Принцип работы инжекторного двигателя. Системы впрыска инжекторных двигателей. Разновидности инжекторных моторов

Инжекторный двигатель – это довольно сложный механизм, работа которого должна быть хорошо отлажена, чтобы получить от него максимальную производительность. В статье подробно рассмотрен принцип работы инжекторного двигателя.


Центром всей системы является ЭБУ (электронный блок управления). Он носит много названий, «мозги», «компьютер» и так далее. По сути да, это компьютер, в который заложено огромное количество таблиц по составу смеси, времени впрыска топлива и прочего. Например, если обороты двигателя равны 1500, дроссельная заслонка открыта на 10 градусов, а расход воздуха составляет 23 кг, то в цилиндр будет поступать одно количество топлива. Если же вводные параметры изменяются, то и результат будет другим. Если с блоком управления возникают какие-то проблемы, например, слетает прошивка, то все идет прахом, двигатель либо начинает как попало работать, либо и вовсе перестает.

Датчики инжекторного двигателя

Все элементы можно поделить на исполнительные и датчики. Для начала мы рассмотрим датчики.

Датчик массового расхода воздуха (ДМРВ)


Этот элемент устанавливается перед воздушным фильтром, прямо на входе. В основе его работы лежит принцип разницы показаний. Так, через две платиновые нити проходит электричество. В зависимости от температуры их сопротивление меняется. Одна из нитей надежно укрыта от потока воздуха, что делает ее сопротивление неизменным. Вторая же охлаждается потоком, и на основании разницы величин, по тем же таблицам, о которых сказано выше, ЭБУ рассчитывает количество воздуха.

Датчик абсолютного давлении и температуры двигателя (ДАД)


Он используется либо в качестве альтернативы, либо вместе с вышеописанным для более высокой точности снятия показаний. Если вкратце, в нем имеется две камеры, одна из которых герметична и имеет внутри абсолютный вакуум. Вторая же камера подсоединяется к впускному коллектору, где создается разрежение во время такта впуска. Между этими камерами имеется диафрагма, а так же пьезоэлементы. Они вырабатывают напряжение при движении диафрагмы. Далее сигнал идет на ЭБУ.

Датчик положения коленчатого вала (ДПКВ)


Если посмотреть на шкив коленвала инжекторного двигателя, то можно рассмотреть на нем гребенку. Она магнитная. По всему периметру установлены зубцы. Всего их должно быть 60 штук, через каждые 6 градусов. Но двух из них нет, они нужны для синхронизации. Датчик положение коленчатого вала имеет в своем составе намагниченный стальной сердечный, а так же медную обмотку. При прохождении зубцов в обмотке возникает индукционный ток, напряжение которого зависит от скорости вращения шкива.

Датчик фаз (ДФ)


Не все двигатели им оснащались раньше, но сейчас его можно встретить практически везде. Он работает по принципу датчика Холла, то есть имеет диск с катушкой, а так же прорезь. Как только прорезь попадает на датчик, выходное напряжение на нем нулевое. Этот момент означает верхнюю мертвую точку такта сжатия первого цилиндра. Нужно это для того, чтобы ЭБУ мог генерировать напряжение для зажигания в нужном цилиндре, а так же контролировать такты. Чтобы, например, форсунка не открылась во время рабочего хода.

Датчик детонации


Он устанавливается на блоке цилиндров инжекторного двигателя. Как только в двигателе возникает детонация, по блоку передается вибрация. Датчик представляет собой пьезоэлемент, который генерирует напряжение, чем сильнее вибрации, тем выше напряжение. Соответственно, ЭБУ на основании его показаний корректирует момент зажигания. Но об этом позже.

Датчик положения дроссельной заслонки (ДПДЗ)


По сути своей, это обычный потенциометр. Опорное напряжение на нем, как правило, составляет 5 вольт. Так вот, в зависимости от того, на какой угол отклоняется дроссельная заслонка, меняется напряжение на контрольном выводе. Все просто.

Датчик температуры охлаждающей жидкости (ДТОЖ)


Этот датчик нужен для определения температуры двигателя. Если на карбюраторном двигателе он нужен просто для включения и выключения электровентилятора, то здесь он представляет собой более сложное устройство. Это термосопротивление, величина которого меняется в зависимости от температуры. Соответственно, меняется и напряжение, при прохождении через него.

Датчик кислорода


Он устанавливается в выхлопной системе, существуют системы с двумя датчиками. Его задача – отслеживать количество свободного кислорода в выхлопных газах. Например, если его слишком много, то это значит, что смесь вся не сгорает, а значит, надо обогатить. Если же кислорода меньше, чем значится в нормативных таблицах ЭБУ, то ее надо обеднить.

Исполнительные элементы

Исполнительные элементы получили свое название за то, что именно они вносят коррективы в работу двигателя. ТО есть, блок управления получает сигнал от датчика, анализирует его, после чего отправляет сигнал на исполнительный элемент.

Топливный насос

Начнем с системы питания. Он установлен в баке и подает топливо в топливную рампу под давлением 3,2 – 3,5 Мпа. Это позволяет гарантировать качественный распыл топлива в цилиндры. Как только повышаются обороты двигателя, повышается и аппетит, а значит в рампу надо подавать большее количество топлива для сохранения давления. Насос начинает вращаться быстрее по команде блока управления. Большинство современных автомобилей, начиная примерно с 2013 года выпуска, оснащаются топливным модулем, который включает в себя насос и встроенный фильтр. Это существенно сказывается на стоимости замены фильтра, потому что менять надо весь модуль. Некоторые производители в инструкциях пишут, что модуль устанавливается на весь срок службы авто, однако не стоит верить, что какой-то фильтр способен проходить больше 2 сезонов.

Форсунка


После того, как топливо прошло всю цепь провода, оно попадает в форсунку, которая дозирует его подачу в цилиндр. Форсунка представляет собой электромагнитный клапан очень маленького диаметра, который обеспечивает распыл бензина в камеру сгорания. ЭБУ изменяет количество топлива, которое подается, при помощи временных промежутков, пока открыта форсунка. Как правило, это десятые доли секунды.

Дроссельная заслонка


Все мы когда-то видели карбюратор, заглядывали в него сверху. Так вот в нем имелись заслонки, которые перекрывали воздух. Здесь принцип тот же. Пожалуй, и рассказать больше нечего.

Регулятор холостого хода (РХХ)


Это тоже электромагнитный клапан, шток которого закрывает воздуховод, проходящий в обход дроссельной заслонки. В зависимости от напряжения, которое на него подает блок управления, он открывает этот самый канал.

Модуль зажигания


В принципе, это та же катушка зажигания, только их здесь четыре. При прохождении тока через первичную обмотку во вторичной коммутируется высокочастотный ток высокого напряжения, который подается на свечу.

Принцип работы инжекторного двигателя

Итак, после того, как мы разобрались в основных узлах инжекторного двигателя, посмотрим, как же он работает. После того как стартер провернул коленчатый вал, ДПКВ сообщил блоку управления, какой цилиндр в каком положении находится. В свою очередь, датчик фаз сообщил о тактах. Блок управления принял эту информацию к сведению и открыл форсунку в том цилиндре, в котором начинается такт впуска. Но открыл ее не просто так, а на строго определенный промежуток времени, который по таблицам соответствует показаниям ДМРВ или ДАД. Так сформировалась рабочая смесь.

Видео: как работает бензиновый инжекторный двигатель внутреннего сгорания

После того как здесь такт впуска закончился, начинается сжатие, в это время впуск происходит в другом цилиндре. Здесь же поршень доходит до верхней мертвой точки, о чем говорит ДПКВ и ДФ, соответственно, пора подавать напряжение на модуль зажигания, в нужный цилиндр. Для этого в блоке управления стоит два транзистора, которые берут на себя по два цилиндра.

Дальше, когда взрыв произошел, ЭБУ смотрит на показания датчик детонации и корректирует момент зажигания уже для следующего по ходу цилиндра. Но это еще не все. После этого, когда газы дошли до датчика кислорода, блок управления корректирует состав смеси, а именно, время открывания форсунки, что позволяет максимально эффективно использовать топливо и его сгорание. Если ЭБУ распознает недостаток кислорода, но при этом дроссельная заслонка остается открытой, то приоткрывается регулятор холостого хода.

Прогрев двигателя и датчик температуры двигателя

Этот момент стоит рассмотреть отдельно, скажем так, это небольшое уточнение. Итак, прогревочный режим двигателя никак не связан с показаниями некоторых датчиков, то есть, от них ничего не зависит. В частности, это ДМРВ и ДАД, а так же датчик детонации. В блоке, как уже говорилось, заложены определенные таблицы, их очень много, миллионы. Так вот, во время прогревочного режима ЭБУ работает строго по этим таблицам и никак иначе. Это значит, что если в него прописано соотношение воздуха к топливу 14,1:1, то так оно и будет. Эта цифра является общепринятой нормой для рабочей температуры. Так вот, пока температура двигателя не достигнет той, которая прописана в прошивке блока управления, то прогревочный режим не отключится. После ЭБУ начинает работать по датчикам.

Что лучше, инжекторный или карбюраторный двигатель?

Этот вопрос достаточно спорный, у каждой точки зрения есть много противников и приверженцев как среди простых водителей, так и среди специалистов, которые полностью понимают принцип работы инжекторного двигателя. Итак, карбюраторный двигатель отличает простота и прозрачность работы. То есть, если механик отрегулировал холостые обороты, то они такими и остались.

Что касается инжекторного двигателя, то ту все дело сводится к своевременному обслуживанию, а так же к качеству применяемых деталей.

Инжекторный двигатель (двигатель с инжектором, англ. electronic fuel injection engine) - современный тип ДВС, оснащенный инжекторной системой топливного впрыска, которая пришла на смену моторам с карбюратором. Сегодня новые бензиновые автомобили оснащаются исключительно инжектором, так как данное решение способно обеспечить силовой установке необходимое соответствие строгим нормам касательно экономичности и токсичности отработавших газов.

Карбюратор проигрывает инжектору по общим показателям эффективности, так как инжекторные двигатели стабильнее работают, автомобиль получает улучшенную динамику разгона. Инжекторный агрегат потребляет меньше топлива, содержание вредных веществ в выхлопе снижается, так как топливо сгорает более полноценно. Управление системой полностью автоматизировано (в отличие от карбюратора), то есть не требует ручной подстройки во время эксплуатации. Что касается дизельных двигателей, система впрыска дизтоплива на таких моторах имеет ряд конструктивных отличий, хотя общий принцип работы инжектора на дизеле остается похожим на бензиновые аналоги.

Как работает инжектор

Инжекторная система включает в себя несколько дополнительных элементов, среди которых датчики, контроллер, бензонасос, регулятор давления. На контроллер поступает информация от многочисленных датчиков, которые сообщают электронике о расходе воздуха, оборотах коленвала, температуре охлаждающей жидкости, напряжении в сети авто, положении дроссельной заслонки и много других важных данных. На основе полученной информации контроллер (или ЭБУ – электронный блок управления) производит дозирование подачи топлива и управляет другими системами, приборами авто, обеспечивая наиболее оптимальный режим работы двигателя.

Схему работы инжектора можно рассмотреть и по-другому: электрический насос качает топливо, регулятор давления обеспечивает разницу давления в форсунках и впускным коллектором, а контроллер, получая информацию от датчиков, управляет системами двигателя, в т.ч. подачей топлива, распределением зажигания.

Плюсы и минусы инжектора

Одно из основных достоинств – более низкий по сравнению с карбюраторным двигателем расход топлива, обусловленный точечным впрыском. Также точное дозирование обеспечивает практически полное сгорание топлива в цилиндрах, что уменьшает токсичность выхлопных газов. В результате работы инжектора мотор работает в наиболее оптимальном режиме, что увеличивает его мощность (примерно на 5-10%) и продлевает срок службы.

К другим плюсам относится облегченный запуск в зимнее время (подогрев не требуется) и быстрое реагирование на изменение нагрузки, что улучшает динамические свойства авто. Но не обошлось и без минусов: инжектор обходится дороже карбюраторной системы, а его ремонт достаточно сложен и дорог. Если обслуживание карбюратора нередко сводится к промывке, продувке, то для одной только качественной диагностики инжектора требуется специальное оборудование, которое, учитывая российскую специфику, имеется далеко не в каждом автосервисе.

Схема работы инжектора

Если не влазить в дебри «электронного мозга» нашего автомобиля, то схема работы инжектора выглядит следующим образом. На многочисленные датчики поступает информация о: вращении коленвала, о расходе воздуха, о том, какая температура охлаждающей жидкости двигателя, о дроссельной заслонке, о детонации в двигателе, о расходе топлива, о скоростном режиме, о напряжении бортовой сети авто и так далее.

Контроллер, получая данную информацию о параметрах автомобиля, производит управление системами и приборами, в частности: подачей топлива, системой зажигания, регулятором холостого хода, системой диагностики и так далее. Изменение рабочих параметров инжекторной системы впрыска меняется систематически, исходя из полученных данных.

Устройство простейшего инжектора

Инжектор включает в себя такие исполнительные элементы, как:

  • бензонасос (электрический),
  • ЭБУ (контроллер),
  • регулятор давления,
  • датчики,
  • форсунка (инжектор).

Соответственно, схема инжектора: электробензонасос подает топливо, регулятор давления поддерживает разницу давления в инжекторах (форсунках) и воздухом впускного коллектора. Контроллер, обрабатывает информацию от датчиков: температуры, детонации, распредвала и коленвала, и управляет системами зажигания, подачи топлива и так далее.

Всем хороша инжекторная система впрыска топлива, но и она не обошлась без своих особенностей. Приверженцы карбюраторов, называют их недостатками. Особенностями инжектора смело можно назвать: достаточно высокая стоимость узлов инжектора, низкая ремонтопригодность, высокие требования к качеству и составу топлива, необходимость специального оборудования для диагностики, и высокая стоимость ремонтных работ.

Теперь, перейдем от рассказа о том, как работает и выглядит инжектор к наглядному пособию. Вы увидите на видео, принцип работы инжектора, и вам сразу же станет понятно всё, о чем написано выше.

НЕМНОГО ИСТОРИИ

Активно устанавливаться такая система питания на автомобилях стала со средины 80-х годов, когда начали вводиться нормы экологичности выбросов. Сама идея инжекторной системы питания появилась значительно раньше, еще в 30-х годах. Но тогда основная задача крылась не в экологичном выхлопе, а повышении мощности.

Первые инжеторные системы применялись в боевой авиации. На то время, это была полностью механическая конструкция, которая вполне неплохо выполняла свои функции. С появлением реактивных двигателей, инжекторы практически перестали использоваться в военной авиатехнике. На автомобилях же механический инжектор особо распространения не получил, поскольку он не мог полноценно выполнять возложенные функции. Дело в том, что режимы двигателя автомобиля меняются значительно чаще, чем у самолета, и механическая система не успевала своевременно подстраиваться под работу мотора. В этом плане карбюратор выигрывал.

Но активное развитие электроники дало «вторую жизнь» инжекторной системе. И немаловажную роль в этом сыграла борьба за уменьшение выброса вредных веществ. В поисках замены карбюратору, который уже не соответствовал нормативам экологичности, конструкторы вернулись к инжекторной системе, но кардинально пересмотрели ее работу и конструкцию.

ВИДЫ ИНЖЕКТОРОВ

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электрические элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует три типа инжекторных систем, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.

1. ЦЕНТРАЛЬНАЯ

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

2. РАСПРЕДЕЛЕННАЯ

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У этого инжектора топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

3. НЕПОСРЕДСТВЕННАЯ

Система непосредственного впрыска на данный момент – самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она очень сложная по конструкции и очень требовательна к качеству бензина.

ЭЛЕКТРОННАЯ СОСТАВЛЯЮЩАЯ

Основным элементом электронной части системы является электронный блок, состоящий из контролера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

Для своей работы ЭБУ использует показания датчиков:

  1. Лямбда-зонд. Это датчик, который определяет остатки несгоревшего воздуха в выхлопных газах. На основе показаний лямбда-зонда ЭБУ оценивает как соблюдается смесеобразование в необходимых пропорциях. Устанавливается в выпускной системе авто.
  2. Датчик массового расхода воздуха (аббр. ДМРВ). Этим датчиком определяется количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами. Расположен в корпусе воздушного фильтрующего элемента;
  3. Датчик положения дроссельной заслонки (аббр. ДПДЗ). Этот датчик подает сигнал о положении педали акселератора. Установлен в дроссельном узле;
  4. Датчик температуры силовой установки. На основе показаний этого элемента регулируется состав смеси в зависимости от температуры мотора. Располагается возле термостата;
  5. Датчик положения коленчатого вала (аббр. ДПКВ). На основе показаний этого датчика определяется цилиндр, в который необходимо подать порцию топлива, время подачи бензина, и искрообразование. Установлен возле шкива коленчатого вала;
  6. Датчик детонации. Необходим для выявления образования детонационного сгорания и принятия мер для его устранения. Расположен на блоке цилиндров;
  7. Датчик скорости. Нужен для создания импульсов, по которым высчитывается скорость движения авто. На основе его показаний делается корректировка топливной смеси. Установлен на коробке передач;
  8. Датчик фаз. Он предназначен для определения углового положения распредвала. На некоторых автомобилях может отсутствовать. При наличии этого датчика в двигателе выполняется фазированный впрыск, то есть, импульс на открытие поступает только для конкретной форсунки. Если этого датчика нет, то форсунки работают в парном режиме, когда сигнал на открытие подается сразу на две форсунки. Установлен в головке блока;

Теперь коротко от том, как все работает. Элекробензонасос заполняет всю систему топливом. Контролер получает показания от все датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания так, чтобы добиться максимального совпадения получаемых

данных с занесенными в блок памяти.

Что касается подачи топлива, то на основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

Чем отличается инжекторный двигатель от карбюраторного

Инжектор представляет собой принципиально другой способ подачи топлива в камеру сгорания по сравнению с карбюратором. Другими словами, в инжекторном моторе наибольшие конструктивные изменения коснулись системы питания и топливоподачи. В карбюраторном двигателе бензин смешивается с определенной частью воздуха во внешнем устройстве (карбюраторе). После образовавшаяся топливно-воздушная смесь всасывается в цилиндры двигателя. Инжекторный двигатель имеет специальные инжекторные форсунки, которые дозировано впрыскивают горючее под давлением, после чего происходит смешение порции топлива с воздухом. Если сравнивать эффективность подачи горючего инжектором и карбюратором, мотор с инжектором оказывается до 15% мощнее. Также отмечается существенная экономия топлива на разных режимах работы двигателя.

Частые неисправности инжектора

Так как инжектор является сложной многокомпонентной системой, со временем отдельные элементы могут выходить из строя. Главной задачей инжектора является максимально возможная эффективность сгорания топлива, которая достигается благодаря поддержанию строго определенного состава рабочей смеси топлива и воздуха. В результате любой сбой в работе электронных датчиков приводит к дисбалансу в работе всей инжекторной системы, могут плавать обороты на холостом ходу или в движении, двигатель может троить или не заводиться, отмечается изменение цвета выхлопа и т.д.

В отдельных случаях ЭБУ может перевести мотор в аварийный режим. Силовой агрегат в такой ситуации не набирает обороты, на приборной панели горит «check» и т.п. Еще одной причиной неисправностей инжектора является загрязнение фильтрующих элементов в системе топливоподачи или самих инжекторных форсунок в результате использования бензина низкого качества. Для поддержания работоспособности топливный фильтр нужно своевременно менять. Не меньше внимания, особенно на автомобилях с пробегом более 50-70 тыс. км, заслуживает сетка-фильтр бензонасоса. Указанную сеточку бензонасоса рекомендуется менять или чистить.

Также желательно один раз в несколько лет мыть топливный бак параллельно замене или очистке указанной сетки-фильтра грубой очистки топливного насоса. Отметим, что важно определять и устранять неисправность инжектора своевременно, так как сбои в его работе могут существенно ухудшить общее состояние ДВС и привести к другим поломкам. Что касается засорения топливных форсунок, в этом случае двигатель хуже заводится, теряет мощность и начинает расходовать больше топлива. Нарушение формы факела распыла топлива (особенно в моторах с прямым впрыском) приводит к локальным перегревам, детонации двигателя, прогарам клапанов и т.д.

Также форсунки могут «лить» топливо, то есть не закрываться после прекращения импульса от ЭБУ. В этом случае избытки топлива попадают в камеру сгорания, затем могут проникать в выпускную систему и в систему смазки двигателя через неплотности в местах установки поршневых колец. В таких ситуациях сильно страдает весь двигатель, так как бензин разжижает масло и смазка нагруженных деталей ухудшается. Наличие топлива в выхлопной системе выводит из строя каталитический нейтрализатор (катализатор), который очищает отработавшие газы от вредных соединений.

Для предотвращения неисправностей инжектора форсунки необходимо периодически очищать. Дело в том, что наличие фракций и примесей в бензине постепенно загрязняет инжекторы, что и снижает их производительность, а также нарушает качество распыла топлива. Почистить форсунки можно двумя способами: со снятием или прямо на машине. Процедура очистки инжекторных форсунок на автомобиле предполагает то, что через инжекторы пропускается специальная промывочная жидкость для чистки инжектора.

Способ заключается в том, что от топливной рампы отсоединяется топливная магистраль, после чего вместо бензонасоса в систему начинает качать промывочную жидкость специальный компрессор вместо бензонасоса. Еще одним вариантом чистки инжектора является очистка со снятием форсунок в ультразвуковой ванне или на специальном промывочном стенде. Что касается ультразвука, форсунки помещаются в специальный аппарат или ванну, где волновые колебания «разбивают» отложения. Промывка форсунок со снятием на стенде представляет собой процедуру, когда имитируется работа форсунок в двигателе, при этом вместо бензина через них пропускается промывочная жидкость.

Данная система подачи топлива, устанавливаемая на современных бензиновых двигателях. Эта система подачи топлива постепенно вытесняет систему питания . Двигатели, имеющие такую систему, называют инжекторными двигателями .

В конце 60х-начале 70х годов ХХ века остро встала проблема загрязнения окружающей среды промышленными отходами, среди которых значительную часть составляли автомобилей. До этого времени состав продуктов сгорания никого не интересовал. В целях максимального использования воздуха в процессе сгорания и достижения максимально возможной мощности двигателя состав смеси регулировался с таким расчетом, чтобы в ней был избыток бензина. В результате в продуктах сгорания совершенно отсутствовал кислород, однако оставалось несгоревшее топливо, а вредные для здоровья вещества образуются главным образом при неполном сгорании. В стремлении повышать мощность конструкторы устанавливали на карбюраторы ускорительные насосы, впрыскивающие топливо во впускной коллектор при каждом резком нажатии на педаль акселератора, т.е. когда требуется резкий разгон автомобиля. В цилиндры при этом попадает чрезмерное количество топлива, не соответствующее количеству воздуха.

В условиях городского движения ускорительный насос срабатывает практически на всех перекрестках со светофорами, где автомобили должны то останавливаться, то быстро трогаться с места. Неполное сгорание имеет место также при работе двигателя на холостых оборотах, а особенно при торможении двигателем. При закрытом дросселе воздух проходит через каналы холостого хода карбюратора с большой скоростью, всасывания слишком много топлива. Из-за значительного разрежения во впускном трубопроводе в цилиндры засасывается мало воздуха, давление в камере сгорания остается к концу такта сжатия сравнительно низким, процесс сгорания чрезмерно богатой смеси проходит медленно, и в остается много несгоревшего топлива. Описанные режимы работы двигателя резко повышают содержание токсических соединений в продуктах сгорания.

Стало очевидно, что для понижения вредных для жизнедеятельности человека выбросов в атмосферу надо кардинально менять подход к конструированию топливной аппаратуры.

Для снижения вредных выбросов в систему выпуска было предложено устанавливать каталитический нейтрализатор отработавших газов. Но катализатор эффективно работает только при сжигании в двигателе так называемой нормальной топливо-воздушной смеси (весовое соотношение воздух/бензин 14,7:1). Любое отклонение состава смеси от указанного приводило к падению эффективности его работы и ускоренному выходу из строя. Для стабильного поддержания такого соотношения рабочей смеси карбюраторные системы уже не подходили. Альтернативой могли стать только системы впрыска.

Первые системы были чисто механическими с незначительным использованием электронных компонентов. Но практика использования этих систем показала, что параметры смеси, на стабильность которых рассчитывали разработчики, изменяются по мере эксплуатации автомобиля. Этот результат вполне закономерен, учитывая износ и загрязнение элементов системы и самого двигателя внутреннего сгорания в процессе его службы. Встал вопрос о системе, которая смогла бы сама себя корректировать в процессе работы, гибко сдвигая условия приготовления рабочей смеси в зависимости от внешних условий. Выход был найден следующий. В систему впрыска ввели обратную связь - в выпускную систему, непосредственно перед катализатором, поставили датчик содержания кислорода в выхлопных газах, так называемый лямбда-зонд. Данная система разрабатывалась уже с учетом наличия такого основополагающего для всех последующих систем элемента, как электронный блок управления (ЭБУ). По сигналам датчика кислорода ЭБУ корректирует подачу топлива в двигатель, точно выдерживая нужный состав смеси.

На сегодняшний день инжекторный (или, говоря по-научному, впрысковый) двигатель практически полностью заменил устаревшие . Инжекторный двигатель существенно улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива).

Инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:

  1. Точное дозирование топлива и, следовательно, более экономный его расход;
  2. Снижение . Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов;
  3. Увеличение мощности двигателя примерно на 7-10%. Происходит за счет улучшения наполнения цилиндров, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя;
  4. Улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки, корректируя параметры топливно-воздушной смеси;
  5. Легкость пуска независимо от погодных условий.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ (на примере электронной системы распределенного впрыска)

В современных впрысковых двигателях для каждого цилиндра предусмотрена индивидуальная форсунка. Все форсунки соединяются с топливной рампой, где топливо находится под давлением, которое создает электробензонасос. Количество впрыскиваемого топлива зависит от продолжительности открытия форсунки. Момент открытия регулирует электронный блок управления (контроллер) на основании обрабатываемых им данных от различных датчиков.

Датчик массового расхода воздуха служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.

Датчик положения дроссельной заслонки служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, оборотов двигателя и циклового наполнения.

Датчик температуры охлаждающей жидкости служит для определения коррекции топливоподачи и зажигания по температуре и для управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя.

Датчик положения служит для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ - полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный "жизненно важный" в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.

Датчик кислорода предназначен для определения концентрации кислорода в отработавших газах. Информация, которую выдает датчик, используется электронным блоком управления для корректировки количества подаваемого топлива. Датчик кислорода используется только в системах с каталитическим нейтрализатором под нормы токсичности Евро-2 и Евро-3 (в Евро-3 используется два датчика кислорода- до катализатора и после него).

Датчик детонации служит для контроля за детонацией. При обнаружении последней ЭБУ включает алгоритм гашения детонации, оперативно корректируя угол опережения зажигания.

Здесь перечислены только некоторые основные датчики, необходимые для работы системы. Комплектации датчиков на различных автомобилях зависят от системы впрыска, от норм токсичности и пр.

Про результатам опроса определенных в программе датчиков, программа ЭБУ осуществляет управление исполнительными механизмами, к которым относятся: форсунки, бензонасос, модуль зажигания, регулятор холостого хода, клапан адсорбера системы улавливания паров бензина, вентилятор системы охлаждения и др. (все опять же зависит от конкретной модели)

Из всего перечисленного, возможно, не все знают, что такое адсорбер. Адсорбер является элементом замкнутой цепи рециркуляции паров бензина. Нормами Евро-2 запрещен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг. На неработающем двигателе пары бензина попадают в адсорбер из бака и впускного коллектора, где происходит их поглощение. При запуске двигателя адсорбер по команде ЭБУ продувается потоком воздуха, всасываемого двигателем, пары увлекаются этим потоком и дожигаются в камере сгорания.

В зависимости от количества форсунок и места подачи топлива, системы впрыска подразделяются на три типа: одноточечный или моновпрыск (одна форсунка во впускном коллекторе на все цилиндры), многоточечный или распределенный (у каждого цилиндра своя форсунка, которая подает топливо в коллектор) и непосредственный (топливо подается форсунками непосредственно в цилиндры, как у дизелей).

Одноточечный впрыск проще, он менее начинен управляющей электроникой, но и менее эффективен. Управляющая электроника позволяет снимать информацию с датчиков и сразу же менять параметры впрыска. Немаловажно и то, что под моновпрыск легко адаптируются почти без конструктивных переделок или технологических изменений в производстве. У одноточечного впрыска преимущество перед карбюратором состоит в экономии топлива, экологической чистоте и относительной стабильности и надежности параметров. А вот в приёмистости двигателя одноточечный впрыск проигрывает. Еще один недостаток: при использовании одноточечного впрыска, как и при использовании карбюратора до 30% бензина оседает на стенках коллектора.

Системы одноточечного впрыска, безусловно, являлись шагом вперед по сравнению с карбюраторными системами питания, но уже не удовлетворяют современным требованиям.

Более совершенными являются системы многоточечного впрыска , в которых подача топлива к каждому цилиндру осуществляется индивидуально. Распределенный впрыск мощнее, экономичнее и сложнее. Применение такого впрыска увеличивает мощность двигателя примерно на 7-10 процентов. Основные преимущества распределенного впрыска:

  1. Возможность автоматической настройки на разных оборотах и соответственно улучшение наполнения цилиндров, в итоге при той же максимальной мощности автомобиль разгоняется гораздо быстрее;
  2. Бензин впрыскивается вблизи впускного клапана, что существенно снижает потери на оседание во впускном коллекторе и позволяет осуществлять более точную регулировку подачи топлива.

Непосредственный впрыск как очередное и эффективное средство в деле оптимизации сгорания смеси и повышения КПД бензинового двигателя реализует простые принципы. А именно: более тщательно распыляет топливо, лучше перемешивает с воздухом и грамотней распоряжается готовой смесью на разных режимах работы двигателя. В итоге двигатели с непосредственным впрыском потребляют меньше топлива, чем обычные «впрысковые» (в народе - инжектор) моторы (в особенности при спокойной езде на невысокой скорости); при одинаковом рабочем объеме они обеспечивают более интенсивное ускорение автомобиля; у них чище выхлоп; они гарантируют более высокую литровую мощность за счет большей степени сжатия и эффекта охлаждения воздуха при испарении топлива в цилиндрах. В то же время они нуждаются в качественном бензине с низким содержанием серы и механических примесей, чтобы обеспечить нормальную работу топливной аппаратуры.

А как раз главное несоответствие между ГОСТами, ныне действующими в России, и евростандартами- повышенное содержание серы, ароматических углеводородов и бензола. Например, российско-украинский стандарт допускает наличие 500 мг серы в 1 кг топлива, тогда как "Евро-3"- 150 мг, «Евро-4»- лишь 50 мг, а «Евро-5»- всего 10 мг. Сера и вода способны активизировать коррозионные процессы на поверхности деталей, а мусор является источником абразивного износа калиброванных отверстий форсунок и плунжерных пар насосов. В результате износа снижается рабочее давление насоса и ухудшается качество распыления бензина. Все это отражается на характеристиках двигателей и равномерности их работы.

Первой применила двигатель с непосредственным впрыском на серийном автомобиле компания Mitsubishi. Поэтому рассмотрим устройство и принципы действия непосредственного впрыска на примере двигателя GDI (Gasoline Direct Injection). Двигатель GDI может работать в режиме сгорания сверхобедненной топливовоздушной смеси: соотношение воздуха и топлива по массе до 30-40:1. Максимально возможное для традиционных инжекторных двигателей с распределенным впрыском соотношение равно 20-24:1 (стоит напомнить, что оптимальный, так называемый стехиометрический, состав - 14,7:1) - если избыток воздуха будет больше, переобедненная смесь просто не воспламенится. На двигателе GDI распыленное топливо находится в цилиндре в виде облака, сосредоточенного в районе свечи зажигания. Поэтому, хотя в целом смесь переобедненная, у свечи зажигания она близка к стехиометрическому составу и легко воспламеняется. В то же время, обедненная смесь в остальном объеме имеет намного меньшую склонность к детонации, чем стехиометрическая. Последнее обстоятельство позволяет повысить степень сжатия, а значит увеличить и мощность, и крутящий момент. За счет того, что при впрыскивании и испарении в цилиндр топлива, воздушный заряд охлаждается - несколько улучшается наполнение цилиндров, а также снова снижается вероятность возникновения детонации.

Режимы работы двигателя GDI

Всего предусмотрено три режима работы двигателя:

  • Режим сгорания сверхбедной смеси (впрыск топлива на такте сжатия).
  • Мощностной режим (впрыск на такте впуска).
  • Двухстадийный режим (впрыск на тактах впуска и сжатия) (применяется на евромодификациях).

Режим сгорания сверхбедной смеси (впрыск топлива на такте сжатия). Этот режим используется при малых нагрузках: при спокойной городской езде и при движении за городом с постоянной скоростью (до 120 км/ч). Топливо впрыскивается компактным факелом в конце такта сжатия в направлении поршня, отражается от него, смешивается с воздухом и испаряется, направляясь в зону . Хотя в основном объеме камеры сгорания смесь чрезвычайно обеднена, заряд в районе свечи достаточно обогащен, чтобы воспламениться от искры и поджечь остальную смесь. В результате двигатель устойчиво работает даже при общем соотношении воздуха и топлива в цилиндре 40:1.

Работа двигателя на сильно обедненной смеси поставила новую проблему - нейтрализацию отработавших газов. Дело в том, что при этом режиме основную их долю составляют оксиды азота, и поэтому обычный каталитический нейтрализатор становится малоэффективным. Для решения этой задачи была применена рециркуляция отработавших газов (EGR-Exhaust Gas Recirculation), которая резко снижает количество образующихся оксидов азота и установлен дополнительный NO-катализатор.

Система EGR "разбавляя" топливо-воздушную смесь отработавшими газами, снижает температуру горения в камере сгорания, тем самым "приглушая" активное образование вредных оксидов, в том числе NOx. Однако обеспечить полную и стабильную нейтрализацию NOx только за счет EGR невозможно, так как при увеличении нагрузки на двигатель количество перепускаемых ОГ должно быть уменьшено. Поэтому на двигатель с непосредственным впрыском был внедрен NO-катализатор. Существует две разновидности катализаторов для уменьшения выбросов NOx - селективные (Selective Reduction Type) и накопительного типа (NOx Trap Type). Катализаторы накопительного типа более эффективны, но чрезвычайно чувствительны к высокосернистым топливом, чему менее подвержены селективные. В соответствии с этим, накопительные катализаторы устанавливаются на модели для стран с низким содержанием серы в бензине, и селективные - для остальных.

Мощностной режим (впрыск на такте впуска). Так называемый "режим однородного смесеобразования" используется при интенсивной городской езде, высокоскоростном загородном движении и обгонах. Топливо впрыскивается на такте впуска коническим факелом, перемешиваясь с воздухом и образуя однородную смесь, как в обычном двигателе с распределенным впрыском. Состав смеси - близок к стехиометрическому (14,7:1)

Двухстадийный режим (впрыск на тактах впуска и сжатия). Этот режим позволяет повысить момент двигателя в том случае, когда водитель, двигаясь на малых оборотах, резко нажимает педаль акселератора. Когда двигатель работает на малых оборотах, а в него вдруг подается обогащенная смесь, вероятность детонации возрастает. Поэтому впрыск осуществляется в два этапа. Небольшое количество топлива впрыскивается в цилиндр на такте впуска и охлаждает воздух в цилиндре. При этом цилиндр заполняется сверхбедной смесью (примерно 60:1), в которой детонационные процессы не происходят. Затем, в конце такта сжатия, подается компактная струя топлива, которая доводит соотношение воздуха и топлива в цилиндре до "богатого" 12:1.

Почему этот режим введен только для автомобилей для европейского рынка? Да потому что для Японии присущи невысокие скорости движения и постоянные пробки, а Европа- это протяженные автобаны и высокие скорости (а следовательно, высокие нагрузки на двигатель).

Компания Mitsubishi стала пионером в применении непосредственного впрыска топлива. На сегодняшний день аналогичную технологию используют Mercedes (CGI), BMW (HPI), Volkswagen (FSI, TFSI, TSI) и Toyota (JIS). Главный принцип работы этих систем питания аналогичен- подача бензина не во впускной тракт, а непосредственно в камеру сгорания и формирование послойного либо однородного смесеобразования в различных режимах работы мотора. Но подобные топливные системы имеют и различия, причем иногда довольно существенные. Основные из них - рабочее давление в топливной системе, расположение форсунок и их конструкция.

Принцип работы инжектора заключается в том, чтобы подать своевременно в камеры сгорания топливовоздушную смесь. Это необходимо для нормального функционирования двигателя. Системой управления корректируется момент подачи напряжения на электроды свечей, чтобы воспламенить эту смесь. Причем эти параметры контролируются системой датчиков, установленных на двигателе.

Электронный блок управления

Для работы любого инжекторного мотора необходим блок управления микроконтроллерного типа. К нему подключаются:

  1. Исполнительные механизмы при помощи электромагнитных реле.
  2. Датчики через согласующие устройства.

Питание осуществляется от бортовой сети. Принцип работы инжектора ВАЗ такой же, как и на любом другом автомобиле. Электронный блок состоит из:

  1. Постоянной памяти - она необходима для хранения информации, записи алгоритмов работы.
  2. Оперативной памяти - в нее записывается текущая информация, все данные при выключении зажигания стираются из нее.
  3. Микроконтроллера - он позволяет обрабатывать поступающие сигналы и регулировать работу всех исполнительных механизмов.

В памяти устройства записан алгоритм работы, зависит он от поступающих сигналов с датчиков. Называется этот алгоритм «прошивкой» или «топливной картой».

Система датчиков

На инжекторных двигателях устанавливается множество датчиков, они позволяют считывать максимальное количество информации о работе. Следующие датчики можно встретить на отечественных и импортных автомобилях:

  1. Расхода воздуха.
  2. Температуры антифриза.
  3. Положения коленчатого вала.
  4. Положения распределительного вала.
  5. Давления во впускном коллекторе.
  6. Скорости автомобиля.
  7. Уровня бензина в баке.
  8. Положения дроссельной заслонки.
  9. Концентрации кислорода в выхлопных газах.

Все эти датчики управляют исполнительными механизмами, которые участвуют в образовании смеси и корректировке угла опережения зажигания.

Датчик массового расхода воздуха

Это устройство, в основе которого находится нить из драгметалла - платины. Стоимость таких датчиков очень высокая, поэтому лучше следить за его состоянием и не допускать поломок. Обязательно нужно знать, какой у датчика принцип работы. На ВАЗ всех моделей с инжекторными моторами такие приборы устанавливаются.

Работает он так:

  1. Нить из платины прогревается до 600 градусов.
  2. Через фильтр в трубку с нитью поступает поток воздуха под действием разрежения во впускном коллекторе.
  3. В блоке управления имеются данные о температуре нити и размерах трубки датчика.
  4. Поток воздуха охлаждает нить на несколько градусов.
  5. По разнице температур ЭБУ высчитывает количество воздуха, которое проходит через трубку за определенный момент времени.

Эти данные необходимы для того, чтобы составить топливную смесь в правильной пропорции.

Датчик температуры антифриза

Этот прибор позволяет электронному блоку управления понять, что двигатель прогрет до рабочей температуры. При запуске холодного двигателя в топливной смеси нужно уменьшать количество воздуха, для этого используется регулятор холостого хода. При помощи этого мотор работает максимально эффективно, быстро выводится в устоявшийся режим. Принцип работы ГБО 2 поколения на инжекторе такой же, как и на карбюраторе. Вот только при помощи сигнала с датчика температуры можно реализовать запуск двигателя на бензине и после прогрева автоматический переход на газовое топливо. Располагается датчик температуры в блоке двигателя или в корпусе термостата.

Датчики положения валов

Устанавливаются эти приборы на коленчатом и распределительном валах. Стоит отметить, что на распредвалах не всегда используются датчики - часто обходятся без них. Но их использование позволяет добиться максимальной мощности от двигателя, улучшить качество смесеобразования, правильно скорректировать момент подачи искры на электроды свечей.

Работают приборы на эффекте Холла - при прохождении металлического предмета возле активной части датчика происходит генерация импульса. Он подается на электронный блок управления и сравнивается с остальными параметрами работы мотора. Намного лучше сможет работать двигатель в режиме холостого хода. Принцип работы инжекторной системы основывается на сравнении сигналов, поступающих от датчиков.

Датчик давления во впускном коллекторе

Его еще называют МАР-сенсор. Он может использоваться как совместно с датчиком расхода воздуха, так и полностью замещать его. Поэтому, если на двигателе имеется МАР-сенсор, поломка ДМРВ почти не страшна. Его функции перейдут к этому прибору. В основе элемента находится чувствительная пластина, которая под действием давления меняет сопротивление. Соединение с электронным блоком управления производится при помощи согласующего устройства.

Датчик положения дроссельной заслонки

Устанавливается на корпусе дросселя, датчик может быть аналоговым или бесконтактным. Первые работают по принципу переменного резистора - при вращении оси заслонки происходит перемещение бегунка на обмотке. При этом меняется сопротивление элемента, уменьшается или увеличивается уровень сигнала, поступающего на электронный блок управления. Существуют приборы бесконтактного типа, они работают так же, как энкодеры. Отличаются высокой надежностью, но с аналоговыми приборами не взаимозаменяемы.

Прибор позволяет оценить положение заслонки, чтобы выдать информацию об этом блоку управления. Последний, исходя из этого значения, подаст в топливную рампу именно столько бензина, сколько необходимо для нормального смесеобразования.

Лямбда-зонд

Это прибор, который позволяет оценить содержание кислорода в выхлопной системе. Изготавливается датчик из керамики, обычно из диоксида циркония. Особенность этого материала в том, что он становится проницаемым для ионов кислорода при условии, что произойдет нагрев до температуры 300 градусов и выше. Замер уровня кислорода происходит как внутри выхлопной системы, так и снаружи.

Ведь блок управления не измеряет точное количество кислорода, он только оценивает разницу в проводимости керамического элемента внутри и снаружи системы. Именно такой используется принцип работы. Инжекторы на автомобилях функционируют нормально только лишь при условии, что система работает стабильно. Датчик снаружи вырабатывает определенный сигнал, который считается электронным блоком как эталон. Именно с ним происходит сравнение сигнала, поступающего от внутреннего лямбда-зонда.

Датчик уровня бензина

Применяются механизмы поплавкового типа, очень похожи по принципу действия на резистивные датчики положения заслонки дросселя. При изменении уровня топлива в баке поплавок будет подниматься или опускаться. При этом изменяется сопротивление датчика в цепи. Используется прибор для того, чтобы оповещать водителя об уровне бензина. Может применяться и для автоматического перехода с газа на бензин и обратно, если установлено ГБО.

Датчик скорости

Предназначен для контроля скорости автомобиля. Может устанавливаться как в тросиковом спидометре, так и в электронном. В первом случае прибор позволяет только выдавать сигнал для работы системы впрыска. Во втором случае он включен в цепь электронного спидометра. При наличии электроусилителя рулевого управления, иммобилайзера или иных охранных систем, этот датчик подключается к ним. Дело в том, что усилитель руля работает только при движении с малой скоростью. Как только скорость увеличивается, необходимость в усилителе отпадает. Многие охранные системы соединяются с датчиком скорости, чтобы обеспечить максимальную безопасность.

Исполнительные механизмы

Для нормального функционирования инжекторной системы используются исполнительные механизмы. Принцип работы механического инжектора "Ауди" немного отличается от электронного. Суть процессов примерно аналогичная.

В системе используются такие исполнительные устройства:

  1. Электрический топливный насос.
  2. Регулятор холостого хода.
  3. Топливные форсунки.
  4. Дроссельный узел.
  5. Модуль зажигания.

При помощи всех этих устройств производится управление двигателем внутреннего сгорания. Именно с помощью них можно поддержать на нормальном уровне холостой ход. Принцип работы инжектора в этом режиме такой же, как и в любом другом.

Типы впрыска топлива

Центральный впрыск во многом похож на карбюраторную систему, только вместо сложной совокупности каналов и жиклеров используется одна электромагнитная форсунка. Она устанавливается на впускной коллектор, и через нее подается топливная смесь в камеры сгорания. Недостаток один - при выходе из строя форсунки автомобиль не сможет продолжать движение.

Намного лучше в работе окажутся системы с парным или фазированным впрыском. Особенно эффективны последние - смесь поступает в камеры сгорания каждого цилиндра, в зависимости от того, в каком конкретно цикле на данный момент находится мотор. Устанавливается по одной форсунке на цилиндр и столько же катушек зажигания. Но может применяться и модуль.

Питание двигателя газом

Инжекторные двигатели можно без особых проблем перевести на питание газом (пропаном или метаном). Вот только если решите установить ГБО второго поколения, необходимо использовать меры защиты. Проблема в том, что при работе газобаллонного оборудования могут происходить хлопки. Для карбюратора это не очень страшно, а вот в инжекторных моторах может выйти из строя датчик расхода воздуха. Принцип работы ГБО 2 поколения на инжекторе заключается в том, чтобы обезопасить от хлопков систему впрыска. Для этого производится установка специальных устройств.

Но намного лучше использовать ГБО 4 поколения - такие устройства предназначены для установки на инжекторные моторы. В комплекте имеется несколько датчиков, которые дополняют стандартную конструкцию, а также электронный блок управления. Он соединяется со штатным и берет данные о работе двигателя именно от него. Пятое поколение газобаллонного оборудования используют крайне редко - стоимость его очень высокая.

При переходе с бензина на газ необходимо выполнить такие условия:

  1. В системе охлаждения жидкость должна быть теплой - свыше 50 градусов. Только в этом случае газ сможет нормально испаряться в редукторе.
  2. Обязательно необходимо отключить бензиновые форсунки.
  3. Сразу же происходит включение газовых форсунок.
  4. Время их открывания должно немного отличаться от аналогичного параметра бензиновых. Коэффициент вычисляется при калибровке.
  5. Происходит корректировка угла опережения зажигания, так как октановое число газа более 100.

Инжектор "Вентури" и автомобильный

Отличий у них множество, но есть и схожие черты. Принцип работы инжектора "Вентури" заключается в том, чтобы по трубе определенного диаметра пропустить жидкость или газ. На этой трубе имеется форсунка определенного диаметра, через нее вещество выходит под действием давления. При помощи такого инжектора получается реализовать системы орошения полей, подачу жидкости в емкости на производстве. В большинстве случаев такими инжекторами производится замер количества жидкости, проходящей за единицу времени.

Инжектор – это самый популярный электронно-механический узел в автомобилестроении. Устройство и принцип работы инжектора одновременно просты и сложны. Конечно, рядовому автовладельцу необязательно вникать в детали конструкции инжекторных систем и их программного обеспечения, но основные моменты знать не помешает.

Ниже мы расскажем о том, что такое инжектор, каков принцип его работы, и какие типы инжекторных форсунок чаще всего применяются на современных двигателях.

Такие вещи своими силами не ремонтируются, однако разбираться в устройстве инжектора стоит, хотя бы для того, чтобы не попасть впросак при оплате счета в автосервисе.

Инжектор (англ. - Injector) - это специальная форсунка, установленная на двигатель внутреннего сгорания , либо являющаяся частью целой инжекторной системы. Она выполняет функцию распылителя топлива (жидкого или газообразного).

Впервые данную разработку внедрили в производство специалисты компании Bosch, когда оснастили ею купе Goliath 700 Sport с двухтактным двигателем. Произошло это в 1951 году, а всего через 3 года это же сделал Mercedes (Mercedes-Benz 300 SL). Однако поначалу такие комплектующие были довольно дороги, так что широкое применение инжекторов началось только в 70-х годах. Инжекторная система быстро вытеснила карбюраторы (особенно в Европе, Америке и Японии) и на сегодняшний день большинство моделей автомобилей оснащаются именно этим устройством.

Инжекторная система впрыска топлива (Fuel Injection System) отличается тем, что она осуществляет прямой впрыск непосредственно в цилиндры или же во впускной коллектор. Делается это при помощи все той же форсунки, которые, в свою очередь, делятся на 2 категории, отличающиеся местом монтажа инжектора, а также принципом его работы:

  1. Моновпрыск – его еще называют центральным впрыском топлива. В данном случае инжектор представляет собой только одну форсунку, которая подает топливо во все цилиндры двигателя. При таком подходе сам инжектор крепится прямо на впускном коллекторе. Стоит заметить, что на сегодняшний день данная схема работы устарела и практически не используется автопроизводителями.
  2. Распределенный впрыск – это значит, что для каждого отдельного цилиндра подведена своя форсунка.

Помимо этого, существует несколько типов распределенного впрыска:

  • прямой (непосредственный) – при нем топливо впрыскивается сразу в камеру сгорания мотора;
  • одновременный – в этом случае все форсунки инжектора работают синхронно, в один момент подавая топливо во все цилиндры;
  • попарно-параллельный – осуществляется открытие форсунок парной схемой. Т. е. первая открывается перед впуском, а вторая – перед выпуском. Однако такой подход имеет место только в случае запуска мотора, тогда как в движении реализуется фазированная схема;
  • фазированный впрыск – это означает, что каждая отдельная форсунка инжектора открывается именно перед впуском.

Инжекторные форсунки различаются по способам впрыска:

  1. Электромагнитная;
  2. Электрогидравлическая;
  3. Пьезоэлектрическая.

Электромагнитная форсунка – довольно проста и ставится на бензиновые моторы (в большинстве случаев). Ею оснащают и двигатели с непосредственным впрыском. Ее главными составными частями являются оснащенный иглой электромагнитный клапан, а также сопло. В процессе функционирования на обмотку клапана подается электрический разряд. Частотой его подачи ведает специальный электронный блок управления. В ходе процесса происходит образование электромагнитного поля. Оно втягивает иглу, освобождает сопло и происходит впрыск, причем делается это одновременно со сжиманием пружины, которая разжимается после исчезновения электромагнитного поля и возвращает иглу в исходное положение.

Электрогидравлическая форсунка – применяется на дизельных моторах (в том числе с системой Common Rail). Основные элементы данной форсунки – это камера управления, дроссели (впускной и сливной) и электромагнитный клапан. Работают они благодаря разнице в давлении солярки на форсунку и поршень: иглу форсунки топливо прижимает к седлу, тогда как электромагнитный клапан закрыт (обесточен).

Когда блок управления открывает клапан, открывается и дроссель (сливной). Далее происходит заполнение топливной магистрали соляркой, вытекающей через дроссель. При этом начинает уменьшаться давление дизтоплива на поршень, тогда как на игле оно остается прежним. Из-за этого игла приподнимается и осуществляется впрыск.

Пьезоэлектрическая форсунка – это наиболее совершенный (в техническом отношении) вариант. Как правило, ею оснащают дизельные движки. У нее немало достоинств, среди которых скорость работы (по сравнению электромагнитным устройством она быстрее в 4 раза), а также предельно точная и выверенная дозировка. В данном случае применяется пьезокристалл, который изменяет свою длину под напряжением. Это устройство состоит из толкателя, пьезоэлемента, клапана и иглы.

Принцип работы схож с электрогидравлической форсункой. Здесь также применена схема с разницей в давлении топлива. Электрический ток удлиняет пьезоэлемент, который давит на толкатель. В результате переключающий клапан открывается, и топливо вливается в магистраль. Давление на иглу уменьшается, и она отходит вверх, производя впрыск.

Самый простой инжектор имеет в своей конструкции следующие элементы:

  1. Электронный блок управления;
  2. Бензонасос (электрический);
  3. Форсунки;
  4. Датчики;
  5. Регуляторы давления.

Как видно, ничего слишком сложного в конструкции инжектора нет, по крайней мере, это касается его механической части. Если коротко, то работа инжекторной системы впрыска происходит следующим образом:

  • Датчик расхода воздуха измеряет массу воздуха, поступающего в мотор.
  • Далее эта информация передается в блок управления инжектора, вместе с другими данными (температура силового агрегата, скорость вращения коленвала, температура воздуха, скорость и степень открытия дроссельной заслонки, и другие параметры).
  • Компьютер анализирует всю эту информацию и точно высчитывает то количество топлива (бензина, дизтоплива, газа), которое требуется для сжигания в поступившей массе воздуха.
  • Далее происходит подача электрического разряда (определенной длительности) на форсунки инжектора, которые открываются, пропуская топливо из топливной магистрали во впускной коллектор.

Наиболее сложная часть всей инжекторной системы – это электронный блок управления (сокращенно – ЭБУ). Он представляет собой микрокомпьютер, производящий вычисления по программе, внесенной в его память. Программа составлена таким образом, что успевает анализировать все параметры работы двигателя и реагировать на изменение информации, полученной от внешних датчиков.

Именно поэтому для корректной работы инжектора крайне важны следующие два компонента: каталитический нейтрализатор отработанных газов и датчик кислорода (лямбда-зонд).

  1. Каталитический нейтрализатор . Внешне он имеет сходство с сотами, которые покрыты специальным слоем. Его задача состоит в дожигании несгоревшего топлива, вылетающего из камеры сгорания вместе с выхлопными газами. Но он теряет эту способность в результате всего нескольких заправок этилированным бензином. Однако не только топливо может стать причиной неисправности. Часто нейтрализатор просто оплавляется в результате длительной езды на обогащенной смеси – соты попросту забиваются нагаром. Это происходит в результате поломки датчика кислорода или неисправностей в системе зажигания.
  2. Датчик кислорода . Чаще всего автомобили оснащают циркониевыми датчиками, которые прогреваются до рабочей температуры (свыше 300 °С) и подают блоку управления информацию о состоянии смеси, ориентируясь на состав выхлопа. Если смесь слишком богатая или бедная – компьютер корректирует подачу топлива, соответственно увеличивая или уменьшая его количество.

Видео о том, как работает инжектор