Монтаж исполнительных и регулирующих устройств. Сочленение регулирующих органов с исполнительными механизмами

Тележка является ходовой частью вагона, через которую осуществляется взаимодействие вагона и пути, а также направленное движение по рельсовому пути (рис. 3.0).

Тележка в соответствии с рисунком состоит из: двух колесных пар 1 с буксовыми узлами; двух боковых рам 2; надрессорной балки 3; рессорного подвешивания 4 с центральным расположением рессорных комплектов в боковых рамах тележки; тормозной рычажной передачи 5 с односторонним нажатием колодок на колеса и подвесными триангелями. Сочленение боковой рамы с колесными парами осуществляется через сменную износостойкую полимерную вставку 6 и адаптер 7. При оборудовании вагона автоматическим регулятором режимов торможения на одной из тележек подкатываемых под вагон, устанавливается опорная балка 8. Тележка оборудована: упругими скользунами; 9 устройствами исключающими возможность выхода колесных пар из буксовых проемов боковых рам; устройством 12 для направленного отвода колодок от колес при отпущенном тормозе; устройством 13 для отвода статического электричества от вагона на рельс; шкворнем 14. Кроме этого, в тележке предусмотрены предохранительные устройства от падения деталей на путь триангелей, затяжек, чек, осей (валиков) тормозной рычажной передачи в случае внезапных отказов и при разгрузке на вагоноопрокидыватель.

Рис. 1.5

Боковая рама (Рис.3.0) предназначена для восприятия нагрузок, передаваемых от кузова вагона, передачи их на колесные пары, а также для размещения рессорного комплекта.

Боковая рама представляет собой отливку, в средней части которой расположен проем Г для размещения рессорного комплекта, а по концевым частям буксовые проемы Д для установки колесных пар.

Нижняя часть рессорного проема образует опорную плиту Е с размещенными на ней боками и буртами для фиксации пружин рессорного комплекта. На вертикальных стенках рессорного проема выполнены площадки, к которым заклепками 2 приклепаны фрикционные планки 1. Упоры Ж служат для ограничения поперечных перемещений фрикционных клиньев.

С внутренней стороны боковой рамы опорная плита Е переходит в предохранительные полки, являющиеся опорами для наконечников триангелей в случае обрыва подвесок, которыми триангели подвешены к кронштейнам боковой рамы. В кронштейны 3 установлены полимерные износостойкие втулки 3. Полки И с овальными отверстиями служат опорами для балки авторежима.

В нижней части буксового проема на боковой раме имеются кронштейны К с отверстиями для крепления устройства, предохраняющего колесные пары от выхода из буксового проема при экстремальных ситуациях.


Рис. 3.1

Надрессорная балка (Рис. 3.1) представляет собой отливку коробчатого сечения и служит для передачи нагрузки на рессорные комплекты и упруго-фрикционной связи боковых рам тележки. Нагрузки на фрикционные клинья гасителей колебаний рессорного комплекта передаются через наклонные площадки, расположенные в специальных карманах, выполненных по концам надрессорной балки. На верхнем поясе надрессорной балки расположены: подпятниковое место для опоры пятника вагона, опорные площадки с резьбовыми отверстиями для установки скользунов. На нижних опорных поверхностях надрессорной балки выполнены ребра, которыми фиксируются наружные пружины рессорного комплекта. На боковой стенке надрессорной балки в средней части расположены приливы для установки державки мертвой точки 1, закрепленной заклепками 2. В подпятниковое место устанавливается износостойкий элемент-чаша 3 с твердостью 255-341 НВ. Для предохранения чаши от выпадения введена наплавка ограничителей с зачисткой заподлицо в четырех местах с обеспечением зазора между наплавкой и чашей не менее 0,2 мм. Узел сочленения боковой рамы с колесными парами. Боковая рама устанавливается на колесные пары через сменные износостойкие полимерные вставки и специальные адаптеры. Устройства исключают возможность выхода колесных пар из буксовых проемов боковых рам при соударениях вагонов и других эксплуатационных ситуациях.

