Расчет гидростатической трансмиссии. Трансмиссия ТМ10 ГСТ. При работающем приводном двигателе и нейтральном положении рукоятки управления вал мотора неподвижен. При изменении положения рукоятки вал мотора начинает вращаться, достигая максимальных оборотов

В гидрообъемных бесступенчатых передачах крутящий момент и мощность с ведущего звена (насоса) на ведомое звено (гидромотор) передается жидкостью по трубопроводам. Мощность N, кВт, потока жидкости определяется произведением напора H, м, на расход Q, м3/с:

N = HQpg / 1000,
где р - плотность жидкости.

Гидрообъемные передачи не обладают внутренним автоматизмом, для изменения передаточного числа требуется САУ. Однако для гидрообъемной передачи не нужен механизм реверса. Задний ход обеспечивается изменением соединения насоса с линиями нагнетания и возврата жидкости, что заставляет вал гидромотора вращаться в обратном направлении. При регулируемом насосе не нужна муфта начала движения.

Гидрообъемные передачи (как и электропередачи) по сравнению с фрикционными и гидродинамическими имеют гораздо более широкие компоновочные возможности. Они могут быть частью комбинированной гидромеханической коробки передач при последовательном или параллельном соединении с механическим редуктором. Кроме того, они могут быть частью комбинированной гидромеханической трансмиссии, когда гидромотор установлен перед главной передачей - рис. а (сохранен ведущий мост с главной передачей, дифференциалом, полуосями) либо в двух или во всех колесах установлены гидромоторы - рис. а (они дополнены редукторами, выполняющими функции главной передачи). В любом случае гидросистема является замкнутой, причем в нее включен насос подпитки для поддержания избыточного давления в линии возврата. Из-за потерь энергии в трубопроводах обычно считают целесообразным применение гидрообъемной трансмиссии при максимальном расстоянии между насосом и гидромотором 15… 20 м.

Рис. Схемы трансмиссий автомобилей с гидрообъемными или с электрическими передачами:
а - при использовании мотор-колес; б - при использовании ведущего моста; Н - насос; ГМ - гидромотор; Г - генератор; ЭМ - электромотор

В настоящее время гидрообъемные передачи применяются на малых автомобилях-амфибиях, например «Джиггер» и «Мул», на автомобилях с активными полуприцепами, на небольших сериях большегрузных (полной массой до 50 т) самосвалов и на опытных городских автобусах.

Широкое применение гидрообъемных передач сдерживается в основном их высокой стоимостью и недостаточно высоким КПД (около 80…85%).

Рис. Схемы гидромашин объемного гидропривода:
а - радиально-поршневой; б - аксиально-поршневой; е - эксцентриситет; у - угол наклона блока

Из всего многообразия объемных гидромашин: винтовых, шестеренных, лопастных (шиберных), поршневых - для автомобильных гидрообъемных передач в основном находят применение радиально-поршневые (рис. а) и аксиально-поршневые (рис. б) гидромашины. Они позволяют использовать высокое рабочее давление (40… 50 МПа) и могут быть регулируемыми. Изменение подачи (расхода) жидкости обеспечивается у радиально-поршневых гидромашин изменением эксцентриситета е, у аксиально-поршневых - угла у.

Потери в объемных гидромашинах делят на объемные (утечки) и механические, к последним относят и гидравлические потери. Потери в трубопроводе делят на потери трения (они пропорциональны длине трубопровода и квадрату скорости жидкости при турбулентном течении) и местные (расширение, сужение, поворот потока).

Гидропривод ГСТ–90 (рисунок 1.4) включает аксиально-плунжерные агрегаты: регулируемый гидронасос с шестеренным насосом подпитки и гидрораспределителем; нерегулируемый гидромотор в сборе с клапанной коробкой, фильтр тонкой очистки с вакуумметром, трубопроводы и шланги, а также бак для рабочей жидкости.

Вал 2 гидронасоса вращается в двух роликовых подшипниках. На шлице вала посажен блок цилиндров 25 , в отверстиях которого перемещаются плунжеры. Каждый плунжер сферическим шарниром соединен с пятой, которая упирается на опору, расположенную на наклонной шайбе 1 . Шайба соединена с корпусом гидронасоса при помощи двух роликовых подшипников, и благодаря этому может быть изменен наклон шайбы относительно вала насоса. Изменение угла наклона шайбы происходит под действием усилий одного из двух сервоцилиндров 11 , поршни которых соединены с шайбой 1 при помощи тяг.

