Разработка новых аккумуляторов большой емкости. Обзор новых технологий в производстве аккумуляторов. Аноды Оловянные и Ко. Сплавы

Исследователи из Техасского университета в Остине во главе с 94-летним профессором Джоном Гуденафом разработали новый тип твердотельных аккумуляторов. Интересно, что именно Джон Гуденаф является одним из создателей современных литий-ионных аккумуляторов. В 1983 году он и его коллеги предложили использовать кобальтит лития в качестве катода в литий-ионных аккумуляторах. Новая технология предусматривает создание полностью твердотельных аккумуляторов, отличающихся повышенной безопасностью, долговечностью и увеличенной скоростью зарядки в сравнении с традиционными.

“Стоимость, безопасность, плотность энергии, скорость зарядки и разрядки, а также долговечность являются критически важными показателями для аккумуляторов в электромобилях, способными повлиять на увеличение их популярности. Мы считаем, что наше открытие решает многие проблемы, присущие современным аккумуляторам”, – заявил Джон Гуденаф.

Новые аккумуляторы имеют как минимум в три раза большую плотность энергии, чем в современных литий-ионных батареях. Для электромобилей это означает, что они смогут проехать на большее расстояние на одном заряде, а смартфоны смогут похвастать высокой автономностью. Помимо повышенной плотности энергии, новые аккумуляторы также сохраняют свою ёмкость на протяжении большего числа циклов зарядки (до 1 200 циклов), а время их зарядки исчисляется не часами, а минутами.

В современных литий-ионных аккумуляторах используются жидкие электролиты для перемещения ионов лития между анодом и катодом. При слишком быстрой зарядке может возникнуть короткое замыкание, которое зачастую сопровождается взрывом. Исследователи из Техасского университета вместо жидких электролитов использовали стеклянные – они позволяют использовать анод щёлочного металла (лития, натрия или калия) без вероятности образования дендритов.

Ещё одним преимуществом использования стеклянных электролитов вместо жидких является то, что они могут без проблем работать при минусовой температуре. Кроме этого, все элементы такого аккумулятора могут быть изготовлены из экологически чистых материалов.

К сожалению, как и в случае с другими перспективными технологиями производства аккумуляторов, о коммерческом использовании этой разработки пока не идёт речи.

Изобретатель литий-ионных батарей представил новый тип аккумуляторов
Изобретатель литий-ионных батарей представил новый тип аккумуляторов


Исследователи из Техасского университета в Остине создали твердотельные аккумуляторы, которые должны стать более эффективной и полностью безопасной альтернативой литий-ионным батареям. Разработка ведётся под руководством 94-летнего изобретателя Джона Гуденафа, который был одним из создателей литий-ионного аккумулятора почти три десятилетия назад.

Как выяснили экспериментаторы, новый тип батарей обладает в три раза большей энергоёмкостью, быстрее заряжается, выдерживает температуру до −60°C, не взрывается от перегрева или повреждений оболочки и не вредит окружающей среде при утилизации. В качестве материала, накапливающего электроэнергию, в таком аккумуляторе используется не редкий и дорогой литий, а дешёвый натрий, который можно добывать из морской воды так же, как соль.

Литий-ионные аккумуляторы широко распространены и используются почти во всех видах электронных устройств. Принцип их работы онован на перемещении ионов жидкого электролита между анодом и катодом. Если аккумулятор зарядить слишком быстро, в нём могут образоваться «отростки» лития, которые приводят к уменьшению ёмкости, короткому замыканию и даже взрыву батареи. Электролитом в новой батарее Гуденафа служит стекло, что позволяет применять в качестве анода щелочные металлы (например, натрий или калий), которые не образуют отростков. Риск возгорания такой батареи близок к нулю.

«Стоимость, безопасность, энергоёмкость, скорость зарядки и продолжительность использования батареи - это критически важные показатели для дальнейшего распространения электромобилей. Мы считаем, что наша технология поможет решить многие проблемы, которым подвержены современные аккумуляторы», - прокомментировал своё изобретение Джон Гуденаф.

Гуденаф - не первый, кто решил заменить жидкий электролит твердотельным. До него аналогичными экспериментами занимались исследователи из Массачусетского технологического института. Они использовали сульфиды, но выяснили, что этот материал слишком хрупок, поэтому аккумуляторы, созданные на его основе, нельзя использовать в портативной технике и электромобилях.

Литий-ионные аккумуляторы используются в электронике с начала девяностых годов и почти вытеснили все другие виды батарей. За 25 лет заметного прорыва в этой технологии не достигнуто - энергоэффективность таких аккумуляторов хоть и растёт, но очень медленно. Их главные проблемы - опасность взрыва в любой момент без видимых причин и плавная потеря номинальной ёмкости от перезаряда вплоть до полного истощения.

Новый тип батарей от изобретателя литий-ионного аккумулятора
Исследователи из Техасского университета в Остине создали твердотельные аккумуляторы, которые должны стать более эффективной и полностью безопасной альтернативой литий-ионным батареям.