Узел соединения боковой рамы с колесной парой в тележке грузового железнодорожного вагона включает П-образный буксовый проем боковой рамы 1 с установленной на опорной поверхности износостойкой съемной скобой 2, адаптер 3 прямоугольной формы с цилиндрическим вырезом в нижней части под установку на двухрядный кассетный подшипник 4 колесной пары 5 и блокиратор 6, предохраняющий колесную пару от выхода из буксового проема боковой рамы. Блокиратор 6, имеющий отверстие под болт 8 и прямоугольный паз 7 для стопорения головки болта 8, ширина а которого не превышает ширины b головки болта 8, входящий в отверстие в нижней части внутренней вертикальной стенки буксового проема, опирается на нижнюю полку 9 внутренней вертикальной стенки (возможно через пластину 10) и закреплен болтом 8, расположенным вверх головкой, которая входит в прямоугольный паз 7 блокиратора 6, с шайбой 11 и самостопорящейся гайкой 12, 2 з.п. ф-лы, 1 ил.

Полезная модель относится к подвижному составу железнодорожного транспорта и может быть использована в конструкциях тележек грузовых вагонов.

В эксплуатируемых двухосных тележках грузовых вагонов (Вагоны / Под ред. Л.А.Шадура. - М.: Транспорт, 1980. - 439 с.) боковая рама своими П-образными концевыми проемами через буксу с роликовыми подшипниками качения свободно опирается на шейки осей колесных пар, которые могут вместе с буксой перемещаться в проемах в пределах продольного и поперечного зазоров.

Такая конструкция двухосной тележки имеет следующие недостатки, обусловленные конструкцией узла соединения боковой рамы с колесной парой.

Корпус буксы не закреплен в вертикальном направлении относительно боковой рамы. Отсутствие предохранительного устройства приводит к тому, что при действии ударных нагрузок при роспуске вагонов с горок боковая рама подпрыгивает над буксой, и корпус буксы переворачивается на подшипниках вокруг оси колесной пары, также нередки случаи выхода колесной пары из буксового проема. Это значительно снижает надежность узла соединения боковой рамы с колесной парой и может привести к сходу вагона с рельсов.

Наиболее близкой к заявляемой полезной модели является конструкция узла опоры боковой рамы на колесную пару тележки грузового вагона (В.П.Ефимов, К.А.Белоусов, И.Н.Еленевский, В.А.Чернов Технический уровень тележки модели 18-578 и варианты ее модернизации // Проблемы и перспективы развития грузового вагоностроения: Материалы II международной научн.-техн. конференции / Под науч. ред. проф. А.В.Смольянинова. - Екатеринбург: УрГУПС, 2007. - С.64-73), содержащая боковую раму с буксовым проемом, которая опирается на колесную пару через адаптер и сменную износостойкую скобу. Для исключения выхода колесной пары в нижней части буксового проема выполнен прилив для установки предохранительного устройства (блокиратора). В приливе буксового проема соосно с осью колесной пары выполнены два отверстия для установки болта и штифта. Предохранительное устройство закрепляется при помощи болта с гайкой и фигурной отгибной шайбы, которая служит для стопорения гайки от самораскручивания. Отгибная шайба, для исключения ее прокручивания вокруг болта, свободным концом застопорена штифтом, вставленным в отверстие предохранительного устройства и прилива.

Недостатком данной конструкции узла опоры боковой рамы на колесную пару тележки грузового вагона, обусловленным конструкцией предохранительного устройства является то, что предохранительное устройство висит на болте и штифте, при движении вагона возникают вибрации предохранительного устройства, которые передаются на болт, работающий на срез. Под действием вибрации может происходить излом болта или его откручивание, так как головка болта не застопорена от проворота, что снижает надежность крепления предохранительного устройства в эксплуатации.