Внутри сервоцилиндров находятся пружины, воздействующие на поршни и устанавливающие шайбу так, чтобы расположенная в ней опора была перпендикулярна к валу. Вместе с блоком цилиндров вращается приставное дно, скользящее по распределителю, закрепленному на задней крышке. Отверстия в распределителе и приставном дне периодически соединяют рабочие камеры блока цилиндров с магистралями, связывающими гидронасос с гидромотором.

Рисунок 1.4 – Схема гидропривода ГСТ–90:

1 - шайба; 2 - выходной вал насоса; 3 - реверсивный регулируемый насос; 4 - гидролиния управления; 5 - рычаг управления; 6 - золотник управления положением люльки; 7 8 - насос подпитки; 9 - обратный клапан; 10 - предохранительный клапан системы подпитки; 11 - сервоцилиндр; 12 - фильтр; 13 - вакуумметр; 14 - гидробак; 15 - теплообменник; 16 - золотник; 17 - переливной клапан; 18 - главный предохранительный клапан высокого давления; 19 - гидролиния низкого давления; 20 - гидролиния высокого давления; 21 - дренажная гидролиния; 22 - нерегулируемый мотор; 23 - выходной вал гидромотора; 24 - наклонная шайба гидромотора; 25 - блок цилиндров; 26 - тяга связи; 27 - торцевое уплотнение

Сферические шарниры плунжеров и скользящие по опоре пяты смазываются под давлением рабочей жидкостью.

Внутренняя плоскость каждого агрегата заполнена рабочей жидкостью и является масляной ванной для работающих в ней механизмов. В эту полость поступают и утечки из сопряжений гидроагрегата.

К задней торцевой поверхности гидронасоса крепятся насос подпитки 8 шестеренного типа, вал которого соединен с валом гидронасоса.

Насос подпитки всасывает рабочую жидкость из бака 14 и подает ее:

– в гидронасос через один из обратных клапанов;

– в систему управления через гидрораспределитель в количествах, ограниченных жиклером.

На корпусе насоса подпитки 8 расположен предохранительный клапан 10 , который открывается при повышении давления, развиваемого насосом.

Гидрораспределитель 6 служит для распределения потока жидкости в системе управления, то есть для направления ее к одному из двух сервоцилиндров, в зависимости от изменения положения рычага 5 или запирания жидкости в сервоцилиндре.

Гидрораспределитель состоит из корпуса, золотника с возвратной пружиной, расположенной в стакане, рычага управления с пружиной кручения, а также рычага 5 и двух тяг 26 , которые связывают золотник с рычагом управления и наклонной шайбой.

Устройство гидромотора 22 аналогично устройству насоса. Основные отличия заключаются в следующем: пяты плунжеров при вращении вала скользят по наклонной шайбе 24 , имеющей постоянный угол наклона, а поэтому механизм ее поворота с гидрораспределителем отсутствует; вместо насоса подпитки к задней торцевой поверхности гидромотора крепится клапанная коробка. Гидронасос с гидромотором связаны с двумя трубопроводами (магистралями «гидронасос-гицромотор»). По одной из магистралей поток рабочей жидкости под высоким давлением движется от гидронасоса к гидромотору, по другой - под низким давлением возвращается обратно.

В корпусе клапанной коробки находятся два клапаны высокого давления, переливной клапан 17 и золотник 16 .

Система подпитки включает насос подпитки 8 , а также обратные 9 , предохранительный 10 и переливной клапаны.

Система подпитки предназначена для снабжения рабочей жидкостью системы управления, обеспечения минимального давления в магистралях «гидронасос-гидромотор», компенсирования утечек в гидронасосе и гидромоторе, постоянного перемешивания рабочей жидкости, циркулирующей в гидронасосе и гидромоторе, с жидкостью в баке, отвода от деталей тепла.

Клапаны высокого давления 18 предохраняют гидропривод: от перегрузок, перепуская рабочую жидкость из магистрали высокого давления в магистраль низкого давления. Так как магистралей две и каждая из них в процессе работы может быть магистралью высокого давления, то и клапанов высокого давления тоже два. Переливной клапан 17 должен выпускать излишки рабочей жидкости из магистрали низкого давления, куда она постоянно подается насосом подпитки.

Золотник 16 в клапанной коробке подключает переливной клапан к той магистрали «гидронасос-гидромотор», в которой давление будет меньше.

При срабатывании клапанов системы подпитки (предохранительного и переливного) вытекающая рабочая жидкость попадает во внутреннюю полость агрегатов, где, смешавшись с утечками, по дренажным трубопроводам поступает в теплообменник 15 и далее в бак 14 . Благодаря дренажному устройству, рабочая жидкость отводит тепло от трущихся деталей гидроагрегатов. Специальное торцевое уплотнение вала предотвращает вытекание рабочей жидкости из внутренней полости агрегата. Бак служит резервуаром для рабочей жидкости, имеет внутри перегородку, разделяющую его на сливную и всасывающую полости, снабжен указателем уровня.

Фильтр тонкой очистки 12 с вакуумметром задерживает посторонние частицы. Фильтрующий элемент выполнен из нетканого материала. О степени загрязненности фильтра судят по показаниям вакуумметра.

Двигатель вращает вал гидронасоса, а, следовательно, связанные с ним блок цилиндров и вал насоса подпитки. Насос подпитки всасывает рабочую жидкость из бака через фильтр и подает ее в гидронасос.

При отсутствии давления в сервоцилиндрах пружины, расположенные в них, устанавливают шайбу так, чтобы плоскость находящейся в ней опоры (шайбы) была перпендикулярна к оси вала. В этом случае при вращении блока цилиндров пяты плунжеров будут скользить по опоре, не вызывая осевого перемещения плунжеров, и гидронасос не будет посылать рабочую жидкость в гидромотор.

От регулируемого гидронасоса в процессе работы можно получить различный объем жидкости (подачу), подаваемый за один оборот. Для изменения подачи гидронасоса необходимо повернуть рычаг гидрораспределителя, который кинематически связан с шайбой и золотником. Последний, переместившись, направит рабочую жидкость, поступающую от насоса подпитки в систему управления, в один из сервоцилиндров, а второй сервоцилиндр соединится с полостью слива. Оказывающийся под действием давления рабочей жидкости поршень первого сервоцилиндра начнет движение, поворачивая шайбу, перемещая поршень во втором сервоцилиндре и сжимая пружину. Шайба, поворачиваясь в положение, заданное рычагом гидрораспределителя, будет перемещать золотник, пока не возвратит его в нейтральное положение (при этом положении выход рабочей жидкости из сервоцилиндров закрыт поясками золотника).

При вращении блока цилиндров пяты, скользя по наклонной опоре, вызовут перемещение плунжеров в осевом направлении, и вследствие этого произойдет изменение объема камер, образованными отверстиями в блоке цилиндров и плунжерами. Причем половина камер будет увеличивать свой объем, другая половина - уменьшать. Благодаря отверстиям в приставном дне и распределителе эти камеры поочередно соединяются с магистралями «гидронасос-гидромотор».

В камере, увеличивающей свой объем, рабочая жидкость поступает из магистрали низкого давления, куда подается насосом подпитки через один из обратных клапанов. Вращающимся блоком цилиндров рабочая жидкость, находящаяся в камерах, переносится к другой магистрали и вытесняется в нее плунжерами, создавая высокое давление. По этой магистрали жидкость попадает в рабочие камеры гидромотора, где ее давление передается на торцевые поверхности плунжеров, вызывая их перемещение в осевом направлении и, благодаря взаимодействию пят плунжеров с наклонной шайбой, заставляет блок цилиндров вращаться. Пройдя рабочие камеры гидромотора, рабочая жидкость выйдет в магистраль низкого давления, по которой часть ее возвратится к гидронасосу, а излишки через золотник и переливной клапан вытекут во внутреннюю полость гидромотора. При перегрузке гидропривода высокое давление в магистрали «гидронасос-гидромотор» может возрастать до тех пор, пока не откроется клапан высокого давления, который перепустит рабочую жидкость из магистрали высокого давления в магистраль низкого давления, минуя гидромотор.

Объемный гидропривод ГСТ–90 позволяет бесступенчато изменить передаточное отношение: на каждый оборот вала гидромотор потребляет 89 см 3 рабочей жидкости (без учета утечек). Такое количество рабочей жидкости гидронасос может выдать за один или несколько, оборотов своего приводного вала в зависимости от угла наклона шайбы. Следовательно, меняя подачу гидронасоса, можно изменить скорость движения машин.

Для изменения направления движения машины достаточно наклонить шайбу в противоположную сторону. Реверсивный гидронасос при том же вращении его вала изменит направление потока рабочей жидкости в магистралях "гидронасос-гидромотор" на обратное (то есть магистраль низкого давления станет магистралью высокого давления, а магистраль высокого давления - магистралью низкого). Следовательно, для изменения направления движения машины необходимо рычаг гидрораспределителя повернуть в противоположную сторону (от нейтрального положения). Если же снять усилие с рычага гидрораспределителя, то шайба под действием пружин возвратится в нейтральное положение, при котором плоскость находящейся в ней опоры станет перпендикулярной к оси вала. Плунжеры не будут перемещаться в осевом направлении. Подача рабочей жидкости прекратится. Самоходная машина остановится. В магистралях «гидронасос-гидромотор» давление станет одинаковым.

Золотник в клапанной коробке под действием центрирующих пружин займет нейтральное положение, при котором переливной клапан не будет подключен ни к одной из магистралей. Вся жидкость, подаваемая насосом подпитки, через предохранительный клапан будет стекать во внутреннюю полость гидронасоса. При равномерном движении самоходной машины в гидронасосе и гидромоторе необходимо только компенсировать утечки, поэтому значительная часть рабочей жидкости, подаваемая насосом подпитки, окажется лишней, и ее надо будет выпускать через клапаны. Чтобы излишки этой жидкости использовать для отвода тепла, через клапаны выпускают нагретую, прошедшую гидромотор жидкость, а охлажденную - из бака. С этой целью переливной клапан системы подпитки, расположенный в клапанной коробке на гидромоторе, настроен на несколько меньшее давление, чем предохранительный на корпусе насоса подпитки. Благодаря этому при превышении давления в системе подпитки откроется переливной клапан и выпустит нагретую жидкость, вышедшую из гидромотора. Далее жидкость из клапана попадает во внутреннюю полость агрегата, откуда по дренажным трубопроводам через теплообменник направляется в бак.

Принцип действия гидростатических трансмиссий (ГСТ) прост: насос, подключенный к первичному двигателю, создает поток для привода гидравлического мотора, который соединен с нагрузкой. Если объемы насоса и мотора постоянны, ГСТ просто выступает в качестве редуктора для передачи мощности от первичного двигателя к нагрузке. Однако в большинстве гидростатических трансмиссий используются регулируемые насосы или гидромоторы с переменным объемом или оба типа сразу, так что скорость, крутящий момент, или мощность можно регулировать.

В зависимости от конфигурации, гидростатическая трансмиссия может управлять нагрузкой в двух направлениях (прямой и реверс) с бесступенчатым изменением скорости между двумя максимумами при постоянных оптимальных оборотах первичного мотора.

ГСТ предлагают много важных преимуществ по сравнению с другими формами передачи энергии.

В зависимости от конфигурации гидростатическая трансмиссия имеет следующие преимущества:

  • передача большой мощности при малых размерах
    • малая инерционность
    • эффективно работает в широком диапазоне соотношений крутящего момента к скорости
    • поддерживает управление скоростью (даже при обратном ходе) независимо от нагрузки, в расчетных пределах
    • точно поддерживает заданную скорость при попутных и тормозящих нагрузках
    • может передавать энергию от одного первичного двигателя в разные места, даже если их положение и ориентация изменяется
    • может удерживать полную нагрузку без повреждения и с малыми потерями мощности.
    • Нулевая скорость без дополнительной блокировки
    • обеспечивает более быстрый отклик, чем механическая или электромеханическая трансмиссия.
    Существует два конструктивных типа гидростатической трансмиссии: интегрированный и раздельный. Раздельный тип применяется наиболее часто, так как позволяет передавать мощность на большие расстояния и в труднодоступные места. В этом типе насос соединен с первичным двигателем, двигатель соединен с нагрузкой, и сами насос и двигатель соединены трубами или РВД, рис. 2.

    Рис.2
    Какими бы ни были задачи, гидростатические трансмиссии должны быть разработаны для оптимального соответствия между двигателем и нагрузкой. Это позволяет двигателю работать на наиболее эффективной скорости и ГСТ соответствовать условиям эксплуатации. Чем лучше соответствие между входными и выходными характеристиками, тем эффективнее вся система.

    В конечном счете, гидростатическая система должна быть рассчитана на баланс между эффективностью и производительностью. Машина, предназначенная для достижения максимальной эффективности (высокий КПД), как правило, имеет вялую реакцию, которая снижает производительность. С другой стороны, машина с быстрой реакцией обычно имеет КПД ниже, так как запас мощности доступен в любое время, даже тогда, когда нет непосредственной необходимости для выполнения работы.

    Четыре функциональных типа гидростатических трансмиссий.

    Функциональные типы ГСТ различаются сочетаниями регулируемого или нерегулируемого насоса и мотора, что и определяет их эксплуатационные характеристики.
    В самой простой форме гидростатической трансмиссии используются насос и мотор с фиксированными объемами (рис. 3а). Хотя эта ГСТ является недорогой, ее не применяют из-за низкого КПД. Поскольку объем насоса фиксированный, то он должен быть рассчитан для привода мотора с максимальной установленной скоростью при полной нагрузке. Когда максимальная скорость не требуется, часть рабочей жидкости из насоса проходит через предохранительный клапан, превращая энергию в тепло.

    Рис.3

    Использование в гидростатической трансмиссии насоса с регулируемой подачей и гидромотора с постоянным объемом можно обеспечить передачу постоянного крутящего момента (рис. 3b). Выходной крутящий момент постоянен при любой скорости, так как зависит только от давления жидкости и объема гидромотора. Увеличение или уменьшение подачи насоса увеличивает или уменьшает скорость вращения гидромотора, а следовательно и мощность привода, в то время как крутящий момент остается постоянным.

    ГСТ с насосом постоянного объема и регулируемым гидромотором обеспечивает передачу постоянной мощности (рис. 3в). Так как величина потока, поступающего в гидромотор, постоянна, а объем гидромотора изменяется, для поддержания скорости и крутящего момента, то передаваемая мощность постоянна. Уменьшение объема гидромотора увеличивает скорость вращения, но уменьшает крутящий момент и наоборот.

    Наиболее универсальной гидростатической трансмиссией является комбинация регулируемого насоса и гидромотора с переменным объемом (рис. 3d). Теоретически, эта схема обеспечивает бесконечные соотношения крутящего момента и скорости к мощности. С гидромотором при максимальном объеме, изменяя мощность насоса, напрямую регулируем скорость и мощность, в то время как крутящий момент остается постоянным. Уменьшение объема гидромотора при полной подаче насоса увеличивает скорость мотора до максимума; крутящий момент изменяется обратно пропорционально скорости, мощность остается постоянной.

    Кривые на рис. 3d иллюстрируют два диапазона регулировки. В диапазоне 1, объем гидравлического мотора установлен на максимум; объем насоса увеличивается от нуля до максимума. Крутящий момент остается постоянным при увеличении объема насоса, но мощность и скорость увеличиваются.

    Диапазон 2 начинается, когда насос достигает максимального объема, который поддерживается постоянным, в то время как объем гидромотора уменьшается. В этом диапазоне, крутящий момент уменьшается по мере увеличения скорости, но мощность остается постоянной. (Теоретически, скорость гидромотора может быть увеличена до бесконечности, но с практической точки зрения, она ограничена динамикой.)

    Пример применения

    Предположим, что крутящий момент гидромотора 50 Н*м должен быть достигнут при 900 оборотах в минуту с ГСТ фиксированного объема.

    Требуемая мощность определяется из:
    P = T × N / 9550

    Где:
    P – мощность в кВт
    Т – крутящий момент Н*м,
    N – скорость вращения в оборотах в минуту.

    Таким образом, Р=50*900/9550=4,7 кВт

    Если мы возьмем насос с номинальным давлением

    100 бар, то подачу можем вычислить:

    Где:
    Q – подача в л/мин
    p – давление в бар

    Следовательно:

    Q= 600*4,7/100=28 л/мин.

    Затем выбираем гидромотр объемом 31 см3, который при такой подаче обеспечит частоту вращения примерно 900 об/мин.

    Проверяем по формуле крутящего момента гидромотора index.pl?act=PRODUCT&id=495


    На рис.3 показаны характеристики мощности / крутящего момента / скорости для насоса и мотора, при условии, что насос работает с постоянной подачей.

    Подача насоса максимальна при номинальной скорости, и насос подает все масло в гидромотор при постоянной скорости последнего. Но инерция нагрузки делает невозможным мгновенное ускорение мгновенно до максимальной скорости, так что часть потока насоса сливается через предохранительный клапан. (Рис. 3а иллюстрирует потери мощности при разгоне.) По мере того как гидромотор увеличивает скорость вращения, в него поступает все больше потока от насоса, и меньше масла уходит через предохранительный клапан. При номинальной скорости, все масло проходит через мотор.

    Крутящий момент постоянен, т.к. определяется настройкой предохранительного клапана, которая не меняется. Потеря мощности на предохранительном клапане это разница в мощности развиваемой насосом и мощности приходящей на гидромотор.

    Площадь под этой кривой представляет потерянную мощность, когда движение начинается или заканчивается. Также видна низкая эффективность для любой рабочей скорости ниже максимума. Гидростатические трансмиссии с фиксированными объемами не рекомендуются в приводах требующих частых запусков и остановок, или когда часто нет необходимости в полном крутящем моменте.

    Соотношение момент/скорость

    Теоретически, максимальная мощность, передаваемая гидростатической трансмиссией, определяется расходом и давлением.

    Тем не менее, в трансмиссиях с постоянной передаваемой мощностью (нерегулируемый насос и гидромотор с переменным объемом) теоретическая мощность делится на коэффициент момент/скорость, что и определяет выходную мощность. Наибольшая передаваемая мощность определяется при минимальной выходной скорости, при которой эта мощность должна быть передана.

    Рис.4

    Например, если минимальная скорость, представленная точкой А на кривой мощности рис. 4, составляет половину максимальной мощности (а момент силы при этом максимальный), то отношение момент – скорость составляет 2:1. Максимальная мощность, которая может быть передана, равна половине теоретического максимума.

    При скорости менее половины максимума, крутящий момент остается постоянным (на своем максимальном значении), но мощность уменьшается пропорционально скорости. Скорость в точке А является критической скоростью и определяется динамикой компонентов гидростатической трансмиссии. Ниже критической скорости, мощность уменьшается линейно (с постоянным крутящим моментом) до нуля при нулевых оборотах в минуту. Выше критической скорости, крутящий момент уменьшается по мере увеличения скорости, что обеспечивает постоянную мощность.

    Проектирование закрытой гидростатической трансмиссии.

    В описаниях закрытых гидростатических трансмиссий на рис. 3 мы сконцентрировались только на параметрах. На практике в ГСТ должны быть предусмотрены дополнительные функции.

    Дополнительные компоненты со стороны насоса.

    Рассмотрим, например, ГСТ с постоянным крутящим моментом, который наиболее часто используется в системах сервопривода рулевого управления с регулируемым насосом и нерегулируемым гидромотором (рис. 5а). Поскольку контур закрытый, утечки из насоса и мотора собираются в одну дренажную линию (рис. 5б). Объединенный дренажный поток поступает через маслоохладитель в бак. Маслоохладитель в гидростатическом приводе рекомендуется обязательно устанавливать при мощности более 40 л.с.
    Одним из наиболее важных компонентов в гидростатической трансмиссии закрытого типа является насос подкачки. Этот насос обычно встроен в основной, но может быть установлен отдельно и обслуживать группу насосов.
    Независимо от расположения, насос подкачки выполняет две функции. Во-первых, он предотвращает кавитацию основного насоса, компенсируя утечки жидкости насоса и гидромотора. Во-вторых, обеспечивает давление масла требуемое механизмам управления смещения диска.
    На рис. 5с показан предохранительный клапан А, который ограничивает давление насоса подкачки, которое обычно составляет 15-20 бар. Обратные клапаны В и С установленные навстречу друг к другу обеспечивают соединение всасывающей линии насоса подпитки с линией низкого давления.

    Рис. 5

    Дополнительные компоненты со стороны гидромотора.

    Типичная ГСТ закрытого типа должен иметь так же в своем составе два предохранительных клапана (D и Е на рис. 5d). Они могут быть встроены как в мотор, так и в насос. Эти клапаны выполняют функцию защиты системы от перегрузки, возникающей при резких изменениях нагрузки. Эти клапаны так же ограничивают максимальное давление, перепуская поток из линии высокого давления в линию низкого, т.е. выполняют ту же функцию, что и предохранительный клапан в открытых системах.

    В дополнение к предохранительным клапанам в системе установлен клапан «или» F, который давлением всегда переключен так, что соединяет линию низкого давления с предохранительным клапаном G низкого давления. Клапан G направляет избыточный поток насоса подкачки в корпус гидромотора, и затем этот поток через дренажную линию и теплообменник возвращается в бак. Это способствует более интенсивному обмену масла между рабочим контуром и баком, эффективнее охлаждая рабочую жидкость.

    Контроль кавитации в гидростатической трансмиссии

    Жесткость в ГСТ зависит от сжимаемости жидкости и соответствия системы компонентов, а именно труб и шлангов. Влияние этих компонентов можно сравнить с эффектом подпружиненного аккумулятора, если бы он был подключен к линии нагнетания через тройник. При небольшой нагрузке, пружина аккумулятора сжимается немного; при больших нагрузках, аккумулятор подвергается существенно большему сжатию и в нем больше жидкости. Этот дополнительный объем жидкости должен подаваться с помощью насоса подпитки.
    Критическим фактором является скорость нарастания давления в системе. Если давление поднимается слишком быстро, темп роста объема на стороне высокого давления (сжимаемости потока) может превысить производительность насоса подпитки, а основном насосе возникает кавитация. Возможно, схемы с регулируемыми насосами и автоматическим управлением наиболее чувствительны к кавитации. Когда в такой системе происходит кавитация, давление падает или пропадает вовсе. Автоматические средства управления могут попытаться отреагировать, что приводит к нестабильной системы.
    Математически, скорость нарастания давления может быть выражено следующим образом:

    dp /dt =B e Q cp /V

    B e эффективный объемный модуль системы, кг/см2

    V – объем жидкости на стороне высокого давления см3

    Qcp – производительность насоса подкачки в см3/сек

    Предположим, что ГСТ на рис. 5 соединен стальной трубой 0,6 м, диаметром 32 мм. Пренебрегая объемами насоса и двигателя, V составляет около 480 см3. Для масла в стальных труба, эффективный объемный модуль упругости составляет около 14060 кг/см2. Предполагая, что насос подпитки подает 2 см3/сек., то скорость нарастания давления:
    dp /dt = 14060 × 2/480
    = 58 кг/см2 / сек.
    Теперь рассмотрим влияние системы с длиной 6 м шланга с трехпроводной оплеткой диаметром 32 мм. Завод-изготовитель шланга дает данные B e около 5 906 кг/см2.

    Следовательно:

    dp /dt = 5906 × 2 / 4800 = 2,4 кг/см2 / сек.

    Из этого следует, что увеличение производительности насоса подкачки ведет к уменьшению вероятности возникновения кавитации. Как альтернатива, если резкие нагрузки не частые, можно добавить в линию подкачки гидроаккумулятор. В самом деле, некоторые производители ГСТ делают порт для подключения аккумулятора к цепи подкачки.

    Если жесткость ГСТ низка, и он оснащен автоматическим управлением, то запуск трансмиссии всегда нужно осуществлять с нулевой подачей насоса. Кроме того, скорость механизма наклона диска должна быть ограничена, чтобы предотвратить резкие старты, которые, в свою очередь, могут вызывать скачки давления. Некоторые производители ГСТ предусматривают демпфирующие отверстия с целью сглаживания.

    Таким образом, система жесткости и контроля скорости повышения давления могут быть более важны для определения производительности насоса подкачки, чем просто внутренние утечки насоса и гидромоторов.

    ______________________________________

В статье рассматривается вопрос развития трансмиссии гусеничных бульдозеров класса тяги 10…15 т на гусенице.

Для начала немного истории. Само понятие « бульдозер» возникло в конце XIX в. и означало мощную силу, преодолевающие любые барьеры. К гусеничным тракторам это понятие стали относить в 1930-е гг., образно характеризуя мощь гусеничной машины с закрепленным спереди металлическим щитом, перемещающим грунт. В качестве базы первоначально использовали трактор сельскохозяйственного назначения с главной особенностью - гусеничным ходом, обеспечивающим максимальное сцепление с грунтом. Гусеница определяется как бесконечный рельс. К изобретению ее, как и ко всем ключевым фундаментальным открытиям, имели отношение русские ученые. Один из первых патентов зарегистрирован в России около 1885 г.

Одной из особенностей гусеничного хода является возможность поворота за счет отключения одного из траков, или его блокирования, или включения его в противоход. На рис. 1 показана типовая схема механической трансмиссии, которую использовали и на первых гусеничных бульдозерах и применяют до сих пор.

Достоинства данной схемы - простота конструкции агрегатов, к.п.д. более 95%, низкая стоимость и минимальные затраты времени на ремонт.

В период бурного роста мировой экономики в 1955-1965 гг. и развития технологий механообработки и химической отрасли параллельно несколько производителей гусеничных бульдозеров применили гидромеханическую трансмиссию (ГМТ). Она строилась на базе гидротрансформатора (ГТР), получившего к тому времени широкое распространение на тепловозах. ГМТ на бульдозерах была востребована в первую очередь в тяжелом классе: более 15 т тяги, и характеризуется возможностью получать максимальный момент на нулевой скорости, т. е. при максимальном сцеплении гусеницы с грунтом и максимальном сопротивлении перемещаемой массы грунта. Единственным и критичным недостатком помимо технологической сложности оставались высокие механические потери - 20…25% у одноступенчатого ГТР, применяемого в подавляющем большинстве на гусеничных бульдозерах с использованием ГМТ. Схема гидромеханической трансмиссии представлена на рис. 2.

Достоинства данной схемы - максимально возможная тяга на гусеницы, более простое управление по сравнению с механической трансмиссией, эластичная связь двигатель-гусеница.

Необходимость использовать дорогостоящие планетарные КП и бортовые редукторы вызвана передачей более высокого крутящего момента, чем в механической трансмиссии, - до двух раз. Схему ГМТ на сегодняшний день используют лидирующие производители гусеничных бульдозеров Komatsu и Caterpillar. Лишь Челябинский тракторный завод обеспечивает немалую долю механических трансмиссий, более 50 лет выпуская практически не изменившуюся копию Caterpillar 1960-х гг.

Следующей технологической ступенью развития трансмиссии гусеничных бульдозеров стало применение схемы « гидронасос (ГН) - гидромотор (ГМ)» под общим термином « гидростатическая трансмиссия» (ГСТ). Начало широкого использования ГН-ГМ было положено военными при совершенствовании приводов артиллерийских орудий, где требовалась высокая скорость перемещения подвижных частей, имеющих немалую инерционную массу, что исключало использование жесткой механической связи.

Трансмиссия именно такого типа сегодня преимущественно распространена на спецтехнике среднего и тяжелого класса : гидростатическую трансмиссию применяют все лидеры рынка экскаваторной техники. Применение ГСТ в экскаваторах связано с выполнением ими основной работы исполнительными механизмами с гидропередачей усилия. Распространению ГСТ также способствовало совершенствование технологий механообработки и широкое распространение синтетических масел, производимых под заранее заданные параметры использования, а кроме того, и развитие микроэлектроники, позволившее реализовывать сложные алгоритмы управления ГСТ. Схема гидростатической трансмиссии представлена на рис. 3.

Достоинства данной схемы:

  • высокий к.п.д. - более 93%;
  • максимально возможная тяга на гусеницы выше, чем у ГМТ, за счет меньших потерь;
  • лучшая ремонтопригодность благодаря минимальному количеству агрегатов и их унификации разными производителями, в основном не выпускающими готовые гусеничные бульдозеры;
  • это же обеспечивает минимальную стоимость агрегатов;
  • максимально простое управление одним джойстиком, позволяющее без доработок реализовывать дистанционное управление, в том числе с помощью радиосвязи;
  • эластичная связь двигатель-гусеница;
  • малые габаритные размеры, что позволяет использовать высвободившееся пространство под навесное оборудование;
  • возможность макроконтроля состояния всей трансмиссии по одному параметру - температуре рабочей жидкости;
  • максимально возможная маневренность - нулевой радиус разворота за счет противохода траков;
  • возможность 100%-ного отбора мощности на гидрофицированное навесное оборудование от штатного гидронасоса;
  • возможность дешевой программной, а также технологической модернизации в ближайшем будущем за счет элементарного перехода на рабочую жидкость с новыми свойствами, полученными на основе нанотехнологий.

Косвенным подтверждением таких преимуществ является выбор ГСТ лидером немецких производителей спецтехники компанией Liebherr в качестве базовой в конструкции всей спецтехники, в том числе гусеничных бульдозеров. Таблица всех преимуществ, недостатков и особенностей эксплуатации различных типов трансмиссий, в том числе « новой» для Caterpillar и реально реализованной еще в 1959 г. заводом ЧТЗ на бульдозере ДЭТ-250 электромеханической трансмиссии, приведена на сайте www.TM10.ru Завода « ДСТ-Урал».

Конечно, читатели обратили внимание на предпочтения авторов статьи. Да, мы делаем свой выбор в пользу ГСТ и считаем, что именно такое решение позволит преодолеть технологическое отставание лидеров производства спецтехники в России и оторваться от восточного соседа - Китая, претендующего на легкое поглощение нашего рынка бульдозеров. Новый бульдозер ТМ с трансмиссией на компонентах Bosсh Rexroth класса тяги 13…15 т будет представлен « ДСТ-Урал» уже в июле. Рабочая масса нового бульдозера останется 23,5 т, мощность - 240 л.с. и максимальная тяга - 25 т, что с 5%-ным отставанием соответствует аналогу Liebherr PR744 (24 , 5 т, 255 л.с.). Еще раз напомним о существующих возможностях отечественного машиностроения. К примеру, мы первыми в мировой практике применили схему тележек на каретках качания в 10-м классе гусеничных бульдозеров на серийном выпуске. До этого ее могли себе позволить производители только в тяжелом классе этих машин массой более 30 т, где цены в разы выше. Рыночная цена бульдозера ТМ10 на каретках качания с гидростатической трансмиссией планируется не более 4,5 млн. руб.