Самодельная электронная нагрузка на полевом транзисторе. Электронная нагрузка с регулировкой тока. Схема регулируемой электронной нагрузки


Со временем у меня скопилось определенное количество различных китайских AC-DC преобразователей для зарядки аккумуляторов мобильных телефонов, фонарей, планшетов, а также небольшие импульсные источники питания для электронных и собственно сами акккумуляторы. На корпусах зачастую указываются электрические параметры устройства, но так как чаще всего дело приходится иметь именно с китайскими изделиями, где завысить показатели дело святое, то не лишним было бы проверить реальные параметры устройства, прежде чем использовать его для поделки. Кроме того возможно использование источников питания без корпуса, на которых не всегда имеется информация об их параметрах.


Многие могут сказать, что достаточно использовать мощные переменные или постоянные резисторы, автомобильные лампы или попросту нихромовые спирали. У каждого метода есть свои недостатки и преимущества, но главное - при использование этих методов плавной регулировки тока добиться довольно сложно.

Поэтому я собрал для себе электронную нагрузку на операционном усилители LM358 и составном транзисторе КТ827Б с испытанием источников питания напряжением от 3 В до 35В. В этом устройстве ток через нагрузочный элемент стабилизирован, поэтому он практически не подвержен температурному дрейфу и не зависит от напряжения проверяемого источника, что очень удобно при снятии нагрузочных характеристик и проведении других испытаний, особенно длительных.


Материалы:
- микросхема LM358;
- транзистор КТ827Б (NPN транзистор составной);
- резистор 0,1 Ом 5 Вт;
- резистор 100 Ом;
- резистор 510 Ом;
- резистор 1 кОм;
- резистор 10 кОм;
- переменный резистор 220 кОм;
- конденсатор не полярный 0,1 мкФ;
- 2 шт конденсатор оксидный 4.7 мкФ х 16В;
- конденсатор оксидный 10 мкФ х 50В;
- алюминиевый радиатор;
- стабильный источник питания 9-12 В.

Инструменты:
- паяльник, припой, флюс;
- электродрель;
- лобзик;
- сверла;
- метчик М3.

Инструкция по сборке устройства:

Принцип действия. Устройство по принципу работы является источником тока, который управляется напряжением. Мощный составной биполярный транзистор КТ 827Б с током коллектора Iк= 20А, коэффициентом усиления h21э более 750 и максимальной рассеиваемой мощностью 125 Вт является эквивалентом нагрузки. Резистор R1 мощностью 5Вт - датчик тока. Резистором R5 изменяют ток через резистор R2 либо R3 в зависимости от положения переключателя и соответственно напряжение на нем. На операционном усилители LM358 и транзисторе КТ 827Б собран усилитель с отрицательной обратной связью с эмиттера транзистора на инвертирующий вход операционного усилителя. Действие ООС проявляется в том, что напряжение на выходе ОУ вызывает такой ток через транзистор VT1, чтобы напряжение на резисторе R1 было равно напряжению на резисторе R2 (R3). Поэтому резистором R5 регулируют напряжение на резисторе R2 (R3) и соответственно ток через нагрузку (транзистор VT1). Пока ОУ находится в линейном режиме, указанное значение тока через транзистор VT1 не зависит ни от напряжения на его коллекторе, ни от дрейфа параметров транзистора при его разогреве. Цепь R4C4 подавляет самовозбуждение транзистора и обеспечивает его устойчивую работу в линейном режиме. Для питания устройства необходимо напряжение от 9 В до 12 В, которое обязательно должно быть стабильным, поскольку от него зависит стабильность тока нагрузки. Устройство потребляет не более 10 мА.


Последовательность работ
Электрическая схема простая и не содержит много компонентов, поэтому не стал заморачиваться с печатной платой и произвел монтаж на макетной плате. Резистор R1 поднял над платой, так как он сильно греется. Желательно учитывать расположение радиокомпонентов и не ставить рядом с R1 электролитические конденсаторы. У меня не совсем получилось это сделать (выпустил из виду), что не совсем хорошо.


Мощный составной транзистор КТ 827Б установил на алюминиевый радиатор. При изготовлении теплоотвода его площадь должна быть не менее 100-150 см 2 на 10 Вт рассеиваемой мощности. Я использовал алюминиевый профиль от какого-то фото устройства общей площадью порядка 1000 см 2 . Перед установкой транзистора VT1 зачистил поверхность теплоотвода от краски и нанес теплопроводную пасту КПТ-8 на место установки.


Использовать можно любой другой транзистор серии КТ 827 с любым буквенным обозначением.


Также вместо биполярного транзистора можно в этой схеме использовать полевой n-канальный транзистор IRF3205 или другой аналог этого транзистора, но необходимо изменить номинал резистора R3 на 10 кОм.


Но при этом есть риск теплового пробоя полевого транзистора при быстром изменении проходящего тока от 1А до 10А. Скорее всего корпус ТО-220 не способен передать такое количество тепла за столь малое время и закипает изнутри! Ко всему можно добавить, что еще можно нарваться на подделку радиодетали и тогда параметры транзистора будут совсем непредсказуемы! То ли алюминиевый корпус КТ-9 транзистора КТ827!

Возможно проблему можно решить установив параллельно 1-2 таких же транзисторов, но практически я не проверял - отсутствуют в наличии те самые транзисторы IRF3205 в нужном количестве.

Корпус для электронной нагрузки применил от неисправной автомагнитолы. Ручка для переноса устройства присутствует. Снизу установил резиновые ножки для предотвращения скольжения. В качестве ножек использовал крышечки от пузырьков для медицинских препаратов.


На передней панели для подключения источников питания разместил двухконтактный акустический зажим. Такие используют на аудио колонках.


Также здесь расположена ручка регулятора тока, кнопка включения/выключения питания устройства, переключатель режимов работы электронной нагрузки, ампервольтметр для визуального контроля процесса измерения.


Ампервольтметр заказывал на китайском сайте в виде готового встраиваемого модуля.

Недавно потребовалось протестировать различные очень мощные аккумуляторные батареи напряжением от 24 до 55 В. Так как для столь больших токов резисторы подобрать нереально — пришлось построить что-то полностью электронное. В качестве базы послужила конструкция искусственной нагрузки, . Поскольку мощность её была слишком мала, она несколько усилилась.

Схема электрическая принципиальная ЭН

В качестве силового элемента используется 8 резисторов по 0,68 Ом, подключенных к силовому транзистору IGBT. Почему именно IGBT? Во время испытаний вылетело несколько обычных МОП-транзисторов, а IGBT оказались заметно более устойчивы. Резисторы установлены на радиаторах по 4 шт. В зависимости от потребностей включены последовательно для более высоких напряжений нагрузки или параллельно — для более слабых. Радиаторы прикручены на расстоянии 1 см от дна корпуса, под радиаторами просверлены отверстия, расход охлаждающего воздуха значительный.

Силовой транзистор установлен на радиаторе от процессора ПК, охлаждается двумя вентиляторами.

В качестве измерительного элемента и эталона для операционного усилителя, используется резистор 0,01 Ом, а в качестве измерителей счетчики на микросхемах ICL7107 — точность тока 0,1 А, напряжения — 0,1 В.

Электрическое питание для счетчиков и вентиляторов — снято с какого-то импульсного устройства с параметрами + 5 В на 5 А (индикаторы), +/- 12 В на 2 А (вентиляторы и ОУ). В наличии был классный металлический корпус от какого-то старого прибора, его и решено было использовать. Передняя панель сделана из куска 3-мм ПВХ пластины. В задней части вырезаны отверстия для вентиляторов.

Испытание работы нагрузки

  1. Схема проверена при напряжениях 28 В на 20 А — мощность рассеивается на резисторах и транзисторах IGBT 560 Вт — с охлаждением и под нагрузкой в ​​течение одного часа — температура 40 градусов.
  2. Еще один тест искусственной нагрузки проводился с батареей 55 В на 11 А/ч — здесь нагрузка составила 15 — 20 А, значит мощность достигла 1 кВт — радиаторы стали горячие, особенно те, на которых установлены силовые резисторы. Резисторы нагрелись до около 110 градусов, транзистор IGBT до температуры 90 градусов, в принципе приемлемо.
  3. Естественно можно легко протестировать автомобильные аккумуляторы с режимом 12 В на 20 А — при этом была температура 80 градусов, что нормально.

Пути усовершенствования прибора

В перспективе дальнейшее улучшение этой самодельной электронной нагрузки за счет добавления измерителя мощности и контроллера режимов на Arduino (с Aliexpress).

Строительство прибора обошлось в основном расходами на силовые резисторы — остальное валялось от разборки всяких вещей.
Также добавится несколько гнезд, чтобы иметь несколько диапазонов напряжения для тестирования без переключения мощных резисторов.

Обычно при изготовлении (как впрочем и при ремонте) блоков питания или преобразователей напряжения требуется проверить их работоспособность под нагрузкой. И тут начинаются поиски. В ход идёт всё, что есть под рукой: различные лампы накаливания, старые электронные лампы, мощные резисторы и тому подобное. Подбирать нужную нагрузку таким образом — это невероятно затратное (как по времени, так и по нервам) занятие. Вместо этого очень удобно пользоваться электронной регулируемой нагрузкой. Нет, нет, не надо ничего покупать. Сделать такую нагрузку сможет даже школьник. Всё, что нужно, — это мощный полевик, операционный усилитель, несколько резисторов и радиатор побольше. Схема — более чем простая и, тем не менее, отлично работает.

Идея заключается в том, чтобы с помощью операционника стабилизировать падение напряжения на специальном токоизмерительном резисторе. Делается это следующим образом: на неинвертирующий вход операционника подаётся некое опорное напряжение, а на инвертирующий вход — падение напряжения на токоизмерительном резисторе. Операционник обладает таким свойством, что в установившемся режиме, разность напряжений на инвертирующем и неинвертирующем входах равна нулю (если конечно он не находится в режиме насыщения, но нам для того и мозг с калькулятором, чтобы всё посчитать и подобрать). Выход операционного усилителя подается на затвор MOSFET и, таким образом, управляет степенью открытия полевого транзистора, и, следовательно, током через него. А чем больше ток через полевик, тем больше падение напряжения на токоизмерительном резисторе. Получается отрицательная обратная связь.

То есть, если в результате нагрева характеристики полевика изменятся так, что ток через него увеличится, то это вызовет увеличение падения напряжения на токоизмерительном резисторе, появится отрицательная разность напряжений (ошибка) на входах ОУ и выходное напряжение операционника начнёт уменьшаться (при этом начнёт уменьшаться степень открытия полевика и ток через него), до тех пор, пока ошибка не станет равной нулю. Если же ток через полевик по каким-либо причинам уменьшится, то это вызовет уменьшение падения напряжения на токоизмерительном резисторе, появится положительная разность напряжений (ошибка) на входах ОУ и выходное напряжение операционника начнёт увеличиваться (при этом начнёт увеличиваться степень открытия полевика и ток через него), до тех пор, пока ошибка не станет равной нулю. Короче, такая схема стабилизирует падение напряжения на токоизмерительном резисторе — оно после всех переходных процессов устанавливается равным опорному напряжению (которое подаётся на неинвертирующий вход).

Изменяя в этой схеме опорное напряжение, можно произвольным образом регулировать ток через полевик, причём заданный ток получается стабильным, поскольку зависит только от величины опорного напряжения и сопротивления токоизмерительного резистора, и не зависит от параметров MOSFET, которые могут очень сильно меняться в результате нагрева. Опорное напряжение можно задавать простым делителем, а регулировать — подстроечными резисторами.

Элементы схемы :

Операционный усилитель — любой, допускающий однополярное питание, я использовал OP220.

T1 — мощный MOSFET, любой, лишь бы мощность побольше мог рассеять, я брал CEP603AL из старого компьютерного блока питания. (тут понятное дело есть ограничение по напряжению открытия полевика и току через него, но об этом ниже)

R ti — токоизмерительный резистор на десятые доли Ом, таких полно везде: в принтерах, в мониторах и т.д., я брал из принтера 0,22 Ом, 3 Вт

R nd = 10 кОм — резистор, определяющий диапазон задания тока

R kd = 10 кОм — резистор, определяющий начальный диапазон задания тока

R gn = 2 кОм — резистор, с помощью которого выставляется ток в пределах заданного диапазона

R tn = 330 Ом — резистор, необходимый для точной подстройки заданного тока

Отличные подстроечники, с удобными ручками, можно снять с плат старых компьютерных мониторов.

Готовое изделие :

Итак, теперь посмотрим, как это всё рассчитывается :

U 1 =U п *(R gn +R tn)/(R nd +R kd +R tn +R gn), где U п — напряжение питания, U 1 — напряжение на неинвертирующем входе ОУ

U 2 =I н *R ti , где I н — ток нагрузки, U 2 — падение напряжения на токоизмерительном резисторе (и, соответственно, напряжение на инвертирующем входе ОУ)

Из условия равенства напряжений на входах ОУ, имеем:

U п *(R gn +R tn)/(R dn +R kd +R tn +R gn)=I н *R ti , отсюда находим:

Iн=Uп*(R gn +R tn) / ((R dn +R kd +R tn +R gn)*R ti)

Подставив в это выражение номиналы наших резисторов, определим диапазоны настройки тока:

при Rnd=10 кОм, получаем Iн = Uп*2,33/((2,33+10+10)*0,22)=Uп*0,47

при Rnd=0, получаем: Iн = Uп*2,33/((2,33+10)*0,22)=Uп*0,86

То есть, изменяя сопротивление резистора Rnd от 10 кОм до нуля, мы изменяем верхнюю границу диапазона настройки тока от 0,47*Uп до 0,86*Uп. Это означает, что, например, для питания +10В мы сможем настраивать ток в диапазоне от 0 до 4,7 А или от 0 до 8,6 А, в зависимости от сопротивления резистора R nd , а для питания +5В от 0 до 2,35 А или от 0 до 4,3 А. В заданном диапазоне ток настраивается подстроечниками Rgn (грубо) и Rtn (точно).

Есть три ограничения. Первое ограничение связано с токоизмерительным резистором. Поскольку этот резистор рассчитан на максимальную рассеиваемую мощность P R , то максимальный ток через него не должен превышать значения, определяемого выражением: I 2 макс =P R /R ti . Для указанных номиналов: I 2 макс =(3/0,22), I макс =3,7 А. Увеличить это значение можно выбрав резистор с меньшим сопротивлением (тогда диапазоны тоже придётся пересчитать), применив радиатор или соединив параллельно несколько таких резисторов.

Вторые два ограничения связаны с транзистором. Во-первых, на транзисторе выделяется основная рассеиваемая мощность (поэтому для лучшего теплоотвода следует прикрутить к нему радиатор размером побольше). Во-вторых, транзистор начинает открываться, когда напряжение между затвором и истоком (Vgs превысит некоторое пороговое значение, threshold voltage), так что девайс не будет работать, если напряжение питания меньше этого порогового значения. Эта же величина будет влиять и на максимальный возможный ток при заданном напряжении питания.

Для начала давайте разберем схему. Я не претендую на оригинальность, так как подсмотрел составные элементы и адаптировал под то, что имелось у меня из деталей.

Цепь защиты составлена из плавкого предохранителя FU1 и диода VD1 (возможно она лишняя). Нагрузка выполнена на четырех 818 транзисторах VT1…VT4. У них приемлемые характеристики по току и рассеиваемой мощности, а также они не дороги и не являются дефицитом. Управление VT5 на 815 транзисторе, а стабилизация на операционном усилителе LM358. Амперметр, показывающих ток, проходящий через нагрузку, я установил отдельно. Т.к. если амперметром заменить резисторы R3 R4 (как в схеме по ссылке выше), то, на мой взгляд, будет теряться часть тока, который потечет через VT5 и показания будут занижены. А судя по тому, как нагревается 815, ток через него протекает приличный. Я даже подумываю, что между эмиттером VT5 и землей надобно поставить еще одно сопротивление Ом так в 50…200.

Отдельно надо рассказать о цепи R10…R13. Так как регулировка происходит не линейно, необходимо брать одно переменное сопротивление в 200…220 кОм с логарифмической шкалой, либо ставить два переменных резистора, которые обеспечивают плавное регулирование во всем диапазоне. При чем R10 (200кОм) регулирует ток от 0 до 2.5А, а R11 (10 кОм) при выкрученном в ноль R10 регулирует ток от 2.5 до 8 А. Верхний предел тока устанавливается резистором R13. При настройке будьте осторожны, если напряжение питания случайно попадет на третью ногу операционного усилителя, 815 открывается полностью, что с большой вероятностью приведет к выходу из строя всех 818 транзисторов.

Теперь немного о блоки питания для нагрузки.

Нет, это не извращение. Просто у меня под рукой не нашлось малогабаритного трансформатора на 12 вольт. Пришлось делать умножитель и повышать напряжение с 6-ти вольт до 12-ти для вентилятора и ставить стабилизатор для питания самой нагрузки и сигнализации.

Да, в это устройство я вставил простенькую сигнализацию по температуре. Схему я подсмотрел . Когда радиатор нагревается выше 90 градусов, включается красный светодиод и пищалка с интегрированным генератором, которая издает очень неприятный звук. Это указывает на то, что пора снижать ток в нагрузке, а то можно лишиться устройства из-за его перегрева.

Казалось бы, при таких мощных транзисторах, которые выдерживают до 80 вольт и 10 А суммарная мощность должна быть не менее 3 кВт. Но, так как мы делаем «кипятильник» и вся мощность источника уходит в тепло, то ограничение накладывается показателем рассеиваемой мощности транзисторов. По даташиту она всего лишь 60 Вт на один транзистор, а с учетом того, что теплопроводность между транзистором и радиатором не идеальна, то фактическая рассеиваемая мощность и того меньше. И поэтому чтобы хоть как-то улучшить теплоотвод я прикрутил транзисторы VT1…VT4 непосредственно к радиатору без прокладок на теплопроводную пасту. При этом мне пришлось организовать специальные накладки на радиатор, чтобы он не замыкал на корпус.

К сожалению, у меня не было возможности протестировать работу устройства во всем диапазоне напряжений, но при 22V 5A нагрузка работает, стабильно не перегреваясь. Но как всегда в бочке меда есть и ложка дегтя. Из-за недостаточной площади радиатора взятого мной, при нагрузке более 130 ватт, через какое-то время (3…5 минут) транзисторы начинают перегреваться. На что указывает сигнализация. Отсюда вывод. Если будете делать нагрузку, берите радиатор как можно большей площади и обеспечите ему надежное принудительное охлаждение.

Также ложкой дегтя можно считать небольшой дрейф в сторону уменьшения тока нагрузки на 100…200 мА. Думаю этот дрейф происходит из-за нагрева резисторов R3, R4. Так, что если есть возможность найти резисторы на 0,15 Ом на 20 Вт или больше, то лучше использовать их.

В целом схема, насколько я понял, не критична к замене деталей. Четыре 818транзистора можно заменить двумя кт896а , кт815г можно, а возможно и нужно, заменить на кт817г. Операционный усилитель думаю тоже можно взять другой.

Хочу особо подчеркнуть, что обязательно при наладке ставьте резистор R13 не менее 10 кОм, потом по мере понимания какой ток вам нужен, уменьшайте это сопротивление. Печатную плату не выкладываю, потому, что монтаж основной части нагрузки сделан навесным.


Дополнение.

Как оказалось, нагрузкой мне приходится пользоваться регулярно и в процессе ее использования пришло понимание того, что по мимо амперметра также нужен вольтметр чтобы контролировать напряжения источника. На Али мне попался небольшой приборчик, который совмещает в себе вольтметр и амперметр. Приборчик 100 V / 10 А мне обошёлся в 150 рублей с пересылкой. Как по мне это копейки т.к. полтарашка пива стоит примерно столько же. Недолго думая я заказал два.

8 ноября 2017, 02:47

Я уже писал как минимум три обзора электронных нагрузок, как полностью самодельной, так и собранной из «конструктора», а также заводского изготовления. В данном случае оба варианта относятся скорее к классу «конструкторов», так как не являются функционально законченным изделием, хотя и могут работать сам по себе, но требуют как минимум блока питания.
Увидел я их почти год назад, заинтересовался, и вот решил таки купить, а заодно проверить как оно «покупать на Тао».
В общем кому интересна эта тема, думаю найдут для себя много интересного.

Отчасти предпосылкой купить была сложность с проверкой мощных БП, когда моих 300-400 Ватт совсем не хватало, отчасти расширение кругозора, ну и не последним в списке была попытка купить на Таобао, потому как там попадаются весьма интересные вещи.

Проблем при покупке не возникло, и в итоге через некоторое время я получил довольно объемную посылку. Здесь я сделал небольшую ошибку, доставка довольно недешевая, а железки мои довольно увесистые.

Упаковано все было просто отлично, но это стало и небольшим минусом, так как чем больше упаковочного материала, тем выше выходит стоимость доставки:(
На втором фото вы видите не два товара, а один. При этом справа одна из нагрузок, а слева то, во что она была упакована.
Вторая нагрузка была упакована еще лучше, но в данном случае это была упаковка продавца, такая вот мягкая коробочка.

Не, все классно, посредник не только упаковал хорошо, но и перед этим прислал письмо, мол уважаемый Кирич, мы тут получили две непонятные железяки, а как их проверить мы даже понятия не имеем, даже не знаем что оно такое...
На что я ответил, спокойно, не паникуйте, сравните с фото в магазине, если примерно похоже, то шлите:)

В общем докопался я до своего заказа и в итоге на столе лежали только две электронные нагрузки.

Первой покажу «глупую», т.е. без возможности подключения к компьютеру, просто нагрузку.
Заявленная мощность - до 300 Ватт
Напряжение - до 150 Вольт
Ток - до 40 Ампер
Режимы - CC\CV

В ассортименте было много разных вариантов, которые условно отличаются напряжением 150/60 Вольт, а также током 10/20/30/40 Ампер, а также конструкцией регулировки - разъем на плате, подстроечный резистор на плате или внешний переменный резистор.

Я выбрал сразу самый «навороченный» вариант и одновременно самый мощный, т.е. 150 Вольт, 40 Ампер, 300 Ватт с внешним резистором.
Как вы видите, конструкция состоит из по сути двух одинаковым модулей, соединенных вместе. Есть также вариант с мощностью 150 Ватт, состоящий из одного модуля.

Под внешним резистором подразумевается обычный переменный резистор на небольшой платке. Забегу сразу немного вперед, смысла заказывать так нет, для удобного управления надо либо заказывать нагрузку с диапазоном 60 Вольт, либо еще лучше - поставить многооборотный резистор.

Конструкция системы охлаждения (собственно самая тяжелая часть), состоит из двух вентиляторов и специального алюминиевого радиатора, через который продувается воздух.
За конструкцию 5 баллов, где бы разжиться подобным алюминиевым профилем, еще лучше если размера не 50х50мм, а например 80х80, ну хотя бы 60х60.

Пара довольно мощных, но и весьма шумных вентиляторов, закрытых защитными решетками. Сначала подумал, вот экономисты, поставили всего по два винта на решетку, потом оказалось, что вторую пару винтов просто вкручивать некуда. Не, все таки экономисты:)

Две платы управления соединенные вместе, хотя корректнее сказать - не разъединенные, так как при изготовлении они обычно так и идут.
С одной платы на другую протянут проводок и явно прослеживается идея, когда одна плата делается ведущей, а вторая ведомой.

Большая часть разъемов отсутствует, но попробую пояснить, что к чему.
Ref - регулировка внешним напряжением 0-5 Вольт.
Potentiometr - внешний переменный резистор, средний контакт выведен на тот же Ref, т.е. меняет напряжение в диапазоне 0-5 Вольт.
Fan - подключение вентилятора, провода просто припаяны без всяких разъемов.
Con 1, в левой плате запаян разъем - питание 12-15 Вольт.

Также есть место под разъем 74HC. Вообще это обычно обозначение серии логических микросхем, но что в данном случае, я не знаю. Один контакт идет на землю, четыре - к микроконтроллеру.
Con 4 - термодатчик.

На другой конец платы выведены силовые разъемы для подключения нагрузки, а также:
Con 2 - по сути стоит последовательно с силовым разъемом Vin, скорее всего туда должен ставиться предохранитель, реально там припаяна какая-то пластинка. Как вариант - подключить амперметр, но разъем какой-то хиленький для тока в 20 Ампер.
Con 3 - на этот разъем выведена земля, +12 Вольт и входное напряжения Vin. Сюда можно подключить вольтметр
Fan 2 - Подключение второго вентилятора (работающего на выдув), подключенного параллельно первому.

В качестве собственно нагрузки работают четыре полевых транзистора IRFP460A. Получается по 75 Ватт на один корпус TO-247, на мой взгляд это много, очень много, мощность превышена как минимум в 1.5 раза. Обусловлено это тем, что в линейном режиме полевые транзисторы работают гораздо тяжелее. Собственно потому в моей самодельной для мощности в 400 Ватт установлены 8 транзисторов, по 50 Ватт на корпус, и то это многовато.

Но вот то, что транзисторы подключены правильно, я не могу не отметить, каждому транзистору не только свой шунт, а и свой операционный усилитель. Точно такое решение я применял в своем варианте.

Плата прикручена на четыре винта через стойки, транзисторы имеют свой крепеж, причем не забыли не только термопасту, а и правильные винты с плоской шайбой + шайба Гровера.
Когда разбирал, то подсознательно ждал что радиаторы развалятся, но нет, все обошлось, радиаторы похоже склеены между собой.
Но вот стойки можно было закрутить и посильнее...

Снизу более явно видно, как соединены платы между собой. Кстати, для более корректного подключения силовых проводов надо подключать плюс к одной плате, а минус к другой.

Если к соединению силовых разъемов особо вопросов нет, то вот провода в лаковой изоляции для соединения питания модулей, выглядят как-то совсем неправильно. Я понимаю что они там просто спрятаны, но один провод касался стойки и со временем из-за вибрации он проскреб бы изоляцию. Вы конечно спросите, откуда вибрация. Так работает то два довольно мощных вентилятора, а большего подобным проводам и не надо.

Одна из «половинок» поближе.



1. Вход питания защищен не только предохранителем на ток в 1 Ампер, а и не забыли о диоде, защищающем от переполюсовки. Но кроме того поставили и кучу конденсаторов по цепи питания, даже удивительно:)
2. Хоть нагрузка и «глупая», но все равно содержит микроконтроллер. В данном случае он управляет режимами работы, защитой от превышения мощности, а также вентилятором.
3, 4. Три операционных усилителя LM321 . Пара обслуживает датчики тока и управления транзисторами, а один (насколько я понял) режим CV.

Кстати о управлении вентиляторами. Сделано весьма продуманно. Если нагрузка холодная, то вентилятор выключен. Включается ступенчато при превышении мощности в 20-30 Ватт на один модуль постепенно поднимая мощность обдува.
Если отключить нагрузку при холодных радиаторах, то вентиляторы выключаются сразу. Но если сначала прогреть, то выключатся они только когда температура снизится примерно до 35 градусов.
Т.е. вентиляторы управляются ступенчато и в зависимости от мощности и температуры.

Параллельно входным, силовым клеммам установлен керамический конденсатор. В моей старой также есть конденсатор, но заметно большей емкости, потому иногда немного искрит при подаче питания на вход.

У менее мощной и более «умной» нагрузки вариантов выбора было заметно меньше, 60/150 Вольт и 5/10/20 Ампер. И опять я выбрал самый мощный и высоковольтный вариант и в данном случае это возможно было ошибкой.

Ниже разъем SPI, я так понимаю, что он больше нужен для подключения программатора.
Еще ниже длинный ряд контактов, сюда выведены порты микроконтроллера и питание.

А вот что такое SWIM, немного правее и выше, я не понял. Похоже туда ставится какой-то джампер, средний вывод идет на микроконтроллер, крайние - земля и питание. Т.е. таким образом можно задать три сигнала - 1, 0 и Z. я в процессе пробовал все варианты, но никакой разницы не заметил.

Если в предыдущей нагрузке все было относительно просто, то здесь компонентов побольше.
1. Собственно «мозги», в виде микроконтроллера от STM.
2. Измерительный Ultralow Offset операционник OP07 , усиливает сигнал с основного шунта.
3. Также на плате находится преобразователь напряжения LMC7660 , он нужен для формирования отрицательного полюса питания операционных усилителей. Я делал нечто похожее в своей электронной нагрузке, там также была связка OP07 + 7660 в цепи измерения тока.
4. Также на плате установлено два прецизионных сдвоенных операционных усилителя OPA2277 .

А вот здесь начинаются небольшие странности.
На плате есть место под два операционных усилителя, при этом даже распаяна вся их обвязка, т.е. просто запаять еще пару OPA2277.
Но самое непонятное то, что первая пара ОУ обслуживает три транзистора, а так как ОУ сдвоенные, то один еще остается. С оставшимся я не разбирался, скорее всего он используется либо для измерения напряжения, либо для управления тремя последующими ОУ.
На каждый транзистор приходится по одной «половинке», так как транзисторов установлено три (ниже покажу). Также есть место для еще пары транзисторов, но им достаточно одного сдвоенного ОУ, зачем еще один, да еще и распаянной обвязкой идентичной первым? Загадка...

Цепь защиты по входному питанию решена как и на предыдущей нагрузке, полисвитч, диод от переполюсовки и кучка конденсаторов.

А вот те три транзистора, о которых я писал выше. плата рассчитана под пять транзисторов, причем даже видно два термодатчика, размещенные между первым и вторым, а также между четвертым и пятым транзисторами. Оба термодатчика видятся в программе управления. Вообще решение очень правильное, производитель явно решил перестраховаться.
Но вот три транзистора из совсем разных партий, оригинально:)
Справа виднеется место под разъем для второго вентилятора.

Как я писал выше, на левой стороне платы установлены шунты. Пара П-образных - измерительные для собственно контроллера, данные с этих шунтов отображаются в программе. Шунтов два из пяти, пять используется скорее всего в 50 Ампер версии.
Правее три штуки М-образных - шунты в цепи силовых транзисторов, они используются для выравнивания тока для каждого транзистора отдельно. При этом каждый шунт стоит в цепи с операционным усилителем и ток выравнивается очень точно. Точно такое решение я применял в своей мощной нагрузке, только там 8 транзисторов, 8 шунтов и 4 ОУ. Данное решение является самым правильным, потому как обеспечивает равномерное распределение тока между элементами. Даже можно применить вообще разные транзисторы, ток все равно будет распределен равномерно.

При этом что интересно, на странице товара есть фотографии и показана забавная комбинация, распаяны все ОУ, применен широкий шлейф, т.е. подразумевается что установлено 5 транзисторов, но измерительный шкнт один, а балансирующих - два.

В части обзора более мощной нагрузки я не снимал вентиляторы, но судя по виду там стоят такие же. Довольно мощные вентиляторы 50мм с мощностью почти 3 Ватта от Дельты.
Собственно вентиляторы и являются основными потребителями, потому для данной нагрузки хватит БП 12 Вольт 0.3-0.35 Ампера, а для мощного варианта 12 Вольт 0.6 Ампера.

Перед тем, как перейти к тестам, я взвесил оба устройства. Скорее всего вы спросите, зачем, если они явно не переносные.
Так как заказывались они через посредника, то вес начинает играть довольно большую роль.
Суммарный «полезный вес» составил 1218 грамм, вся упаковка весила 318 грамм, итого общий вес посылки был 1536 грамм. Кстати в процессе у меня вышло превышение расчетного веса, и образовалась задолженность в 1.3 бакса, но посредник все равно выслал посылку. На вопрос - что делать с долгом, мне ответили - это будет учтено при следующей покупке.

Так как первой я осматривал мощный вариант, то и проверять первым буду его.
Подключаем блок питания и переходим к тестам.

Сначала пару слов об управлении.
Каждый модуль управляется своей кнопкой. Короткое нажатие - включение/выключение, длительное - переключение режима работы. При этом:
1. Если долго удерживать кнопку в выключенном режиме, то при включении включится второй режим.
2. Нагрузка «помнит» последний используемый режим.

На первом фото правильная комбинация, зеленый-зеленый, в этом режиме работает режим СС.
Если включить только вторую нагрузку, то ничего не произойдет, сама по себе она не работает.
Две следующих комбинации могут работать, но весьма некорректно, потому использовать их нельзя, впрочем я лучше дальше покажу с примерами.

1. Подключаем к лабораторному БП и выставляем на выходе 30 Вольт, нагрузка выключена.
2. Включаем ведущую (слева), ток нагрузки выставляем на уровне 1 Ампера.
3. Включаем ведомую, ток стал 1.84 Ампера, а не 2, как ожидалось, налицо некорректная калибровка.
4. Выключаем ведущую, ток падает до нуля, сама по себе ведомая работать не умеет.

Ради интереса проверил минимальное падение на нагрузке, даже с учетом кабеля оно составило 0.64 Вольта при токе в 5.1 Ампера. Как-то не догадался измерить сколько реально, но по расчетам выходит около 0.5-0,6 Вольта.

Режим CV. Собственно это была одна из важных причин, почему я купил эти нагрузки. Данный режим нужен не очень часто, но он не может быть заменен режимом СС.
Поясню, если вы проверяете блок питания, то он работает в режиме CV (стабилизированное напряжение) и нагружать его надо в режиме СС (стабилизированный ток). Но если вы проверяете зарядное устройство, то здесь обратная ситуация, оно работает в режиме CC, а нагружать соответственно его надо нагрузкой работающей в режиме CV.
Данный режим скорее похож на аналог мощного стабилитрона, ну или эквивалент аккумулятора, подключенного к тестируемому зарядному устройству.
Да, под зарядным я подразумеваю именно зарядное устройство, а не блоки питания с USB выходом, которые ошибочно называют зарядными.

И так, что же я выяснил.
1. Выставляем на выходе блока питания напряжение в 50-60 Вольт, в данном случае было 54 Вольта.
2. Выводим регулятор нагрузки в крайнее правое положение и постепенным вращением влево добиваемся пока БП перейдет в режим стабилизации тока. Все, нагрузка работает в режиме CV стабилизируя напряжения не уровне в 52 Вольта. Если бы это был не лабораторный БП, а обычный, то он просто ушел бы в защиту, так как нагрузка всеми силами препятствовала бы его нормальной работе.
3. Вращением резистора влево снижаем напряжение еще ниже, например до 16 Вольт. На фото разные токи, это не глюк, просто фото собирались в процессе разных экспериментов и настройка лабораторного БП менялась в процессе экспериментов.
4. Но выяснилась первая проблема - если включить ведомую нагрузку, то напряжение просаживается до нуля. Получается что вместе они в таком режиме работать не могут.
5, 6. у меня получалось запустить ведомую нагрузку в этом режиме, но на самом деле она не работала, это было даже видно по тому, что не запускался ее вентилятор. Кроме того, малейшие изменения и она опять падала в режим КЗ.

Получается что в режиме CV работает только ведущая нагрузка, потому мощность ограничена на уровне 150 Ватт, а не 300, как в режиме СС.
Вторая проблема заключалась в том, что нагрузка рассчитана на 150 Вольт и весь этот диапазон уложен в неполный оборот переменного резистора, соответственно о точности регулировки говорить не приходится, очень грубо. 60 Вольт версия была бы более точной, а здесь скорее всего придется заменить резистор на многооборотный.

Кроме того просто поигрался с разной мощностью, 250-300 Ватт в режиме СС нагрузка рассеивает вообще без проблем, шумит правда громко. Кстати, вентиляторы управляются независимо, и иногда слышно как один снизил обороты, а второй работает на полную.
В режиме CV у меня получалось нагрузить на 160-162 Ватта, дальше раздавался короткий писк из динамика и нагрузка отключалась. Стабильная работа была в районе 155 Ватт.

Для следующего эксперимента использовалось все то же самое, что и выше плюс конвертер USB-RS485 и соединительный кабель.

Особо в процессе не фотографировал, да по сути и фотографировать особо было нечего, потому дальше будет некоторое количество скриншотов, тесты и некоторые пояснения и описания проблем, которые я встретил на своем пути.

На странице товара была ссылка на китайскую «байду», где был выложен весь необходимый софт для работы с данным модулем.
Название основной программы я изменил на более вразумительное - DCL, в остальном «как есть».

То же самое, но с оригинальным именем файла и дополнительной информацией. Как видите, дали много всего, но есть одна проблема, анивирус и система защиты ОС Вин 10 (я пробовал с Вин 7, 8, 10) ругаются на троян в двух файлах (они оба выше имеют одинаковый значок в виде красного квадрата). Так как пробовать все равно хотелось, то пришлось отключить антивирус и запускать все на свой страх и риск.

В итоге запустилось такое ПО. Вернее таким оно должно быть. Я пробовал перейти по ссылке на страницу разработчика, там написано что ПО в «экспериментальном» варианте, потому возможны глюки. Вообще производитель занимается изготовление различных измерительных модулей, но об этом ближе к концу обзора, так будет логичнее.
И так пояснения, что и где в этом ПО, часть стала понятная сразу, часть уже в процессе экспериментов, а последняя часть вообще после перевода с китайского.
1. Окно ввода параметров.
2. Кнопки задания величины параметра, соответственно с шагом 100, 10, 1, 0.1 и 0.01. Первый и последний как правило не используются. Верхние кнопки увеличивают, нижние уменьшают, все довольно логично.
3. Кнопки перехода в режим калибровки, понял назначение случайно, ниже расскажу.
4. Задание режима работы - CC, CV, CW, CR
5. Выбор СОМ порта и номера устройства на этом порту (RS485 поддерживает несколько устройств на одной линии).
6. Включение/выключение нагрузки.
7. А здесь мне пришлось просить знакомых китайских менеджеров, которые знают при этом и более понятный для меня язык:). Это запись результатов работы в файл.

Когда же я запустил ПО у себя на компьютере, то все было более непонятно, вот именно по этому ПО я и разбирался, что и зачем.
Причем точно такая же картина наблюдалась на всех домашних компьютерах и планшетах.
Особенно я подвис когда увидел ток в 655 Ампер.

Но не будем о грустном, поясню основные рабочие режимы.
1. СС, нагрузка постоянным током, задаем ток до 20 Ампер (реально максимум 20.1 Ампера) и если мощность не превышает 150 Ватт, то нагрузка переходит в рабочий режим. Если есть превышение, то сигналит и отключается.
2. CV, то же самое, но выставляем напряжение ограничения. При переходе в этот режим отображается максимум в 151 Вольт, что вполне логично, так как его обычно уменьшают, а не поднимают.
3. CW, довольно распространенный режим, постоянная мощность. Задаем мощность в Ваттах и нагрузка будет поддерживать эту мощность, отбираемую от источника.
4. CR, весьма редкий режим для дешевых устройств, но довольно распространенный для промышленных. Здесь можно задать сопротивление «виртуального резистора» которым будет являться нагрузка. т.е. ток нагрузки будет напрямую зависеть от напряжения источника. к сожалению данный режим
очень грубый и дает выбрать только с дискретностью в 1 Ом.

Также выяснилось, что стартует нагрузка очень мягко и иногда это даже раздражает. Например при установке тока в 3 Ампера сначала ток резко поднимается примерно до 2.3-2.3 А, а затем очень плавно доходит до установленного значения. Общее время установки около 30 секунд.

Еще одна проблема, с которой я столкнулся, это то, что по току нагрузка не была откалибрована. Но «не было счастья, да несчастье помогло». Дело в том, что по напряжению калибровка была отличной. Но меня все время смущали две кнопки справа от кнопок установки параметров. при клике на них выдавало какие-то непонятные цифры типа 4556 и 65432, явно какие-то два значения. Сначала я думал что это можно включать имитацию помех или пульсаций, сбила с толку буква Мю. Но в один «прекрасный» момент я понял, что по напряжению нагрузка также начала жутко врать.
и тут я вспомнил, что перед этим тыкал эти кнопки и пробовал что-то выбирать кнопками задания величины. Ну а дальше дело техники.
И так, о калибровке. Справа от кнопок задания величины есть еще пара, верхняя - напряжение, нижняя - ток.
Покажу как калибровать на примере тока.
Последовательно с нагрузкой включаем амперметр.
1. Выбираем режим СС, задаем ток например 4.5 Ампера (чем больше, тем лучше).
2. Тычем правую нижнюю кнопку (около кнопки -0.01), на экран выведет некую константу, она будет иметь большое значение, например 52435 или 65432). используя кнопки установки параметров добиваемся чтобы реальный ток был равен установленному.
3. Включаем опять режим СС, задаем небольшой ток, например 0.5-1 Ампер.
4. Два раза нажимаем на ту же кнопку калибровки, выведет константу с меньшим значением, например 3452 или 4321), пользуясь те ми же кнопками установки добиваемся чтобы реальное значение тока соответствовало установленному.
5. Повторить пока не надоест:) После каждого раза значение большего и меньшего тока будет все больше соответствовать реальному, вернее реальный все ольше будет соответствовать установленному.

С напряжением примерно так же, но здесь есть два пути, правильный и неправильный:
1. Неправильный, подаем стабилизированное напряжение и меняя константы добиваемся чтобы показометр нагрузки показывал точно. Такой способ очень быстрый, но из-за большой дискретности отображения и менее точный.
2. Правильный. Подаем на вход напряжение с ограничением по току, например БП включенный через лампочку, но лучше БП с ограничением тока.
Подключаем к клеммам нагрузки вольтметр.
Переводим нагрузку в режим CV, подаем на вход некое напряжение, например 20-60 Вольт (чем больше, тем лучше) и задаем к примеру на 5 Вольт меньше поданного. Теперь напряжение на входе должно быть равно установленному, так как его задает электронная нагрузка.
Нажимаем на правую верхнюю кнопку калибровки (справа от +0.01), попадаем в режим калибровки и кнопками задания параметров подгоняем режим так чтобы наш внешний вольтметр показывал то, что установлено.
После этого переходим опять в режим CV, выставляем к примеру 5 Вольт (2-5), и повторяем все со второй константой как в примере калибровки тока.
Дальше думаю все понятно, последовательным приближением добиваемся точной установки как верхнего, так и нижнего значения.

Я не проводил особо измерения именно для обзора, но вот как минимум одно информативное фото осталось.
Слева пример работы до калибровки, видно что ток явно завышался, я поднимал с дискретой в 1 Ампер, т.е. 0-1-2-3-4.
Кроме некорректного задания тока весь процесс установки занимал много времени, примерно 1 минута 40 секунд.
Справа пример после калибровки, я поднял до 5 Ампер, 0-1-2-3-4-5, ток устанавливался точно и все заняло около одной минуты.

Помимо собственно базовых параметров можно измерять (рассчитывать) такие величины как мАч и Втч, для этого внизу есть три окна отображающие соответствующие измерения. Часы идут пока нагрузка находится во включенном состоянии, независимо от установленного режима работы, как обнулять все эти значения, не знаю, так как их помнит сам блок. Я пробовал не только перезагружать ПО, а и запускать вторую копию программы из другой папки, потому для обнуления надо передергивать питание самой нагрузки, неудобно.
Но китайцы не были бы китайцами если бы не накосячили и здесь.

Помня как работал USB тестер, я решил провести подобный эксперимент и здесь, задал ток 4 Ампера, и начал делать скриншоты через каждый 6 минут, соответственно должны быть значения 400 мАч, 4 Втч/ 800 мАч, 8 Втч и т.д.
Но выяснилось, что показания мАч занижены ровно в 10 раз, впрочем я на это обратил внимание еще когда экспериментировал до этого, но просто решил перепроверить.
Ну вот как так?
Даже вспомнился фрагмент из книги Фальшивые зеркала.
У него на ладони стоит маленькая коробочка. Мы толпимся вокруг, пытаясь разглядеть, что же это такое.
- «Варлок-9300», - отвечает Шурка. - Наконец получилось так, как задумывал…
Коробочка - это крошечная лифтовая кабина. Самая обычная, коричневого цвета, с раздвигающимися дверями, с обрывком троса наверху.
Вот только высотой лифт десять сантиметров.
- Наиболее удобная форма, - говорит Маньяк. - «Девятитысячник» тоже должен был так работать, но не реализовалось…
- Саша… Сашенька, дорогой ты мой, - хрипло говорит Падла. - А ты уверен, что не напутал с размером? А?
- Вот о размере я как-то не подумал, - самокритично сообщает Маньяк, и я понимаю, что Падлу ждёт ещё один этап наказания за шуточку.
- Видимо, где-то с запятой ошибся…

Выше я писал, что насчет одного момента мне пришлось просить помощи у тех, для кого китайский язык является родным. Справа внизу рабочего окна программы включается запись лога работы, в итоге в папке с программой формируется csv файл с такими непонятными значениями.

Вообще предоставлено много средство для работы с нагрузкой, и отчасти именно по этому дальше не будет продолжения в виде окончательной сборки устройства, так как чувствую, все еще впереди.
Например существует гипотетическая возможность строить графики -

Насколько я понял, графики строятся на основании данных из другой программы, я ее скачал и она даже пытается работать, правда выводит ерунду, потому скриншот от разработчика.

Но еще большей причиной временной паузы в сборке было то, что в процессе поисков информации я наткнулся на модуль, который умеет измерять, отображать и управлять работой устройства.

Но реализовано все это несколько странно, у модуля есть собственные цепи измерения тока и напряжения, слева видно провода, которые идут к токоизмерительному резистору (причем очень правильному, с четырьмя выводами), но при этом модуль соединен и с 485 интерфейсом.
Кроме базовых возможностей заявлено что такое дополнение позволяет -
Опционально - управление по блютуз.
Установка порогов отключения нагрузки, например минимальное напряжение или ток, а также ограничение работы по времени.
Память режимов.
Компенсация падения напряжения на проводах
Ток до 50 Ампер
Кулонометр
18 бит АЦП.
Выбор языка - китайский, английский.

Есть правда и минус, даже на Тао этот модуль стоит около 28 баксов:(Но вполне возможно, что раскошелюсь.

Но идея перейти на подобное управление вызвана еще глюками ПО.
1. Периодически на экране проскакивают спонтанные значения, благо на короткое время и никак не мешают
2. Управление. Товарищи, это капец. Я понимаю что версия ПО тестовая, но чтобы настолько.....
Даже в режиме просто выбора значения тока/ напряжения и т.п. изменение каждого параметра занимает около 3 секунд.
К примеру вам надо выставить 1.2 Ампера, выглядеть это будет так -
нажимаем 1,
3 секунды пауза,
нажимаем 0.1
3 секунды пауза
нажимаем 0.1
3 секунды пауза.

А теперь представьте сколько надо времени чтобы выставить к примеру ток 5.55 Ампера....

Но скажу честно, я пока не теряю надежды на то, что ПО «допилят», а кроме того могу сказать, что к сами нагрузка (т.е. к «железу») особых замечаний по сути и нет, сами по себе они работают неплохо, а кроме того имеют вполне вменяемую цену как для функционала, так и для качества изготовления.
Собственно потому у меня вопрос, возможно кто-то из программистов, кто тоже хочет подобное устройство, сможет помочь в плане программы. Возможно есть вариант прикрутить ардуину с нормальным экраном, кнопками и энкодером. В таком случае я могу заняться «железной» частью в плане перерисовывания схемы для повторения и можно совместно сделать вполне неплохое устройство.

К большой нагрузке пока неспешно ищу хороший амперметр с вольтметром, а также многооборотный резистор и корпус + БП. Но возможно подумаю о переводе её на цифровое управление. В любом случае в планах еще как минимум один обзор с применением.

На этом наверное у меня все. Заказывал нагрузку через посредника