Обычные батареи такого типа оснащены углеродным катодом, в порах которого запасается атмосферный кислород, играющий роль активного материала. При разряде катионы лития движутся с литиевого анода через электролит и вступают в реакцию с кислородом, образуя (в идеале) пероксид лития Li 2 O 2 , задерживающийся на катоде, а электроны идут с анода на катод через цепь нагрузки. Преимуществом литий-воздушных образцов перед традиционными литий-ионными считается бóльшая достижимая плотность энергии.

На характеристики литий-воздушных батарей влияет множество факторов: относительная влажность, парциальное давление кислорода, состав электролита, выбор катализатора и общей компоновки устройства. Необходимо также учитывать, что осаждающиеся на углеродном электроде продукты реакций (Li 2 O 2) блокируют пути проникновения кислорода, ограничивая ёмкость. Воздушный электрод оптимальной конфигурации, таким образом, должен иметь и микроразмерные поры, которые обеспечивают свободное прохождение кислорода, и наноразмерные полости, создающие достаточную плотность участков для реакций Li-O 2 .

Схема функционализированного графенового листа с функциональными группами на обеих его сторонах и краях и дефектами решётки, которые становятся энергетически выгодными участками для захвата продуктов реакций (Li 2 O 2). Дефекты выделены жёлтым и фиолетовым, атомы углерода - серым, кислорода - красным, водорода - белым. Справа показана идеальная пористая структура воздушного электрода. (Здесь и далее иллюстрации из журнала Nano Letters.)

Для создания новых электродов использовались функционализированные графеновые листы, полученные при термической обработке оксида графита. Начальное соотношение C/O у оксида примерно равно двум, но выдерживание при 1050 ˚C в течение всего 30 с позволяет увеличить его до

15 за счёт выделения CO 2 . После ухода диоксида углерода листы приобретают дефекты решётки, которые способствуют образованию изолированных наноразмерных частиц Li 2 O 2 , не блокирующих доступ кислорода при работе батареи.

Подготовленные листы помещались в микроэмульсионный раствор, содержащий связующие вещества. После высыхания электрод приобретал необычную внутреннюю структуру, в которой выделяются неплотно упакованные яйцеобразные элементы. Между ними были проложены широкие ходы, а «скорлупа» элементов содержала многочисленные наноразмерные поры. Другими словами, конструкция электрода была приближена к оптимальной.

Графеновые электроды: сверху - только что изготовленные, снизу - после разряда. Стрелками отмечены частицы Li 2 O 2 . Размеры проставлены в микрометрах.

В экспериментах литий-воздушные батареи с графеновыми электродами (без катализатора) продемонстрировали рекордно высокую ёмкость в 15 000 мА ч в пересчёте на грамм углерода. Такие результаты, отметим, были достигнуты в атмосфере чистого O 2 , на воздухе ёмкость заметно снижается, поскольку в работу устройства вмешивается вода. Авторы уже размышляют над конструкцией мембраны, которая гарантирует защиту от воды, но будет пропускать необходимый кислород.

«Мы также хотим сделать батарею полностью перезаряжаемой, - делится планами руководитель научной группы Цзи-Гуан Чжан (Ji-Guang Zhang). - Для этого понадобятся новый электролит и новый катализатор, и именно они нас сейчас и интересуют».

Разрядная кривая литий-воздушной батареи с графеновым электродом.

Немцы изобрели фторид-ионную аккумуляторную батарею

В дополнение к целой армии электрохимических источников тока учёные разработали ещё один вариант. Его заявленные достоинства - меньшая пожароопасность и в десять раз большая удельная ёмкость, чем у литиево-ионных батарей.

Химики из технологического института Карлсруэ (KIT) предложили концепцию аккумуляторов на основе фторидов металлов и даже испытали несколько небольших лабораторных образцов.

В таких аккумуляторах за перенос зарядов между электродами отвечают анионы фтора. Анод и катод аккумулятора содержат металлы, которые в зависимости от направления тока (заряд или разряд) по очереди превращаются во фториды или восстанавливаются обратно до металлов.

«Поскольку один атом металла способен принять или отдать сразу несколько электронов, эта концепция позволяет достичь чрезвычайно высокой плотности энергии - до десяти раз выше, чем у обычных литиево-ионных батарей», - говорит один из авторов разработки доктор Максимилиан Фихтнер (Maximilian Fichtner).

Для проверки идеи немецкие исследователи создали несколько образцов таких батарей диаметром 7 миллиметров и толщиной 1 мм. Авторы изучили несколько материалов для электродов (медь и висмут в сочетании с углеродом, например), а электролит создали на основе лантана и бария.

Однако такой твёрдый электролит – это лишь промежуточный шаг. Данный состав, проводящий ионы фтора, хорошо работает только при высокой температуре. Потому химики ищут ему замену – жидкий электролит, который действовал бы при комнатной температуре.

(Подробности можно найти в пресс-релизе института и статье в Journal of Materials Chemistry.)

Что ждет рынок аккумуляторов в будущем, пока сложно прогнозировать. Литиевые батареи пока уверенно правят балом, и у них есть неплохой потенциал, благодаря литий-полимерным разработкам. Внедрение серебряно-цинковых элементов – весьма длительный и дорогостоящий процесс, и его целесообразность пока является дискуссионным вопросом. Технологии на основе топливных элементов и нанотрубок уже много лет восхваляются и описываются самым красивыми словами, однако когда дело доходит до практики, фактические продукты получаются либо слишком громоздкими, либо слишком дорогими, либо и то, и другое вместе взятое. Ясно лишь одно – в ближайшие годы данная отрасль будет продолжать активно развиваться, ведь популярность портативных устройств растет не по дням, а по часам.

Параллельно с ноутбуками, ориентированными на автономную работу, развивается направление настольных ноутов, в которых батарея скорее играет роль резервного ИБП. Недавно в Samsung выпустили подобный ноутбук и вовсе без батареи.

В NiCd -аккумуляторах также существует возможность электролиза. Чтобы в них не скапливался взрывоопасный водород, батареи оснащают микроскопическими клапанами.

В знаменитом институте MIT недавно была разработана уникальная технология производства литиевых аккумуляторов усилиями специально-обученных вирусов.

Несмотря на то, что топливный элемент внешне совершенно не похож на традиционную батарею, работает он по тем же принципам.

А кто еще подскажет какие нибудь перспективные направления?

Изготовлены перспективные графеновые электроды для литий-воздушных батарей
Продолжаю выполнять пожелания моих френдов из октябрьского СТОЛА ЗАКАЗОВ. Читаем вопрос trudnopisaka: Интересно было бы узнать про новые технологии аккумуляторов, которые готовят к серийному производству. Ну конечно же критерий серийного производства несколько растяжимый, но…



Сообщества › Электромобили › Блог › Новые аккумуляторы с увеличенной ёмкостью в 20 раз.

Чех Ян Прохазка создал революционный тип батареи, производство которого уже сейчас готовы финансировать крупнейшие мировые инвесторы.

Новый 3D аккумулятор отличается от ранее известных образцов способом производства. Все дело в том, что в новом аккумуляторе гальванические элементы расположены горизонтально в виде пластин в раме, а не вертикально в виде металлических пленок с активными слоями, как в случае с литиевыми аккумуляторами.
Данная технология способствует снижению затрат на производство, следовательно цена по сравнению с литиевой будет меньше.

Новая технология создания батарей позволяет не только увеличить их емкость как минимум в 20 раз, но и обеспечивает более быструю подзарядку аккумулятора.

Новые сверхъемкие аккумуляторы способны решить главную проблему альтернативной энергетики – долгосрочное хранение накопленной энергии. Кроме того, их можно использовать в электромобилях – в результате дальность хода повысится в разы.

Патентом на 3D аккумулятор обладает фирма HE3DA, которую возглавляет сам создатель новой батареи Ян Прохазк. На данный момент в своей мастерской в Летнянах он выпустил 160 экземпляров.

Изобретение чеха заинтересовало огромное количество крупных инвесторов из Германии и Словакии. Однако наиболее интересным оказалось предложение частного китайского инвестора-миллиардера Ху Юаньпина.

Китаец внес невозвратный залог в размере 5 млн. евро и готов еще заплатить 50 млн. евро за 49% акций фирмы HE3DA www.he3da.cz/#!technology/ci26. Но и на этом щедрость китайского миллиардера не заканчивается, в дальнейшем он планирует инвестировать еще 50 млн. евро, если проект хорошо себя зарекомендует.

Первый завод по производству 3D аккумуляторов появится на севере Моравии в городке Горни-Суха, а уже позже будет налажено массовое производство и в Китае.

Изобретение Прохазки позволит не только сделать более эффективным хранение энергии, полученной от ветряных и солнечных электростанций, но и может быть использовано в электромобилях, что сделает их еще более популярными.

* включён негативконтроллер к комментариям

Сообщества › Электромобили › Блог › Новые аккумуляторы с увеличенной ёмкостью в 20 раз
Метки: 3d аккумулятор, революционный тип батареи, he3da. Чех Ян Прохазка создал революционный тип батареи, производство которого уже сейчас готовы финансировать крупнейшие мировые инвесторы. Новый 3D аккумулятор отличается от ранее известных образцов способом производства. Все дело в том, что в новом аккумуляторе гальванические элементы расположены гориз…

«Квантовая» батарея

С 26 по 28 февраля в Токио проходит выставка накопителей, на которой среди прочих представлена компания Micronics Japan Co. Ltd . О её предыдущих разработках мало что известно, но совсем недавно она заявила о том, что разработала и подготовила к производству слоистую батарею нового типа. Одиночная ячейка, которую демонстрирует компания, представляет собой плёнку из металл-оксид-полупроводниковой структуры n-типа, в которой используются частицы диоксида титана, диоксида олова и оксида цинка, покрытые изолирующей плёнкой. В опытном образце используется лист нержавеющей стали толщиной 10 мкм, но вскоре его заменят на алюминиевый.

Квантовой разработчики назвали свою батарею чтобы подчеркнуть её физическую, а не химическую природу. Несмотря на то, что для хранения энергии вместо ионов в ней используются электроны, по принципу действия эта батарея отличается от конденсаторов. Утверждается , что система основана на хранении электронов «в запрещённой зоне» полупроводника.

При производстве структур «металл - оксид - полупроводник» зарядовый слой накопителя облучают ультрафиолетом. После изготовления, при зарядке, электроны занимают свободные энергические уровни в рабочем материале и хранятся там до тех пор, пока батарею не потребуется разрядить. В итоге получаются перезаряжаемые батареи с очень высокой плотностью хранения энергии.
Какими показателями обладают тестовые образцы неизвестно, но разработчик заявляет, что серийные образцы, которые появятся в скором будущем, будут иметь ёмкость до 500 Вт ч/л и при этом смогут выдавать до 8 000 Вт пиковой мощности на литр объёма.
Такие накопители объединяют лучшие черты аккумуляторов и суперконденсаторов. Даже при малой ёмкости они смогут выдавать большую пиковую мощность. Напряжение, снимаемое с таких накопителей, не уменьшается по мере их разрядки, а до конца остаётся стабильным.
Заявленный диапазон рабочих температур от -25 до +85 °C. Батарея может быть подвержена 100 тыс. циклов зарядки-разрядки до падения ёмкости ниже 90% от первоначальной. Способность быстро забирать и отдавать энергию сильно уменьшит время зарядки. Кроме того, такие батареи пожаробезопасны. Редкие или дорогие материалы в её производстве не используются. В общем, плюсов столько, что даже не верится.

Самозаряжающаяся батарея

Группа исследователей во главе с Чжунлинь Ваном (Zhong Lin Wang) из Технологического института Джорджии (США) создала самозаряжающуюся батарею, не требующую для возобновления заряда подключения к розетке.
Устройство заряжается от механического воздействия, а точнее - от нажатия. Его планируется применять в сматрфонах и других устройствах сенсорных устройствах.
Разработчики разместили своё устройство под клавишами калькулятора и смогли обеспечить его работоспособность в течении суток за счёт энергии от нажатия кнопок.

Батарея представляет собой «прирог» из поливинилиденфторидной и цирконат-титанатосвинцовой плёнок толщиной в несколько сот микрометров. При нажатии на неё ионы лития мигрируют от катода к аноду в силу пьезоэлектрического эффекта. Чтобы повысить эффективность прототипа, исследователи добавили в его пьезоэлектрический материал наночастицы, усиливающие соответствующий эффект, и добились серьёзного увеличения ёмкости и скорости подзарядки устройства.
Нужно понимать, что батарея непрозрачная, поэтому может помещаться только под кнопками, либо под экраном.
Батарея не имеет таких выдающихся характеристик, как ранее описанное устройство (сейчас ёмкость батареи размером со стандартную «таблетку» для матплат выросла с начальных 0,004 до 0,010 мА ч), но разработчика обещают ещё поработать над её эффективностью. До промышленных образцов ещё далеко, хотя гибкие экраны - основные устройства, в которых разработчика планируют разместить свою батарею - пока слабо распространены. Ещё есть время доработать своё изобретение и внедрить в производство.

Батарея на основе сахара

Складывается впечатление, что разработкой батарей занимаются только азиаты. Прототип очередной необычной батареи создали в американском Политехническом университете Вирджинии.

Эта батарея по сути работает на сахаре, точнее на мальтодекстрине - полисахариде, полученном в результате гидролиза крахмала. Катализатором в такой батарее является энзим. Он намного дешевле платины, которая сейчас применяется в обычных батареях. Такая батарея относится к типу энзимных топливных элементов. Электричество здесь производится путём реакции кислорода, воздуха и воды. В отличии от водородных топливных элементов, энзимы негорючи и невзрывоопасны. А после того, как батарея исчерпает свой ресурс, по словам разработчиков , её можно будет снова заправить сахаром.
О технических характеристиках данного типа аккумуляторов пока известно мало. Утверждается лишь, что плотность энергии в них в несколько раз выше, чем в обычных литий-ионных батареях. Стоимость таких батарей существенно ниже обычных, поэтому разработчики полны уверенности найти им коммерческое применение в ближайшие 3 года. Подождём обещанного.

Батарея со структурой граната

А вот учёные из американской Национальной ускорительной лаборатории SLAC при Стэнфордском университете решили увеличить объём обычных батарей , воспользовавшись структурой граната.

Разработчики максимально уменьшили размер анодов и поместили каждый из них в углеродную оболочку. Это позволяет предотвратить их разрушение. В процессе зарядки, частицы расширяются и объединяются в кластеры, которые так же помещаются в углеродную оболочку. В результате таких манипуляций, ёмкость этих аккумуляторов в 10 раз превышает ёмкость обычных литий-ионных батарей.
Из опытов следует, что после 1000 циклов заряда/разряда, батарея сохраняет 97% первоначальной ёмкости.
Но о коммерческом применении данной технологии говорить пока рано. Слишком уж дороги в производстве кремниевые наночастицы и слишком сложен сам процесс создания таких батарей.

Атомные батареи

И напоследок расскажу о разработке британских учёных . Они решили переплюнуть своих коллег создав миниатюрный ядерный реактор. Прототип атомного аккумулятора, созданный исследователями университета Сюррея на основе трития, производит достаточно энергии для работы мобильного телефона в течении 20 лет. Правда подзарядить его потом уже не получится.

В батареи, представляющей собой интегральную микросхему, происходит ядерная реакция, в результате которой вырабатывается 0,8 – 2,4 ватт энергии. Рабочая температура батареи составляет от -50 до +150. При этом ей не страшны резкие перепады температуры и давления.
Разработчики утверждают, что для человека тритий, который содержится в батареи не опасен, т.к. его содержание там очень мало. Однако, о массовом производстве таких источников питания пока рано говорить - учёным предстоит провести ещё массу исследований и испытаний.

Заключение

Конечно, далеко не все из вышеописанных технологий найдут своё применение, тем не менее, надо понимать, что в ближайшие несколько лет должен произойти прорыв в технологии производства аккумуляторных батарей, который повлечёт за собой всплеск распространения электромобилей и производства смартфонов и других электронных устройств нового типа.

В отношении аккумуляторов действует правило «все или ничего». Без энергетических накопителей нового поколения не будет ни перелома в энергетической политике, ни на рынке электромобилей.

Закон Мура, постулируемый в IT-индустрии, обещает увеличение производительности процессоров каждые два года. Развитие аккумуляторов отстает: их эффективность увеличивается в среднем на 7% в год. И хотя литий-ионные батареи в современных смартфонах работают все дольше и дольше, это во многом связано с оптимизированной производительностью чипов.

Литий-ионные батареи доминируют на рынке из-за их малого веса и высокой плотности накапливаемой энергии.

Ежегодно миллиарды аккумуляторов устанавливаются в мобильные устройства, электромобили и системы для хранения электричества от возобновляемых источников энергии. Однако современная техника достигла своего предела.

Хорошей новостью является то, что следующее поколение литий-ионных батарей уже почти соответствует требованиям рынка. В качестве аккумулирующего материала в них применяется литий, который теоретически позволяет в десять раз увеличить плотность хранения энергии.

Наряду с этим приводятся исследования других материалов. Хотя литий и обеспечивает приемлемую плотность энергии, однако речь идет о разработках на несколько порядков оптимальнее и дешевле. В конце концов, природа могла бы предоставить нам лучшие схемы для высококачественных аккумуляторов.

Научно-исследовательские лаборатории университетов разрабатывают первые образцы органических аккумуляторов . Однако до выхода таких биобатарей на рынок может пройти не одно десятилетие. Мостик в будущее помогают протянуть малогабаритные батареи, которые заряжаются путем улавливания энергии.

Мобильные источники питания

По данным компании Gartner, в этом году будет продано более 2 млрд. мобильных устройств, в каждом из которых установлен литий-ионный аккумулятор. Эти аккумуляторы сегодня считаются стандартом, отчасти потому, что они весьма легкие. Тем не менее они обладают максимальной плотностью энергии только 150-200 Вт·ч/кг.

Литий-ионные батареи заряжаются и отдают энергию путем перемещения ионов лития. При зарядке положительно заряженные ионы двигаются от катода через раствор электролита между слоями графита анода, накапливаются там и присоединяют электроны тока зарядки.

При разрядке они отдают электроны в контур тока, ионы лития перемещаются обратно к катоду, в котором они вновь связываются с находящимся в нем металлом (в большинстве случаев - кобальтом) и кислородом.

Емкость литий-ионных аккумуляторов зависит от того, какое количество ионов лития может располагаться между слоями графита. Однако благодаря кремнию сегодня можно добиться более эффективной работы аккумуляторов.

Для сравнения: для связывания одного иона лития требуется шесть атомов углерода. Один атом кремния, напротив, может удерживать четыре иона лития.

Литий-ионный аккумулятор сохраняет свою элетроэнергию в литии. При зарядке анода атомы лития сохраняются между слоями графита. При разрядке они отдают электроны и перемещаются в виде ионов лития в слоистую структуру катода (кобальтит лития).

Кремний повышает емкость

Емкость аккумуляторов растет при включении кремния между слоями графита. Она увеличивается в три-четыре раза при соединении кремния с литием, однако после нескольких циклов зарядки графитовый слой разрывается.

Решение этой проблемы найдено в стартап-проекте Amprius , созданном учеными из Стэндфордского университета. Проект Amprius получил поддержку таких лю­дей, как Эрик Шмидт (председателя совета директоров Google) и лауреат Нобелевской премии Стивен Чу (до 2013 года – министр энергетики США).


Пористый кремний в аноде увеличивает эффективность литий-ионных аккумуляторов до 50%. В ходе реализации стартап-проекта Amprius же произведены первые кремниевые аккумуляторы.

В рамках этого проекта доступны три метода решения «проблемы графита». Первый из них - применение пористого кремния , который можно рассматривать как «губку». При сохранении лития он крайне мало увеличивается в объеме, следовательно, слои графита остаются неповрежденными. Amprius может создать аккумуляторы, которые сохраняют до 50% больше энергии, чем обычные.

Более эффективно, чем пористый кремний, накапливает энергию слой кремниевых нанотрубок . В прототипах было достигнуто почти двукратное увеличение зарядной емкости (до 350 Вт·ч/кг).

«Губка» и трубки должны быть по-прежнему покрыты графитом, так как кремний вступает в реакцию с раствором электролита и тем самым уменьшает время работы аккумулятора.

Но есть и третий метод. Исследователи проекта Ampirus внедрили в углеродную оболочку группы частиц кремния , которые непосредст­венно не соприкасаются, а обеспечивают свободное пространство для увеличения частиц в объеме. Литий может накапливаться на этих частицах, а оболочка остается неповрежденной. Даже после тысячи циклов зарядки емкость прототипа снизилась только на 3%.


Кремний соединяется с несколькими атомами лития, но при этом расширяется. Для предотвращения разрушения графита исследователи используют структуру растения граната: они вводят кремний в графитовые оболочки, размер которых достаточно велик, чтобы дополнительно присоединять литий.

Экология потребления.Наука и техника: Будущее электротранспорта во многом зависит от совершенствования аккумуляторов - они должны весить меньше, заряжаться быстрее и при этом производить больше энергии.

Будущее электротранспорта во многом зависит от совершенствования аккумуляторов - они должны весить меньше, заряжаться быстрее и при этом производить больше энергии. Ученые уже добились некоторых результатов. Команда инженеров создала литий-кислородные батареи, которые не растрачивают энергию впустую и могут служить десятилетиями. А австралийский ученый представил ионистор на основе графена, который может заряжаться миллион раз без потери эффективности.

Литий-кислородные аккумуляторы мало весят и производят много энергии и могли бы стать идеальными комплектующими для электромобилей. Но у таких батарей есть существенный недостаток - они быстро изнашиваются и выделяют слишком много энергии в виде тепла впустую. Новая разработка ученых из МТИ, Аргонской национальной лаборатории и Пекинского университета обещает решить эту проблему.

Созданные командой инженеров литий-кислородные аккумуляторы используют наночастицы, в которых содержится литий и кислород. При этом кислород при изменении состояний сохраняется внутри частицы и не возвращается в газовую фазу. Это отличает разработку от литий-воздушных батарей, которые получают кислород из воздуха и выпускают его в атмосферу во время обратной реакции. Новый подход позволяет сократить потерю энергии (величина электрического напряжения сокращается почти в 5 раз) и увеличить срок службы батареи.

Литий-кислородная технология также хорошо адаптирована к реальным условиям, в отличие от литий-воздушных систем, которые портятся при контакте с влагой и CO2. Кроме того, аккумуляторы на литии и кислороде защищены от избыточной зарядки - как только энергии становится слишком много, батарея переключается на другой тип реакции.

Ученые провели 120 циклов заряда-разряда, при этом производительность снизилась лишь на 2%.

Пока что ученые создали лишь опытный образец аккумулятора, но в течение года они намерены разработать прототип. Для этого не нужны дорогие материалы, а производство во многом схоже с производством традиционных литий-ионных батарей. Если проект будет реализован, то в ближайшем будущем электромобили будут сохранять в два раза больше энергии при той же массе.

Инженер из Технологического университета Суинберна в Австралии решил другую проблему аккумуляторов - скорость их подзарядки. Разработанный им ионистор заряжается практически мгновенно и может использоваться в течение многих лет без потери эффективности.

Хан Линь использовал графен - один из самых прочных материалов на сегодняшний день. За счет структуры, напоминающей соты, графен обладает большой площадью поверхности для хранения энергии. Ученый напечатал графеновые пластины на 3D-принтере - такой способ производства также позволяет сократить затраты и нарастить масштабы.

Созданный ученым ионистор производит столько же энергии на килограмм веса, сколько и литий-ионный аккумуляторы, но заряжается за несколько секунд. При этом вместо лития в нем используется графен, который стоит намного дешевле. По словам Хана Линя, ионистор может проходить миллионы циклов зарядки без потери качества.

Сфера производства аккумуляторов не стоит на месте. Братья Крайзель из Австрии создали новый тип батарей, которые весят почти в два раза меньше аккумуляторов в Tesla Model S.

Норвежские ученые из Университета Осло изобрели аккумулятор, который можно полностью . Однако их разработка предназначена для городского общественного транспорта, который регулярно делает остановки - на каждой из них автобус будет подзаряжаться и энергии хватит, чтобы добраться до следующей остановки.

Ученые Калифорнийского университета в Ирвайне приблизились к созданию вечной батареи. Они разработали аккумулятор из нанопроволоки, который можно перезаряжать сотни тысяч раз.

А инженеры Университета Райса сумели создать , работающий при температуре 150 градусов Цельсия без потери эффективности. опубликовано

А сегодня расскажем о воображаемых — с гигантской удельной ёмкостью и мгновенной зарядкой. Новости о подобных разработках появляются с завидной регулярностью, но будущее пока не наступило, и мы всё ещё пользуемся появившимися в начале позапрошлого десятилетия литий-ионными аккумуляторами, либо их чуть более совершенными литий-полимерными аналогами. Так в чём же дело, в технологических трудностях, неправильной интерпретации слов учёных или чём-то другом? Попробуем разобраться.

В погоне за скоростью зарядки

Один из параметров аккумуляторов, который учёные и крупные компании постоянно стараются улучшить — скорость зарядки. Однако бесконечно увеличивать её не получится даже не в силу химических законов протекающих в аккумуляторах реакций (тем более, что разработчики алюминий-ионных батарей уже заявили, что такой тип аккумуляторов может быть полностью заряжен всего за секунду), а из-за физических ограничений. Пусть у нас есть смартфон с батареей ёмкостью 3000 мАч и поддержкой быстрой зарядки. Полностью зарядить такой гаджет можно в течение часа силой тока в среднем 3 А (в среднем потому, что напряжение при заряде изменяется). Однако если мы хотим получить полный заряд всего за одну минуту, потребуется сила тока уже в 180 А без учёта различных потерь. Для заряда устройства таким током потребуется провод диаметром около 9 мм — в два раза толще самого смартфона. Да и силу тока 180 А при напряжении около 5 В обычное зарядное устройство выдать не сможет: владельцам смартфонов понадобится импульсный преобразователь тока вроде того, что изображён на фотографии ниже.

Альтернатива увеличению силы тока — увеличение напряжения. Но оно, как правило, фиксированное, и для литий-ионный батарей составляет 3,7 В. Конечно, его можно превышать — зарядка по технологии Quick Charge 3.0 идёт с напряжением до 20 В, но попытка зарядить батарею напряжением около 220 В ни к чему хорошему не приведёт, и решить эту проблему в ближайшее время не представляется возможным. Современные элементы питания просто не могут использовать такое напряжение.

Вечные аккумуляторы

Разумеется, речь сейчас пойдёт не о «вечном двигателе», а об аккумуляторах с долгим сроком службы. Современные литий-ионные батареи для смартфонов способны выдержать максимум пару лет активного использования устройств, после чего их ёмкость неуклонно падает. Владельцам смартфонов со съёмными аккумуляторами повезло немного больше, чем другим, но и в этом случае стоит убедиться, что аккумулятор был произведён недавно: литий-ионные батарей деградируют даже тогда, когда не используются.

Своё решение этой проблемы предложили учёные Стэнфордского университета: покрыть электроды существующих типов литий-ионных аккумуляторов полимерным материалом с добавлением наночастиц графита. По задумке учёных, это позволит защитить электроды, которые неизбежно покрываются микротрещинами в процессе эксплуатации, а те же микротрещины в полимерном материале будут затягиваться самостоятельно. Принцип действия такого материала похож на технологию, применённую в смартфоне LG G Flex с самовосстанавливающейся задней крышкой.

Переход в третье измерение

В 2013 году появилось сообщение о разработке исследователями университета штата Иллинойс нового типа литий-ионных аккумуляторов. Учёные заявили, что удельная мощность таких элементов питания составит до 1000 мВт/(см*мм), в то время как удельная мощность обычных литий-ионных батарей колеблется между 10-100 мВт/(см*мм). Были использованы именно такие единицы измерения, поскольку речь идёт о достаточно небольших структурах толщиной в десятки нанометров.

Вместо плоских анода и катода, применяемых в традиционных Li-Ion батарей, учёные предложили использовать объёмные структуры: кристаллическую решётку из сульфида никеля на пористом никеле в качестве анода и литий-диоксид марганца на пористом никеле в качестве катода.

Несмотря на все сомнения, вызванные отсутствием в первых пресс-релизах точных параметров новых аккумуляторов, а также не представленные до сих пор прототипы, новый тип батарей всё же реален. Подтверждением тому служат несколько научных статей на эту тему, опубликованных за последние два года. Тем не менее, если такие батареи и станут доступны для конечных потребителей, произойдёт это очень нескоро.

Зарядка через экран

Учёные и инженеры пытаются продлить жизнь наших гаджетов не только поиском новых типов аккумуляторов или увеличением их энергоэффективности, но и довольно необычными способами. Исследователи университета штата Мичиган предложили встроить прозрачные солнечные панели прямо в экран. Поскольку принцип работы таких панелей основан на поглощении ими солнечного излучения, чтобы сделать их прозрачными, учёным пришлось пойти на хитрость: материал панелей нового типа поглощает только невидимое излучение (инфракрасное и ультрафиолетовое), после чего фотоны, отражаясь от широких граней стекла, поглощаются узкими полосками солнечных панелей традиционного типа, находящихся по его краям.

Главным препятствием для внедрения такой технологии является низкий КПД таких панелей — всего 1% против 25% традиционных солнечных панелей. Сейчас учёные ищут способы увеличить КПД хотя бы до 5%, но быстрого решения этой проблемы вряд ли стоит ожидать. К слову, похожую технологию недавно запатентовала компания Apple, но пока неизвестно, где именно в своих устройствах производитель расположит солнечные панели.

До этого мы под словами «батарея» и «аккумулятор» мы подразумевали перезаряжаемый элемент питания, но некоторые исследователи считают, что в гаджетах вполне можно использовать одноразовые источники напряжения. В качестве батареек, которые могли бы работать без подзарядки или другого обслуживания несколько лет (а то и несколько десятков лет) учёные университета штата Миссури предложили использовать РИТЭГ — радиоизотопные термоэлектрические генераторы. Принцип действия РИТЭГ основан на преобразовании выделяющегося в процессе радиораспада тепла в электричество. Многим такие установки известны по использованию в космосе и труднодоступных местах на Земле, но в США миниатюрные радиоизотопные батарейки также применялись в кардиостимуляторах.

Работа над улучшенным типом таких батарей ведётся с 2009 года и даже были показаны прототипы таких элементов питания. Но увидеть радиоизотопные батарейки в смартфонах в ближайшей перспективе мы не сможем: они дороги в производстве, и, к тому же, многие страны имеют строгие ограничения на производство и оборот радиоактивных материалов.

В качестве одноразовых батареек также можно использовать и водородные элементы, но их в смартфонах использовать не получится. Водородные батареи расходуются довольно быстро: хотя ваш гаджет и будет работать от одного картриджа дольше, чем от одного заряда обычной батареи, их придётся периодически менять. Впрочем, это не мешает использовать водородные батареи в электромобилях и даже внешних аккумуляторах: пока это не массовые устройства, но уже и не прототипы. Да и компания Apple, по слухам, уже разрабатывает систему дозаправки картриджей водородом без их замены для использования в будущих iPhone.

Идея о том, что на основе графена можно создать аккумулятор с высокой удельной ёмкостью, была выдвинута ещё в 2012 году. И вот, в начале этого года в Испании было объявлено о начале строительства компанией Graphenano завода по производству графен-полимерых аккумуляторов для электромобилей. Новый тип батарей почти в четыре раза дешевле в производстве, чем традиционные литий-полимерные аккумуляторы, имеет удельную ёмкость 600 Втч/кг, а зарядить такую батарею на 50 кВтч можно будет всего за 8 минут. Правда, как мы говорили в самом начале, для этого потребуется мощность около 1 МВт, поэтому подобный показатель достижим лишь в теории. Когда именно завод начнёт выпускать первые графен-полимерные батареи не сообщается, но вполне возможно, что среди покупателей его продукции будет Volkswagen. Концерн уже заявил о планах выпуска электромобилей с пробегом до 700 километров от одного заряда аккумуляторов к 2018 году.

Что касается мобильных устройств, то пока применению в них графен-полимерных аккумуляторов мешают большие габариты таких батарей. Будем надеяться, что исследования в этой области продолжатся, ведь графен-полимерные аккумуляторы — один из наиболее перспективных типов аккумуляторов, которые могут появиться уже в ближайшие годы.

Так всё же, почему, несмотря на весь оптимизм учёных и регулярно появляющиеся новости о прорывах в области сохранения электроэнергии, мы сейчас наблюдаем застой? В первую очередь, дело в наших завышенных ожиданиях, которые только подогреваются журналистами. Мы хотим верить, что вот-вот и произойдёт революция в мире аккумуляторов, и мы получим батарейку с зарядкой менее, чем за минуту, и практически неограниченным сроком службы, от которой современный смартфон с восьмиядерным процессором будет работать минимум неделю. Но таких прорывов, увы, не бывает. Вводу в массовое производство любой новой технологии предшествуют долгие годы научных исследований, испытаний образцов, разработка новых материалов и технологических процессов и другая работа, занимающая достаточно много времени. В конце концов, тем же литий-ионным аккумуляторам понадобилось около пяти лет, чтобы из инженерных образцов превратиться в готовые устройства, которые можно использовать в телефонах.

Поэтому, нам остаётся только запасаться терпением и не воспринимать новости о новых элементах питания близко к сердцу. По крайней мере, пока не появятся новости об их запуске в массовое производство, когда не останется никаких сомнений о жизнеспособности новой технологии.