для работы нейтрализаторов, а заправочные вещества с высоким содержанием серы приведет в негодность элементы накопительной катализации!

    Датчики

    Слаженную работу всех механизмов инжекторных двигателей обеспечивают показания мини-приборов, закрепляемых на агрегатных исполнителях. Каждое устройство замеряет параметры контролируемого участка и передает их в ЭБУ.

    Встроенные датчики ® :

    1. ДМРВ (R массового расхода воздуха) - крепится на входе в воздушный фильтр. Функционирует по принципу сравнения показаний. Через 2 нити платины поступает ток. Меняется сопротивление (зависит от температуры). При этом одна нить свободно обдувается, вторая - герметично укрыта. За счет появившейся разницы ЭБУ производит подсчет.
    2. ДАД (R абсолютного давления и температуры в двигателе) - комбинируется или ставится отдельно от предыдущего. Состоит из 2 камер: одна герметична (внутри вакуум), вторая подводится напрямую к камере коллекторного впуска. Промеж камер проходит диафрагма, закреплены пьезоэлементы, которые создают напряжение при ее движении.
    3. ДПКВ (R положения коленчатого вала) - устанавливается в виде магнитной гребенки на шкиве коленвала. Он обустроен 58 зубцами и 2 зазорами, равными шагу зуба. Зубцы движутся в медной обмотке, что при взаимодействии с намагниченным сердечником образует индукционное напряжение - оно зависит от скорости оборотов шкива.
    4. ДФ (R фаз) - содержит диск с катушкой и прорезь. Прорезь обращается к прибору - выходное напряжение уравнивается с нулем. Одновременно достигается верхняя мертвая точка сжатия в первом цилиндре. Благодаря этому, центральный блок выдает напряжение в нужный цилиндр для зажигания, управляет тактами.
    5. ДД (R детонации) - им обустроен блок цилиндров. В момент детонации по нему проходит вибрация. В основе передачи информации лежит генерация напряжения свободного тока - оно увеличивается при большей вибрации.
    6. ДПДЗ (R положения дроссельной заслонки) - при опорном напряжении в 5 V происходит его увеличение или падение, за счет изменения поворотного угла заслонки.
    7. ДТОЖ (R температуры охлаждающей жидкости).
    8. Датчик кислорода - для разных конструкций внедряется единично или парой. Снимает замеры свободного кислорода в продуктах выхлопа. Его функция позволяет ЭБУ определить: обогатить или обеднить топливную смесь.

    Инжектор значительно лучше карбюратора. Чтобы в этом убедиться, рассмотрим сравнение схожих моторных конструкций в таблице: