Принцип работы рулевого механизма автомобиля. Общее устройство рулевого управления. Инновационные усилители руля

Основным узлом в любом транспортном средстве является рулевое управление. Для чего же нужно рулевое управление? За все время совершенствования конструкции системы, основной принцип работы рулевого управления остался прежним. Он заключается в преобразовании и передачи физического усилия водителя во время воздействия на руль автомобиля на колеса. Другими словами узел рулевого управления обеспечивает обратную связь, позволяя изменять траекторию движения транспортного средства.

Устройство рулевого управления

Из чего состоит рулевое управление автомобиля? Общее устройство конструкции этого узла на транспортных средствах представлена следующими элементами:

  • колеса;
  • рулевой привод;
  • механизм рулевого управления;
  • тяги и колонка.

Схема взаимодействия руля автомобиля с ведущей колесной парой не является сложной. Водитель через привод передает усилие на рулевой механизм, который обеспечивает поворот колес. Помимо этого, узел, обеспечивая обратную связь, предоставляет информацию о состоянии дорожного покрытия. Согласно вибрациям рулевого колеса максимально точно определяется тип движения, на основании чего происходит диагностика и корректируется управление машиной.

Средний диаметр руля легкового транспорта составляет примерно 400 мм. В грузовой и специальной технике руль несколько больше, а в спорткарах меньше.

Что входит в рулевое управление?

Между рулем и механизмом расположена рулевая колонка, которая представлена прочным валом с шарнирными соединениями. Особенностью конструкции колонки является минимальный риск получения травматизма водителя в случае ДТП, поскольку при сильном лобовом столкновении происходит ее схлопывание. Для комфортной эксплуатации транспортного средства, положение рулевой колонки настраивается при помощи механического либо электрического привода. Помимо этого, предусмотрена система блокировки механизма, которая позволяет предотвратить угон автомобиля.

Главное назначение рулевого управления заключается в увеличении механического усилия водителя и его передача на колеса. Для этого в конструкцию системы включен специальный редуктор. На легковых автомобилях в основном используют следующие типы рулевого управления:

  1. Реечный механизм, конструкция которого состоит из набора смонтированных на валу шестерней, агрегатируемых с рейкой, на одной из ее плоскостей по всей длине нанесены специальные зубцы. При вращении руля усилие через колонку передается рулевой рейке, в результате чего она свободно перемещается, взаимодействуя с рулевыми тягами и поворачивая колеса. Необходимо заметить, что рулевое управление автомобилем может иметь рейку, на которой располагаются зубья с переменным шагом. Такая конструкция значительно повышает эффективность управления транспортным средством.
  2. Червячный рулевой механизм. Его принцип функционирования следующий: «червяк» при взаимодействии с ведомой шестерней передает усилие сошке. В свою очередь, сошка рулевого управления взаимодействует с одной из тяг, конец которой заканчивается маятниковым рычагом. Этот рычаг смонтирован на опоре. При повороте руля сошка приводит в движение боковую тягу одновременно со средним рычагом, который взаимодействует со второй боковой тягой и изменяет ее положение. Благодаря этому осуществляется поворот ступиц управляемых колес.

Некоторые особенности работы рулевого управления автомобиля


Большинство современных моделей автомобильного транспорта имеют инновационную систему управления всеми четырьмя колесами. Благодаря этому значительно улучшается динамика движения транспортного средства на местности со сложным рельефом. Помимо этого, рулевое управление автомобиля адаптированное на все колеса позволяет добиться большей маневренности при скоростной езде. Это возможно благодаря повороту каждого из колес.

Примечательно, что в рулевом управлении подруливание колес может осуществляться системой в пассивном режиме. Это возможно благодаря наличию в конструкции задней части подвески специальных упругих резинометаллических деталей. При возникновении крена кузова за счет изменения величины и направления нагрузки осуществляется изменение направления движения. Рулевое управление с функцией подруливания задних колес позволяет эффективно распределить усилие для поворота всех колес. Помимо этого, такая система не позволяет осуществить поворот колес при активном состоянии подвески.

В конструкцию адаптивной системы подруливания входят шарниры и тяги. Шарнир имеет несколько элементов в своем составе, для удобства использования его конструкция представлена в виде снимающегося наконечника. Кинематическую схему рулевого управления автомобиля удобнее всего представить в идее прямоугольника, на каждой из сторон которого находятся:

  • плечи;
  • угол схождения;
  • развал;
  • продольный и поперечный наклон.

Плечи, продольный и поперечный наклон обеспечивают стабилизацию движения, в то время как остальные параметры находятся в постоянном противодействии. Поэтому еще одной задачей рулевого управления является стабилизация всех возникающих в процессе движения сил.

Роль усилителя в системе рулевого управления


Этот элемент помимо того, что позволяет снизить усилие прикладываемое водителем к рулевому колесу, позволяет значительно увеличить точность управления автомобилем. Благодаря наличию усилителя в конструкции рулевого управления появилась возможность использовать в системе элементы, обладающие небольшой величиной придаточного числа. Усилители системы управления делятся на три типа:

  1. Электрический.
  2. Пневматический.
  3. Гидравлический.

Однако большее распространение получил последний тип. Гидравлика отличается надежностью конструкции и плавностью работы, но требует технического обслуживания по замени жидкости. Электроусилитель рулевого управления встречается реже, но все же большинство моделей современной автомобильной техники укомплектовано именно им. Усиление в нем обеспечивает электрический привод. Заметим, что электронное управление отличается наличием расширенного ряда возможностей, но изредка требует проверки и регулировки.

Что такое автоматическое рулевое управление?

Одной из перспективных разработок в автомобилестроении является интеллектуальная система автоматического управления транспортными средствами. Можно сказать, что автопилот, описанный большинством писателей-фантастов в своих произведениях, теперь стал реальностью. Сегодня современной автомобильной технике по силам выполнение большинства действий без участия водителя, самым распространенным из которых является парковка.

Лидером по производству автомобилей оборудованных этой инновационной системой является немецкий концерн BMW, который активно использует на своем модельном ряде сдвоенный планетарный редуктор. Управление таким редуктором осуществляется при помощи электропривода, в результате чего удается совместно с изменением скорости транспортного средства изменять придаточное отношение при передаче усилия от руля к поворотным колесам. Благодаря такому техническому решению значительно повышается быстродействие, и обеспечивается максимально точная обратная связь.

В предыдущей статье под названием "", мы с вами разобрались для чего нужен механизм рулевого управления в автомобиле и почему к нему придъявляются такие требования. А теперь давайте рассмотрим разновидности рулевых управлений активно устанавливаемых на современные авто.

Долгое время автомобильные конструкторы и не помышляли о сервоусилителях руля. Невысокие требования к управляемости и комфорту и небольшое пятно контакта сравнительно узких шин позволяли обходиться одной человеческой силой даже в управлении тяжелыми грузовиками. Средство для уменьшения усилия на руле было одно: сделать побольше передаточное отношение привода и диаметр баранки. А с тем, что водителю придется наяривать огромным рулем пять-шесть оборотов от отбоя до отбоя, да и точность управления будет невысокой, приходилось мириться.

Сначала усилители рулевого управления появились на тяжелой технике — карьерных самосвалах. Произошло это в конце 30-х годов, перед войной. Правда, сначала стали использовать пневмоусилители — они были несложными и запитывались от компрессора или впускного коллектора . Но гидравлика, хотя была сложнее и дороже пневматики, работала тише и точнее. На ней и остановились конструкторы легковых автомобилей. В 1951 году серийные автомобили Chrysler Crown Imperial стали впервые оснащать гидравлическими усилителями Hydraguide в качестве стандартного оборудования. А в Европе в 1954 году гидроусилителем обзавелся Citroen DS 19.

Рулевой механизм.
Механизм рулевого управления служит для увеличения и передачи на рулевой привод усилия, прилагаемого водителем к рулевому колесу. В легковых автомобилях в основном применяются рулевые механизмы червячного и реечного типа. К достоинствам механизма «червяк-ролик» относятся: низкая склонность к передаче ударов от дорожных неровностей, большие углы поворота колес, возможность передачи больших усилий. Недостатками являются большое количество тяг и шарнирных сочленений с вечно накапливающимися люфтами, «тяжелый» и малоинформативный руль. Минусы в итоге оказались весомее плюсов. На современных автомобилях такие устройства практически не применяют.

Самый распространенный на сегодняшний день - реечный рулевой механизм. Малая масса, компактность, невысокая цена, минимальное количество тяг и шарниров - все это обусловило широкое применение. Механизм «шестерня-рейка» идеально подходит для переднеприводной компоновки и , обеспечивая большую легкость и точность рулевого управления. Однако тут есть и минусы: из-за простоты конструкции любой толчок от колес передается на руль. Да и для тяжелых машин такой механизм не совсем подходит.

Рулевой привод.

Рулевой привод предназначен для передачи усилия от рулевого механизма на управляемые колеса, обеспечивая при этом их поворот на неодинаковые углы. Если оба колеса повернуты на одинаковую величину, внутреннее колесо будет скрестись по дороге (скользить боком) что будет снижать эффективность рулевого управления. Это скольжение, которое также создает дополнительный нагрев и износ колеса, может быть устранено с помощью поворота внутреннего колеса на больший угол, чем угол поворота внешнего колеса. При движении на повороте каждое из колес описывает свою окружность отличную от другой, причем внешнее (дальнее от центра поворота) колесо движется по большему радиусу, чем внутреннее. А так как центр поворота у них общий, то соответственно внутреннее колесо необходимо повернуть на больший угол, чем внешнее. Это обеспечивается конструкцией так называемой «рулевой трапеции», которая включает в себя поворотные рычаги и рулевые тяги с шарнирами. Необходимое соотношение углов поворота колес обеспечивается подбором угла наклона рулевых рычагов относительно продольной оси автомобиля и длины рулевых рычагов и поперечной тяги.


- Рулевой механизм червячного типа состоит из:
- рулевого колеса с валом,
- картера червячной пары,
- пары «червяк-ролик»,
- рулевой сошки.

В картере рулевого механизма в постоянном зацеплении находится пара «червяк-ролик». Червяк есть ни что иное, как нижний конец рулевого вала, а ролик, в свою очередь, находится на валу рулевой сошки. При вращении рулевого колеса ролик начинает перемещаться по винтовой нарезке червяка, что приводит к повороту вала рулевой сошки. Червячная пара, как и любое другое зубчатое соединение, требует смазки, и поэтому в картер рулевого механизма заливается масло, марка которого указана в инструкции к автомобилю. Результатом взаимодействия пары «червяк-ролик» является преобразование вращения рулевого колеса в поворот рулевой сошки в ту или другую сторону. А далее усилие передается на рулевой привод и от него уже на управляемые (передние) колеса. В современных автомобилях применяется безопасный рулевой вал, который может складываться или ломаться при ударе водителя о рулевое колесо во время аварии во избежание серьезного повреждения грудной клетки.


Рулевой привод, применяемый с механизмом червячного типа включает в себя:
- правую и левую боковые тяги,
- среднюю тягу,
- маятниковый рычаг,
- правый и левый поворотные рычаги колес.

Каждая рулевая тяга на своих концах имеет шарниры, для того чтобы подвижные детали рулевого привода могли свободно поворачиваться относительно друг друга и кузова в разных плоскостях.

- Рулевом механизме «шестерня - рейка».

Данный рулевой механизм усилие к колесам передает с помощью прямозубой или косозубой шестерни, установленной в подшипниках, и зубчатой рейки, перемещающейся в направляющих втулках. Для обеспечения беззазорного зацепления рейка прижимается к шестерне пружинами. Шестерня рулевого механизма соединяется валом с рулевым колесом, а рейка — с двумя поперечными тягами, которые могут крепиться в середине или по концам рейки. Данные механизмы имеют небольшое передаточное число, что дает возможность быстро поворачивать управляемые колеса в требуемое положение. Полный поворот управляемых колес из одного крайнего положения в другое осуществляется за 1,75...2,5 оборота рулевого колеса.

5.3. Устройство и работа рулевого управления

Рулевое управление служит для поворота передних колес автомобиля во время его движения и состоит из рулевого привода и рулевого механизма. Для того чтобы движение колес автомобиля на повороте происходило без бокового скольжения, управляемые колеса должны поворачиваться на различные углы: внутреннее колесо на больший угол, а внешнее – на меньший.

Рулевой механизм служит для преобразования вращательного движения рулевого колеса в поступательное прямолинейное движение, передаваемое колесам. Для прямолинейного движения нужно преобразовать вращательное движение рулевого колеса в качание рулевой сошки или создать возвратно-поступательное движение рейки рулевого механизма. Помимо этого, рулевой механизм обеспечивает понижающее передаточное число, благодаря которому уменьшается усилие, прикладываемое водителем для управления колесами. Это особенно важно, когда автомобиль неподвижен или медленно двигается и вращение руля максимально затруднено.

Соотношение между углом поворота рулевого колеса и углом поворота колес называется передаточным числом рулевого управления. Передаточные числа могут быть постоянными и переменными. Рулевое управление с постоянным передаточным числом именуется «линейным». При линейном рулевом управлении поворот рулевого колеса на фиксированное количество градусов перемещает управляемые колеса на пропорциональный угол, зависящий от передаточного числа, при любом положении рулевого управления.

Рулевое управление с переменным передаточным числом именуется «пропорциональным». При пропорциональном рулевом управлении передаточное число изменяется с каждым поворотом рулевого колеса. Как правило, по мере увеличения угла поворота рулевого колеса скорость изменения угла поворота колес увеличивается. Передаточное число – это угол поворота рулевого колеса, деленный на угол поворота колес.

Обычно понижающее передаточное число рулевого управления находится в пределах от 14:1 до 22:1. При передаточных числах от 14:1 до 18:1, как правило, требуется усилитель рулевого управления. Для перемещения колес между предельными положениями требуется повернуть рулевое колесо на 3–4 полных оборота. Рулевой механизм должен быть достаточно прочным и выдерживать разные нагрузки, которым он подвергается в различных условиях движения. Водитель не должен ощущать через рулевое колесо толчки, сопровождающие движение.

5.3.1. Рулевые механизмы

Существует несколько различных вариантов конструкций рулевых механизмов, но основных типов два:

Рулевые механизмы с вращательным движением (рис. 5.26);

Рис. 5.26. Рулевой механизм с вращательным движением

Рулевые механизмы со скользящим движением (рис. 5.27).

Рис. 5.27. Рулевой механизм со скользящим движением

Рулевые механизмы с вращательным движением

Рулевые механизмы с вращательным движением имеют различные конструкции:

Шариковинтовой рулевой механизм;

Рулевой механизм типа «винт-гайка» с кольцами-ползунами;

Червячно-секторный рулевой механизм;

Червячно-роликовый рулевой механизм;

Рулевой механизм с червяком и роликовым пальцем.

На рис. 5.28 изображен шариковинтовой рулевой механизм. В нем используется несколько шариков, которые циркулируют в «дорожках», образованных канавками, имеющимися в рулевой гайке и на рулевом валу. При вращении рулевого вала шарики катятся по «дорожкам» и заставляют рулевую гайку перемещаться вверх или вниз по рулевому валу. Рулевую сошку вращает зубчатый сектор, который находится в зацеплении с зубьями на рулевой гайке.

Рис. 5.28. Шариковинтовой рулевой механизм

Передаточное число в этом рулевом механизме постоянное. Шарики снижают трение между подвижными элементами, поэтому рулевой механизм этого типа практически не подвержен износу. Повышенный люфт в рулевом механизме, как правило, можно устранить путем регулировки положения рулевого вала.

На рис. 5.29 изображен рулевой механизм с червяком и роликовым пальцем. В его конструкции используется цилиндрический червяк с неравномерным шагом. При вращении червяка конический палец перемещается в осевом направлении вдоль червяка. Рулевая сошка закреплена на соответствующем валу, соединенным с пальцем, и может поворачиваться на 70°. Износ рабочих элементов этого механизма относительно низкий, люфт в рулевом вале и между пальцем и червяком регулируется. Передаточное число рулевого механизма с червяком и роликовым пальцем пропорционально изменяется вследствие неравномерного шага червяка.

Рис. 5.29. Рулевой механизм с червяком и роликовым пальцем

Червячно-секторный рулевой механизм представлен на рис. 5.30.

Рис. 5.30. Червячно-секторный рулевой механизм

В рулевом механизме этого типа на конце рулевого вала предусмотрен цилиндрический червяк, который перемещает зубчатый сектор. Преимущество червячного рулевого механизма заключается в том, что можно легко добиться высокого передаточного числа – до 22:1. Зубчатый сектор находится в постоянном зацеплении с червяком, любой поворот рулевого вала вызывает поворот зубчатого сектора. Рулевая сошка закреплена на зубчатом секторе и может поворачиваться на 70°. Износ рулевого механизма этого типа относительно высокий из-за трения скольжения рабочих элементов. Недостаток червячно-секторного рулевого механизма состоит в том, что водителю требуется прикладывать к рулевому колесу значительное усилие.

На рис. 5.31 изображен рулевой механизм типа «винт-гайка» с кольцами-ползунами.

Рис. 5.31. Рулевой механизм типа «винт-гайка» с кольцами-ползунами

По принципу действия этот механизм аналогичен рулевому механизму с циркуляцией шариков. Кольца-ползуны, расположенные сбоку от рулевой гайки, передают перемещение гайки к рулевой вилке. Рулевая сошка, установленная на вал сошки, который находится на рулевой вилке, поворачивается на 90°. Износ рулевого механизма этого типа, вызываемый трением, как правило, высокий. Передаточное число постоянное.

Рис. 5.32 представляет червячно-роликовый рулевой механизм.

Рис. 5.32. Червячно-роликовый рулевой механизм

В этом рулевом механизме для передачи движения от червяка вместо зубчатого сектора используется ролик. Червяк в этом рулевом механизме сводится на конус в направлении к центру и принимает форму, напоминающую песочные часы (глобоидную). Преимущество этой формы червяка в том, что она позволяет ролику поворачиваться относительно своего центра, и это уменьшает размер рулевого механизма. Рулевая сошка прикреплена к валу ролика и может поворачиваться на 90°. Передаточное число остается постоянным. Повышенный люфт можно устранить, отрегулировав положение рулевого вала.

Рулевой механизм со скольжением

На рис. 5.33 изображен рулевой механизм с постоянным шагом зубьев – наиболее распространенный тип рулевого механизма, применяемый в современных автомобилях.

Рис. 5.33. Рулевой механизм с постоянным шагом зубьев

В реечных рулевых механизмах для создания линейного перемещения рейки используется вращающаяся шестерня. Зубья шестерни находятся в постоянном зацеплении с зубьями рейки, и любое перемещение вала рулевой колонки вызывает поперечное перемещение рулевой рейки. Перемещение рейки напрямую передается к рулевым тягам, установленным на обоих концах рейки. Шаровые шарниры, расположенные между рейкой и рулевыми тягами, обеспечивают возможность независимого вертикального перемещения рулевых тяг. Рейка удерживается в зацеплении с шестерней с помощью подпружиненной прижимной колодки, которая регулирует любой зазор между зубьями. Трение скольжения между рейкой и шестерней осуществляет амортизирующее действие и поглощает толчки, возникающие при движении.

В числе преимуществ реечного рулевого механизма – прямое рулевое управление. Передаточное число постоянное.

На рис. 5.34 изображена рейка рулевого механизма с переменным шагом зубьев. Для наглядности корпус и шестерня рулевого механизма не показаны.

Рис. 5.34. Рейка рулевого механизма с переменным шагом зубьев

Реечный рулевой механизм с переменным шагом зубьев работает так же, как и описанный выше реечный рулевой механизм с постоянным шагом. В центре рейки шаг зубьев больше, чем на краях. Переменный шаг дает возможность увеличивать передаточное число рулевого управления по мере вращения шестерни. Зубья в центре рейки обеспечивают большее перемещение рейки при каждом повороте шестерни, для чего требуется относительно большое усилие. Зубья на концах рейки обеспечивают меньшее перемещение рейки, для чего требуется относительно небольшое усилие водителя. Для устранения этого недостатка на современных автомобилях устанавливаются усилители рулевого управления. Фактически в этой системе, чем больше поворачивается рулевое колесо, тем меньше усилие. При движении по прямой рулевое управление тяжелее, чем при повороте рулевого колеса в предельное положение – это облегчает маневрирование и парковку.

В реечном рулевом механизме с переменным шагом предусмотрено пропорционально возрастающее передаточное число.

На рис. 5.35 (см. также на цветной вклейке рис. ЦВ 5.35) изображена типовая гидравлическая система усилителя рулевого управления, оснащенная жидкостным насосом, который служит для подачи рабочей жидкости под давлением в гидравлический контур. Насос может иметь электрический привод и находиться в бачке усилителя рулевого управления или иметь механический привод от двигателя.

Рис. 5.35. Гидравлическая система усилителя рулевого управления

Механические насосы, как правило, снабжены отдельным бачком для рабочей жидкости. Рабочая жидкость под давлением, созданным насосом, поступает в золотниковый распределительный клапан в рулевом механизме. Когда рулевой вал находится в прямолинейном положении, рабочая жидкость проходит через золотниковый распределительный клапан и возвращается в бачок. При повороте рулевого колеса золотниковый распределительный клапан направляет рабочую жидкость на соответствующую сторону поршня, который располагается в цилиндре на конце реечного рулевого механизма. Тяга, присоединенная к поршню, соединена с рейкой, и любое давление рабочей жидкости, воздействующее на поршень, способствует перемещению рейки. Рабочая жидкость с обратной стороны возвращается в бачок через золотниковый распределительный клапан. При повороте рулевого колеса в другом направлении происходит противоположный процесс. Если усилитель рулевого управления выходит из строя, сохраняется механическое действие рулевого механизма, но при этом придется прикладывать гораздо большее усилие.

5.3.2. Рулевой привод

Рулевой привод служит для передачи усилия водителя через рулевое колесо к управляемым колесам автомобиля. Рулевой механизм преобразует вращательное движение рулевого колеса в прямолинейное движение, которое тянет тяги рулевого привода. Преобразованное движение передается от рулевого механизма к рулевому приводу. Шаровые шарниры на концах продольных и поперечных рулевых тяг обеспечивают возможность любых поворотных и вращательных перемещений в приводе. Компоновка и количество поперечных рулевых тяг в рулевом приводе зависит от конструкции моста и подвески.

Варианты компоновки приводов рулевого механизма

Простейшая конструкция рулевого привода – это односекционная поперечная рулевая тяга, перемещаемая рулевой сошкой (рис. 5.36). Рулевая сошка толкает или тянет продольную рулевую тягу для перемещения рычага, который соединен с поворотным шарниром на поворотном кулаке. Поперечная рулевая тяга соединяет оба поворотных шарнира на поворотных кулаках передних колес автомобиля. Любое перемещение одного из поворотных шарниров передается через рулевую тягу к шарниру на противоположном поворотном кулаке.

Рис. 5.36. Рулевой привод с односекционной рулевой тягой

Рулевой привод этого типа, как правило, применяется в автомобилях с жестким мостом, в которых расстояние между рычагами поворотных кулаков не изменяется. Для соединения продольной рулевой тяги с рычагами поворотных кулаков служат шаровые шарниры.

На рис. 5.37 изображен доработанный вариант односекционной рулевой тяги – рулевой привод с двухсекционной рулевой тягой, перемещаемой рулевой сошкой. Рулевая сошка тянет или толкает две отдельные рулевые тяги, которые соединены с рычагами поворотных кулаков посредством шаровых шарниров. Перемещение рулевых тяг поворачивает поворотные шарниры на поворотных кулаках. Рулевой привод этого типа, как правило, применяется в автомобилях с независимой подвеской, в которой поворотные шарниры могут перемещаться один независимо от другого.

Рис. 5.37. Рулевой привод с двухсекционной рулевой тягой

Рулевой привод с трехсекционной рулевой тягой, перемещаемой рулевой сошкой, представлен на рис. 5.38. В этой рулевой тяге предусмотрен маятниковый рычаг, который передает движение рулевого управления к противоположной стороне автомобиля. Рулевой привод этого типа применяют в автомобилях с независимой подвеской, но у этого варианта конструкции высокая стоимость.

Рис. 5.38. Рулевой привод с трехсекционной рулевой тягой

Трехсекционная рулевая тяга обеспечивает самую высокую степень точности и максимальный контроль над рулевым управлением. При движении автомобиля по неровной дороге толчки передаются через рулевой привод и механизм рулевого управления водителю. Для смягчения этих толчков на рулевой привод устанавливают амортизатор. Амортизаторы рулевого управления могут быть встроены в рулевой привод любого типа (рис. 5.39), но в автомобилях с реечным рулевым механизмом их применяют не часто. Амортизатор рулевого управления помогает противодействовать повышению усилий на рулевом колесе и непреднамеренному перемещению рулевого колеса.

Рис. 5.39. Амортизаторы рулевого управления

На рис. 5.40 изображены рулевые приводы с двухсекционными рулевыми тягами перемещаемой рейки. В реечной системе рулевого управления для передачи рулевого воздействия к поворотным кулакам используются две рулевые тяги.

Рис. 5.40. Рулевые приводы с двухсекционными рулевыми тягами

Существуют также рулевые рейки для соединения с поворотными кулаками. В них применяются рулевые привода похожей конструкции. Прямолинейное перемещение рулевой рейки передается через шаровой шарнир на рулевые тяги.

5.3.3. Диагностика и техническое обслуживание передней, задней подвески и рулевого управления

Неисправности и способы их устранения

Величина свободного хода рулевого колеса указана в инструкции по эксплуатации автомобиля. Увеличенный свободный ход обнаруживается покачиванием рулевого колеса. Причин для его возникновения может быть несколько:

Ослабление затяжки гаек крепления шаровых шарниров рулевых тяг;

Увеличенный зазор шаровых шарниров рулевых тяг;

Увеличенный зазор шаровых шарниров рычагов передней подвески;

Люфт в результате износа передних ступичных подшипников;

Люфт в результате износа зубьев рулевого механизма;

Люфт в упругой муфте, соединяющей рулевой механизм с валом рулевого колеса;

Люфт в подшипниках рулевого вала рулевого колеса.

Для устранения неисправности необходимо проверить затяжку всех креплений и произвести замену изношенных деталей.

Шум (стуки) в рулевом управлении могут вызвать следующие причины:

Ослабление гаек крепления шаровых шарниров рулевых тяг;

Увеличение зазора между упором рейки и гайкой;

Ослабление гаек крепления рулевого механизма, а также все вышеперечисленные неисправности.

Тугое вращение рулевого колеса:

Повреждение подшипника верхней опоры вала рулевого колеса;

Понижение давления воздуха в шинах передних колес;

Повреждение деталей телескопической стойки и подвески колес;

Нарушение работы насоса рулевого гидроусилителя;

Попадание посторонних частиц в гидросистему рулевого управления;

Повышенный уровень масла в бачке насоса рулевого управления;

Износ или повреждение манжет рулевого механизма и насоса;

Износ шлангов гидросистемы.

Для устранения неисправностей необходимо проверить затяжку всех креплений и произвести замену изношенных узлов и деталей, а также проверить уровень жидкости гидроусилителя рулевого управления и заменить изношенные и поврежденные детали гидроусилителя.

Из книги Пилотируемые полеты на Луну автора Шунейко Иван Иванович

2.1. Реактивная система управления корабля Apollo. Общая характеристика системы управления Все 3 отсека корабля Apollo – командный отсек, служебный отсек и лунный корабль – имеют самостоятельные реактивные системы управления (рис. 21.1). Рис. 21.1. Корабль Apollo: 1 – лунный корабль; 2 –

Из книги Теплотехника автора Бурханова Наталья

Из книги Определение и устранение неисправностей своими силами в автомобиле автора Золотницкий Владимир

Работа бесплатформенной аварийной системы управления Двумя участками, на которых работа аварийной системы управления в максимальной степени подвержена влиянию динамики полета лунного корабля, являются участки спуска и подъема (обычно разделенные отрезком времени, в

Из книги Последний рывок советских танкостроителей автора Апухтин Юрий

Из книги Мир Авиации 2000 01 автора Автор неизвестен

Диагностика неисправностей рулевого управления и их устранение Повышенная передача но руль дорожных толчков при движении автомобиля. Вибрация и стуки, ощущаемые на рулевом колесе Диагностика элементов рулевого управления сводится к прослушиванию стуков при резких

Из книги Обслуживаем и ремонтируем Волга ГАЗ-3110 автора Золотницкий Владимир Алексеевич

Работа на поприще СТК Этим «Посмотрим» заканчивается мой дневник, дальше записей я не вёл по причине какой-то беспросветной перспективы создания танка, принципиально ничего не менялось и работы продолжались в том же духе, что и в 1989 г.После избрания меня председателем

Из книги Советы автомеханика: техобслуживание, диагностика, ремонт автора Савосин Сергей

Мужская работа Владимир РАТКИН Москва«Гул моторов нарушал тишину нашего командного пункта. Вдруг я услышал, как кто-то бранится, призывая на помощь всех святых. …Вероятно, опять какая-то авария, подумал я. В этот час это было неприятно. Регулярно в десять часов вечера

Из книги Грузовые автомобили. Ведущие мосты автора Мельников Илья

Возможные неисправности рулевого управления с

Из книги Грузовые автомобили. Кривошипно-шатунный и газораспределительный механизмы автора Мельников Илья

2.2. Устройство и работа Бензиновый двигатель – это двигатель с возвратно-поступательным движением поршней и принудительным воспламенением, работающий на топливно-воздушной смеси. В процессе сгорания запасенная в топливе химическая энергия преобразуется в тепловую, а

Из книги История электротехники автора Коллектив авторов

4.1. Устройство и работа Для передачи крутящего момента от коленчатого вала двигателя к колесам автомобиля необходимо сцепление (если у автомобиля ручная КПП), коробка передач, карданная передача (для заднеприводной машины), главная передача с дифференциалом и полуоси

Из книги автора

5.2. Устройство и работа передней и задней подвески Рассмотрим наиболее распространенные виды подвески переднего моста.1. Двойные поперечные рычаги (рис. 5.3). Рис. 5.3. Передняя подвеска с двойными поперечными рычагамиЗдесь показаны элементы базовой системы независимой

Из книги автора

Неисправности подвески и рулевого управления К неисправностям подвески и рулевого управления относятся:– увеличение свободного хода (люфта) рулевого колеса;– повышение силы, необходимой для поворота передних колес, слишком "жесткое" рулевое управление;– подтекание

Из книги автора

Регулировка рулевого управления Техническое состояние рулевого управления непосредственно влияет на безопасность движения, поэтому регулировать его механизмы надо своевременно и особенно тщательно. Приближенно оценить техническое состояние рулевого колеса, т.е.

Из книги автора

Техническое обслуживание системы рулевого управления с гидроусилителем руля Люфт руля на автомобилях с гидроусилителем измеряют при работающем двигателе. Как правило, рулевой механизм с гидроусилителем прост в обслуживании. Даже когда отказывает насос

Из книги автора

Схема, устройство работа В механизм газораспределения входят: распределительный вал и его привод. Передаточные детали – толкатели с направляющими втулками, а при верхнем расположении клапанов еще штанги и коромысла, клапаны, их направляющие втулки и пружины, опорные

Из книги автора

5.5.4. АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ И КОМПЛЕКСЫ ПРОТИВОАВАРИЙНОГО УПРАВЛЕНИЯ Работы по созданию автоматизированных систем управления технологическими процессами (АСУ ТП) электроэнергетических объектов были начаты с появлением

Знаете, как называется рулевое колесо у гоночного болида? Штурвал! А в наших автомобилях всего то – руль.… Чувствуете разницу? Но оставим Шумахеру шумахерово, и поговорим что же такое рулевое управление , или рулевой механизм .

Система рулевого управления служит для управления автомобилем и обеспечения его движения в заданном направлении по команде водителя. Система включает в себя рулевой механизм и ру­левой привод . Что бы представить себе работу рулевых механизмов разных поколений, мы разделим объяснение на три части, именно столько их насчитывается в автомобилестроении.

Червячный рулевой механизм

Свое название получил из-за системы привода рулевой колонки, а именно червячной шестерни. В состав рулевой системы входят:

  • руль (думается объяснять не надо?)
  • рулевой вал с крестовиной , представляет собой металлический стержень, у которого с одной стороны расположены шлицы для фиксации руля, а с другой внутренние шлицы для крепления к рулевой колонке. Полная фиксация производится стяжной муфтой, которая обжимает место стыка вала и «червяка» привода колонки. В месте изгиба вала устанавливается , при помощи которого передается боковое усилие вращения.
  • рулевая колонка , устройство, собранное в одном литом корпусе, в состав которой входят червячная ведущая шестерня и ведомая. Ведомая шестерня соединена жестко с рулевой сошкой.
  • рулевые тяги , наконечники и «маятник», совокупность этих деталей соединённых между собой при помощи шаровых и резьбовых соединений.

Работа рулевого механизма выглядит следующим образом: при вращении рулевого колеса, усилие вращения передается на червячный механизм колонки, «червяк» вращает ведомую шестерню, которая в свою очередь приводит в действие рулевую сошку. Сошка соединена со средней рулевой тягой, второй конец тяги крепится к маятниковому рычагу. Рычаг устанавливается на опоре и жестко крепится к кузову автомобиля. От сошки и «маятника» отходят боковые тяги, которые при помощи обжимных муфт соединены с рулевыми наконечниками. Наконечники соединяются со ступицей. Рулевая сошка, поворачиваясь, передает усилие одновременно на боковую тягу и на средний рычаг. Средний рычаг приводит в действие вторую боковую тягу и ступицы поворачиваются, соответственно колеса тоже.

Такая система была распространена на старых моделях «Жигулей» и «BMW».

Реечный рулевой механизм

Самая распространенная система в настоящее время. Основные узлы это:

  • рулевое колесо (руль)
  • рулевой вал (то же что и в червячном механизме)
  • рулевая рейка – это узел, состоящий из зубчатой рейки, в движение которую приводит рулевая шестерня. Собранная в одном корпусе, чаще из легкого сплава, крепится непосредственно к кузову авто. На концах зубчатой рейки изготовлены резьбовые отверстия для крепления рулевых тяг.
  • рулевые тяги представляют собой металлический стержень, с одного конца у которого резьба, а со второй, шарнирное шаровое устройство с резьбой.
  • рулевой наконечник , это корпус с шаровым шарниром и внутренней резьбой, для вкручивания рулевой тяги.

При вращении рулевого колеса, усилие передается на шестерню, которая приводит в действие рулевую рейку. Рейка «выезжает» из корпуса влево или вправо. Усилие передается на рулевой рычаг с наконечником. Наконечник вставлен в ступицу, которую и поворачивает в дальнейшем.

Для уменьшения усилия водителя при вращении рулевого колеса, в реечное рулевое устройство были введены усилители руля , на них остановимся более подробно

Усилитель руля является вспомогательным устройством для вращения рулевого колеса. Различают несколько типов усилителей руля. Это гидроусилитель, гидроэлектроусилитель, электроусилитель и пневмоусилитель .

  1. Гидроусилитель состоит из гидравлического насоса, в действие который приводит , системы шлангов высокого давления, и бачка для жидкости. Корпус рейки выполнен герметически, так как в нем находится жидкость гидроусилителя. Принцип действия гидроусилителя следующий: насос нагнетает давление в системе, но если руль стоит на месте, то насос просто создает циркуляцию жидкости. Стоит только водителю начать поворачивать руль, как перекрывается циркуляция, и жидкость начинает давить на рейку, «помогая» водителю. Давление направлено в ту сторону, в которую вращается «баранка».
  2. В гидроэлектроусилителе система точно такая же, только насос вращает электромотор.
  3. В электроусилителе применяется так же электромотор, но соединяется он непосредственно с рейкой или с рулевым валом. Управляется электронным блоком управления. Электроусилитель еще называют адаптивным усилителем из-за возможности прикладывания разного усилия к вращению рулевого колеса, в зависимости от скорости движения. Известная система Servotronic.
  4. Пневмоусилитель это близкая «родня» гидроусилителя, только жидкость заменена на сжатый воздух.

Активная рулевая система

Самая «продвинутая» в настоящее время, в состав входит:

  • рулевая рейка с и электродвигателем
  • блок электронного управления
  • рулевые тяги, наконечники
  • рулевое колесо (ну а как же без него?)

Принцип работы рулевой системы чем-то напоминает . При вращении рулевого колеса, вращается планетарный механизм, который и приводит в действие рейку, но вот только передаточное число всегда разное, в зависимости от скорости движения автомобиля. Дело в том, что солнечную шестерню снаружи вращает электродвигатель, поэтому в зависимости от скорости вращения изменяется передаточное число. На небольшой скорости коэффициент передачи составляет единицу. Но при большем разгоне, когда малейшее движение руля может привести к негативным последствиям, включается электромотор, вращает солнечную шестерню, соответственно необходимо руль довернуть больше при повороте. На маленькой скорости автомобиля электродвигатель вращается в обратную сторону, создавая более комфортное управление.

Весь остальной процесс выглядит, как и у простой реечной системы.

Ничего не забыли? Забыли, конечно! Забыли еще одну систему – винтовую . Правда, эта система больше похожа на червячный механизм. Итак – на валу проточена винтовая резьба, по которой «ползает» своеобразная гайка, представляет собой зубчатую рейку с резьбой внутри. Зубья рейки приводят в действие рулевой сектор, в свою очередь он предает движение сошке, ну а дальше как в червячной системе. Для уменьшения трения, внутри «гайки» расположены шарики, которые «циркулируют» во время вращения.

К рулевому механизму предъявляются следующие требования :
- оптимальное передаточное число, определяющее соотношение между необходимым углом поворота рулевого колеса и усилием на нем; - незначительные потери энергии при работе (высокий КПД);
- возможность самопроизвольного возврата рулевого колеса в нейтральное положение, после того как водитель перестал удерживать рулевое колесо в повернутом положении;
- незначительные зазоры в подвижных соединениях для обеспечения малого люфта или свободного хода рулевого колеса;
- высокая надежность.

Наибольшее распространение на легковых автомобилях сегодня получили реечные рулевые механизмы.


Реечный рулевой механизм без гидроусилителя :
1 - чехол;
2 - вкладыш;
3 - пружина;
4 - шаровой палец;
5 - шаровой шарнир;
6 - упор;
7 - рулевая рейка;
8 - шестерня

Конструкция такого механизма включает в себя шестерню, установленную на валу рулевого колеса, и связанную с ней зубчатую рейку. При вращении рулевого колеса рейка перемещается вправо или влево и через присоединенные к ней тяги рулевого привода поворачивает управляемые колеса.
Причинами широкого применения на легковых автомобилях именно такого механизма являются: простота конструкции, малые масса и стоимость изготовления, высокий КПД, небольшое число тяг и шарниров. Кроме того, расположенный поперек автомобиля корпус реечного рулевого механизма оставляет достаточно места в моторном отсеке для размещения двигателя, трансмиссии и других агрегатов автомобиля. Реечное рулевое управление обладает высокой жесткостью, что обеспечивает более точное управление автомобилем при резких маневрах.
Вместе с тем реечный рулевой механизм обладает и рядом недостатков: повышенная чувствительность к ударам от дорожных неровностей и передача этих ударов на рулевое колесо; склонность к виброактивности рулевого управления, повышенная нагруженность деталей, сложность установки такого рулевого механизма на автомобили с зависимой подвеской управляемых колес. Это ограничило сферу применения такого типа рулевых механизмов только легковыми (с вертикальной нагрузкой на управляемую ось до 24 кН) автомобилями с независимой подвеской управляемых колес.


Реечный рулевой механизм с гидроусилителем :
1 - жидкость под высоким давлением;
2 - поршень;
3 - жидкость под низким давлением;
4 - шестерня;
5 - рулевая рейка;
6 - распределитель гидроусилителя;
7 - рулевая колонка;
8 - насос гидроусилителя;
9 - резервуар для жидкости;
10 - элемент подвески



Рулевой механизм типа «глобоидальный червяк-ролик» без гидроусилителя :
1 - ролик;
2 - червяк

Легковые автомобили с зависимой подвеской управляемых колес, малотоннажные грузовые автомобили и автобусы, легковые автомобили высокой проходимости оснащаются, как правило, рулевыми механизмами типа «глобоидальный червяк-ролик». Ранее такие механизмы применялись и на легковых автомобилях с независимой подвеской (например, семейство ВАЗ-2105, -2107), но в настоящее время их практически вытеснили реечные рулевые механизмы.
Механизм типа «глобоидальный червяк–ролик» представляет собой разновидность червячной передачи и состоит из соединенного с рулевым валом глобоидального червяка (червяка с переменным диаметром) и ролика, установленного на вале. На этом же вале вне корпуса рулевого механизма установлен рычаг (сошка), с которым связаны тяги рулевого привода. Вращение рулевого колеса обеспечивает обкатывание ролика по червяку, качание сошки и поворот управляемых колес.
В сравнении с реечными рулевыми механизмами червячные механизмы имеют меньшую чувствительность к передаче ударов от дорожных неровностей, обеспечивают большие максимальные углы поворота управляемых колес (лучшая маневренность автомобиля), хорошо компонуются с зависимой подвеской, допускают передачу больших усилий. Иногда червячные механизмы применяют на легковых автомобилях высокого класса и большой собственной массы с независимой подвеской управляемых колес, но в этом случае усложняется конструкция рулевого привода - добавляется дополнительная рулевая тяга и маятниковый рычаг. Кроме того, червячный механизм требует регулировки и дорог в изготовлении.


Рулевой механизм типа «винт-шариковая гайка–рейка–зубчатый сектор» без гидроусилителя (а) :
1 - картер;
2 - винт с шариковой гайкой;
3 - вал-сектор;
4 - пробка заливного отверстия;
5 - регулировочные прокладки;
6 - вал;
7 - уплотнитель рулевого вала;
8 - сошка;
9 - крышка;
10 - уплотнитель вала-сектора;
11 - наружное кольцо подшипника вала-сектора;
12 - стопорное кольцо;
13 - уплотнительное кольцо;
14 - боковая крышка;
15 - пробка;
со встроенным гидроусилителем (б) :
1 - регулировочная гайка;
2 - подшипник;
3 - уплотнительное кольцо;
4 - винт;
5 - картер;
6 - поршень-рейка;
7 - гидравлический распределитель;
8 - манжета;
9 - уплотнитель;
10 - входной вал;
11 - вал-сектор;
12 - защитная крышка;
13 - стопорное кольцо;
14 - уплотнительное кольцо;
15 - наружное кольцо подшипника вала-сектора;
16 - боковая крышка;
17 - гайка;
18 - болт

Наиболее распространенным рулевым механизмом для тяжелых грузовых автомобилей и автобусов является механизм типа «винт–шариковая гайка–рейка–зубчатый сектор». Иногда рулевые механизмы такого типа можно встретить на больших и дорогих легковых автомобилях (Mercedes, Range Rover и др.).
При повороте рулевого колеса вращается вал механизма с винтовой канавкой и перемещается надетая на него гайка. При этом гайка, имеющая на внешней стороне зубчатую рейку, поворачивает зубчатый сектор вала сошки. Для уменьшения трения в паре винт–гайка передача усилий в ней происходит посредством шариков, циркулирующих в винтовой канавке. Данный рулевой механизм имеет те же преимущества, что и рассмотренный выше червячный, но имеет большой КПД, позволяет эффективно передавать большие усилия и хорошо компонуется с гидравлическим усилителем рулевого управления.
Ранее на грузовых автомобилях можно было встретить и другие типы рулевых механизмов, например «червяк–боковой сектор», «винт–кривошип», «винт–гайка–шатун–рычаг». На современных автомобилях такие механизмы из-за их сложности, необходимости регулировки и низкого КПД практически не применяются.