Каждый раз при разборке и сборке такого соединения необходимо устанавливать новую фигурную отгибную шайбу, так как ее повторное использование невозможно. При установке отгибной шайбы в момент загиба ее «лапой» на грань гайки происходит ослабление затянутого болтового соединения.

Задачей полезной модели является разработка узла соединения боковой рамы с колесной парой повышенной надежности за счет установки предохранительного устройства (блокиратора) и конструкции его крепления на боковой раме тележки.

Технический результат полезной модели заключается в повышении надежности узла крепления блокиратора за счет исключения излома болта при эксплуатации и надежности резьбового соединения.

Технический результат достигается тем, что узел соединения боковой рамы с колесной парой в тележке грузового железнодорожного вагона содержит П-образный буксовый проем с установленной на опорной поверхности износостойкой съемной скобой, адаптер прямоугольной формы с цилиндрическим вырезом в нижней части под установку на двухрядный кассетный подшипник колесной пары и блокиратор, предохраняющий колесную пару от выхода из буксового проема боковой рамы. Блокиратор, имеющий отверстие под болт, выполнен с прямоугольным пазом в верхней части, ширина которого не превышает наибольшего размера шестигранной головки болта. Блокиратор входит в отверстие в нижней части внутренней вертикальной стенки буксового проема и расположен с возможностью опоры на полку внутренней вертикальной стенки (возможно через пластину). Крепление блокиратора осуществляется болтом, расположенным вверх головкой, которая входит в прямоугольный паз блокиратора. Болт снабжен шайбой и самостопорящейся гайкой.

Сущность полезной модели поясняется чертежом фиг.1, где изображен общий вид узла соединения боковой рамы с колесной парой.

Узел соединения боковой рамы с колесной парой включает боковую раму 1 (фиг.1), имеющую П-образный буксовый проем с установленной на опорной поверхности износостойкой съемной скобой 2, адаптер 3 прямоугольной формы с цилиндрическим вырезом в нижней части под установку на двухрядный кассетный подшипник 4 колесной пары 5 и блокиратор 6, предохраняющий колесную пару от выхода из буксового проема.

Блокиратор 6 имеет отверстие под болт 8 и прямоугольный паз 7 для стопорения головки болта 8, ширина которого а не превышает ширины b головки болта.

Блокиратор 6 входит в отверстие в нижней части внутренней вертикальной стенки буксового проема и опирается на нижнюю полку 9 внутренней вертикальной стенки буксового проема, и закреплен болтом 8, расположенным вверх головкой, которая входит в паз 7 блокиратора 6, с шайбой 11 и самостопорящейся гайкой 12. Для регулирования зазора между блокиратором 6 и кассетным подшипником 4, под блокиратор могут устанавливаться пластины 10.

Опирание блокиратора 6 на нижнюю полку 9 внутренней стенки буксового проема и вертикальное расположение болта 8, работающего на растяжение, исключает его излом при эксплуатации, что повышает надежность крепления блокиратора 6 на боковой раме 1.

Ширина а паза 7, не превышающая наибольшего размера b шестигранной головки болта, и применение самостопорящейся гайки 12 исключает поворот головки болта 8 и раскручивание ботового соединения, повышая надежность резьбового соединения.

1. Узел соединения боковой рамы с колесной парой в тележке грузового железнодорожного вагона, содержащий П-образный буксовый проем с установленной на опорной поверхности износостойкой съемной скобой, адаптер прямоугольной формы с цилиндрическим вырезом в нижней части под установку на двухрядный кассетный подшипник колесной пары и блокиратор, предохраняющий колесную пару от выхода из буксового проема боковой рамы, закрепленный посредством болта к нижней части внутренней вертикальной стенки буксового проема, отличающийся тем, что блокиратор, имеющий отверстие под болт, выполнен с прямоугольным пазом в верхней части, ширина паза не превышает наибольшего размера шестигранной головки болта, в нижней части внутренней вертикальной стенки буксового проема выполнено отверстие для установки блокиратора, расположенного с возможностью опоры на нижнюю полку внутренней вертикальной стенки буксового проема, при этом болт размещен вверх головкой, которая входит в прямоугольный паз блокиратора, и снабжен шайбой и самостопорящейся гайкой.

2. Узел соединения боковой рамы с колесной парой в тележке грузового железнодорожного вагона по п.1, отличающийся тем, что между блокиратором и полкой могут устанавливаться регулировочные пластины с отверстиями под болт.

В. Орлов, инженер городского транспорта, Минск

В августе 1997 г. автобусное отделение МАЗ пополнило выпускаемое семейство новой моделью – сочлененной особо большой вместимости, получившей обозначение 105. На городской маршрут первый такой автобус вышел весной 1999 г. Автобус спроектирован по «тянущей» схеме – с ведущим средним мостом. Конструкция имеет заметную отличительную особенность: двигатель, расположенный в «тягаче» (первой секции), установлен вертикально слева. Помимо того, что нет необходимости в сложном и дорогостоящем узле сочленения (противоскладывания), увеличилась сцепная масса, т. е. улучшилась проходимость и устойчивость, а сцепное устройство на основе сферического шарнира обеспечивает секциям три степени свободы. Принятая компоновка позволила понизить уровень пола салона до 600 мм по всей длине, а дверные проемы имеют одну ступеньку. В 2002 г. на московском Мотор-шоу Ликинский автобусный завод представил сочлененный автобус ЛиАЗ-6212 с расположением двигателя в базе (горизонтально). В настоящее время автобус выпускают серийно. Механизм его противоскладывания разработан конструкторами ЛиАЗа самостоятельно. Следует заметить, что собственные разработки таких узлов есть всего лишь у нескольких компаний в мире. В 2005 г. собрана опытная низкопольная «гармошка» мод. 6213 (с покупным узлом противоскладывания), и в настоящее время опытные образцы автобуса проходят эксплуатационные испытания.
Достоин одобрения сегодняшний шарнирно-сочлененный автобус Львовского автобусного завода «Сити» ЛАЗ-20 который поставляется и в варианте троллейбуса. Удачными являются самостоятельно разработанный кузов и схема его окраски. Длина машины, превышающая «стандартные» 18 м, ставит ее в ряд новейших «гармошек» всемирно известных изготовителей – EvoBus (мод. CapaCity) и NeoMAN (GXL).
В 1993 г. завод из г. Ликино-Дулёво представил городской сочлененный автобус большой вместимости ЛиАЗ-6220. Заводские конструкторы самостоятельно разработали ранее не выпускавшийся в СНГ типоразмер автобуса (сочлененный), причем новой, заднемоторной компоновки по так называемой «толкающей» схеме. Изучение условий обеспечения устойчивости и управляемости принципиально новой машины и разработку соответствующих механизмов конструкторы ЛиАЗа вели совместно со специалистами Московского автомеханического института (МГТУ МАМИ). Их выводы не противоречили опыту коллег из промышленно развитых стран (там сочлененные автобусы появились раньше), особенно учитывая, что для автобусов такого типоразмера эти задачи и на Западе не решены окончательно.
Узел сочленения секций при «толкающей» схеме имеет только две степени свободы (т. е. не позволяет им закручиваться друг относительно друга при движении по неровным дорогам или повреждении элементов пневмоподвески одного борта), что приводит к возникновению дополнительных нагрузок на кузов и сочленение, снижающих их ресурс. Было установлено: для предотвращения «складывания» секций автобуса в поворотах (и при движении на скользкой дороге) в конструкции заднемоторных «сочлененников» требуется применять специальное устройство. Возможностей АБС тормозов, помогающей избежать складывания при торможении, для сочлененного автобуса с приводом на третий мост недостаточно. Установка в узле сочленения гидравлического (нерегулируемого) демпфера в целом обеспечивает устойчивость движения автобуса, гася поперечные колебания секций и предотвращая их раскачку. Вместе с тем опасность складывания сохранялась. Для ее предотвращения или снижения до безопасной величины использовали демпфер с золотниковым клапаном переменного диаметра. Забегая вперед, скажем, что задачей максимум являлась увязка работы демпфера с угловой скоростью, величиной поворота (и буксования) управляемых колес, учет коэффициента сцепления с дорогой. Кроме этого, был необходим концевой датчик, при угле складывания секций 45º (максимально допустимом для различных конструкций узла) подающий команду в систему противоскладывания и тем самым предотвращающий дальнейшее увеличение угла поворота. Основу устройства противоскладывания составляют гидроцилиндры двойного действия, еще называемые гидравлическими амортизаторами с изменяющимся сопротивлением. Однако для регулирования величины их сопротивления требовался специальный электронный блок.
Остается сказать, что стоимость системы противоскладывания или обеспечения устойчивости заднеприводного автобуса, представляющей собой сложное электронно-гидравлическое устройство, сопоставима со стоимостью современного двигателя и гидромеханической коробки передач!
В сочлененных автобусах промышленно развитых стран, имеющих «толкающую» схему, использован более сложный механизм противоскладывания секций. В упоминавшейся мод. О305G устройство состояло из двух датчиков угла поворота, встроенных в рулевой механизм, и дросселей с электромагнитными клапанами, встроенных в трубопроводы, связывающие гидроцилиндры (по два на каждую секцию автобуса). При увеличении угла складывания дроссели усиливали сопротивление потоку жидкости между гидроцилиндрами. Если угол складывания превышал 45º, электромагнитные клапаны блокировали перетекание жидкости, запирая гидроцилиндры. Бортовая электронная система сравнивала частоту вращения колес средней и задней осей, отключая подачу топлива при превышении допустимых значений соотношения между ними. Все колеса комплектовали датчиками бокового скольжения, сигнал которых вызывал соответствующие управляющие воздействия на механизм противоскладывания. Как бы то ни было, отечественная разработка узла противоскладывания и системы его управления стала настоящим успехом ЛиАЗа.
C чем связана популярность особо больших городских автобусов с толкающей задней секцией? Раньше – с возможностью их унификации с одиночными городскими автобусами и снижением уровня шума двигателя в салоне, сейчас – со снижением высоты пола, поскольку под полом салона нет силовой установки. Иначе говоря, главный недостаток сочлененных автобусов с горизонтальным расположением двигателя в базе и средней ведущей осью (схемы, до недавних пор считавшейся классической) на сегодняшний день связан со сравнительно высокими полом и шумом в салоне при такой компоновке. В целом современные шарнирно-сочлененные автобусы различаются приводом на колеса и расположением двигателя (горизонтальное или вертикальное).
Также известны сочлененные автобусы с двигателем, расположенным в задней части и средней ведущей осью (мод. SG24OH MAN, мод. 260-SH170 Magirus-Deutz, некоторые другие), а в ряде случаев с ведущими задним и средним мостами (либо передним и средним при установке одноосной секции перед двухосным заднемоторным автобусом). При этом крутящий момент от двигателя передается многосекционным карданным валом через узел сочленения на ведущую ось передней секции. Как отмечали специалисты МГТУ МАМИ, передача крутящего момента через место сочленения в данном случае, при ведущих задних колесах передней секции (среднем мосте), значительно усложняет конструкцию автобуса. Конструкторам требовалось тщательнейшим образом проработать место прохода карданного вала через узел сочленения. Такому автобусу еще необходима более полная нагрузка средней (ведущей) оси, для чего в ряде случаев приходилось отделять коробку передач от двигателя, устанавливая ее в передней части автобуса. К тому же применение такой конструкции вело к разунификации с базовой (одиночной) моделью.
Преимущество автобусов со средней ведущей осью и «задним» двигателем – отсутствие механизма управления складыванием.
Компании EvoBus и NeoMAN в 2007 г. практически одновременно представили новейшие сочлененные автобусы. Их главной особенностью стала нестандартная для двухсекционной конструкции длина, в свою очередь обусловившая:
изготовление автобусов по схеме «одиночный» + «прицеп» в виде ходовой части 15-метрового «трехосника»;
необходимость использования во 2-й секции двух осей;
возможность использовать оба (3-й и 4-й) ведущих моста «прицепа», поскольку 4-я ось является подруливающей.
Вместе с тем худшая компоновка «кормовой» части автобусов CapaCity – 2 ступеньки 4-й двери, думаю, заставит пассажиров вспомнить о пословице: «Не все то золото, что блестит». «Изюминкой» же GXL от NeoMAN является прозрачный гофр над узлом сочленения. Чем ответит IrisBus?
Что касается заокеанских автобусостроителей, то хотя и считается, что «гармошки» появились в США в 1930-е годы, сегодня на европейском континенте их парк и популярность значительно выше.
Уже отмечалось, что среди различных компоновочных схем сочлененных автобусов наибольшее распространение, несмотря на все сложности, получила заднемоторная схема как раз из-за возможности понизить высоту пола салона. К выполненным по «толкающей» схеме «сочлененникам» перешли, но добились ли при этом низкой высоты пола салона? И как это обеспечивается в рассмотренных моделях?
В МАЗ-105 удалось обеспечить одинаковую по всей длине салона высоту пола (600 мм) при наличии одной ступеньки на каждом входе.
Автобусы с бесступенчатыми входами называются низкопольными. Обеспечить отсутствие ступенек у всех дверей в «гармошках» оказывается значительно сложнее, чем в одиночных моделях. Так, в ЛиАЗ-6213 и «Сити» ЛАЗ-20 А292 нет ступенек только у первой и второй дверей (в передней секции). Почему? В зоне последней двери высота пола увеличена, для того чтобы разместить главную передачу и двигатель, а в зоне третьей двери высота пола зависит от расположения под полом механизмов устройства противоскладывания.
«Частичная низкопольность» характерна не только для техники СНГ. В новейшей «гармошке» CapaCity от EvoBus из задней двери в салон ведут… две ступеньки. Чтобы исключить такую «лестницу», четвертую дверь сочлененных автобусов европейских изготовителей (Neoplan, Setra, Volvo) ранее нередко «зашивали».
Чтобы обеспечить бесступенчатый вход во вторую секцию либо уменьшить число ступенек до одной, некоторые автобусостроители, в частности IrisBus, отдельные элементы механизма противоскладывания размещают над гофром узла сочленения (в этом случае возвышается часть крыши).
Остается добавить, что в сочлененных троллейбусах бесступенчатый вход можно обеспечить даже при расположении тягового двигателя в передней секции, поскольку габариты его небольшие, особенно если двигатель переменного тока. Так, в изготовленной заводом «Белкоммунмаш» (Белоруссия) еще весной 1998 г. «гармошке» мод. 333 в передней секции (напротив второй двери) был установлен не только электродвигатель, но и вспомогательная дизель-генераторная установка (для передвижений без питания «от проводов»). В этой модели ступеньки отсутствовали у всех четырех дверей, а напротив третьей была устроена накопительная площадка. Известны и троллейбусы с размещением тягового электродвигателя в задней секции и применением узла противоскладывания.


ЛиАЗ-6212

ЗИС-155+Аремкуз 2ПН-4

ЛАЗ A-291

ЛиАЗ-6213

ЛАЗ-6205

Ikarus C83

ЛиАЗ-6213

ЛАЗ A-292

Сзади, во 2-й секции, с приводом на задний мост

Двигатель Renault ОМ906 Catepillar Deutz/МАN
Коробка передач (число ступеней и тип) Praga/ ZF/ Voith (5Р/ 6Р/ 3А) Voith (3А) ZF (6А)
Ведущий мост МАЗ Raba ZF
Расположение пола салона Пониженное, на высоте одной ступеньки по всей длине В передней секции – бесступенчатое
Объемы выпуска, ед.* 2003 г. – 47
2004 г. – 123
2005 г. – 115
2006 г. – 192
2007 г. – 202
2003 г. – 50
2004 г. – 269
2005 г. – 69
2006 г. – 34
2007 г. – 376
н. д.
* По данным ОАО «АСМ-Холдинг».

Помимо прямой связи силового элемента исполнительного механизма с регулирующим органом существуют следующие виды сочленений: рычажное, кулачковое, редукторное, тросовое.

Всегда желательно, чтобы характеристика регулирующего органа была линейной (Q-расход cреды). Если нелинейность характеристики РО неустранима, то она может быть компенсирована конструкцией сочленения.

Рычажные сочленения (рис. 3-4)бывают с линейной и нелинейной характеристикой.

Они просты по конструкции и надежны в эксплуатации, но применяются только в том случае, когда поворот выходного рычага сервопривода (1) и приводного рычага (2) регулирующего органа осуществляется в одной плоскости, и при условии, что угол поворота выходного рычага, равный 90° обеспечивает максимальное открытие регулирующего органа. Применение рычажного соединения ограничивается также расстоянием между сервоприводом и регулирующим органом.

Кулачковое соединение (рис. 3-5) позволяет использовать сервоприводы с углом поворота выходного вала до 360° , при этом плоскости вращения кулачка и приводного рычага РО могут не совпадать.

Существенным преимуществом этого сочленения является возможность изменения характеристики в широких пределах путем различного профилирования кулачка. Это позволяет добиться линейности характеристики РО при любом виде характеристики . Кулачковые соединения применяют при сравнительно небольших перестановочных усилиях и совместном расположении ИМ и РО.

Редукторное сочленение электрического сервопривода с РО применяется в случае больших перестановочных усилий при перемещениях РО (например, при регулировании питания водой мощных паровых котлов высокого и сверхвысокого давления). Угол поворота выходного вала редуктора практически не ограничен, его передаточные характеристики линейны.

Тросовое соединение в случае необходимости позволяет устанавливать сервопривод на значительном расстоянии от регулирующего органа, но все же это расстояние ограничивается вытяжкой троса. Угол поворота выходного вала ИМ может изменяться от 0 до 270. Повороты диска, укрепленного на выходном валу и приводного рычага, РО могут совершаться в различных плоскостях. Требуемую расходную характеристику РО можно получить, изменяя профиль приводного диска. Для надежности сочленения соединительный трос прокладывается в защитных трубах.

Материал из раздела «Чертежи рамы самодельного мотоблока » сайта фотографий, чертежей и схем мотоблоков , мотокультиваторов и навесного оборудования к ним. Для тех, кто искал в интернете публикации на тему « », а также фото и картинки по запросу «Поворотный шарнир для сцепки ».

Самодельный мотоблок с ломающейся рамой представляет собой две части рамы (сам мотоблок и прицепная тележка адаптер), так называемые полурамы соединенных между собой посредством прицепного устройства, как автомобиль и прицеп. К такому прицепному устройству помимо надежности сцепки предъявляется еще и условие, чтобы имелась возможность свободного поворачивания мотоблока и тележки адаптера относительно друг друга как в горизонтальной, так и в вертикальной плоскости. Для достижения вышеуказанной цели изготавливается поворотный шарнирный узел сочленения двух полурам мотоблока с ломающейся рамой , чертеж которого изображен ниже. Полную независимость мотоблока и адаптера вокруг вертикальной и горизонтальной осей обеспечивает наличие в шарнирном узле двух пар подшипников установленных в вертикальной и горизонтальной плоскости и позволяющие тележке занимать любое положение относительно мотоблока при этом исключает вывешивание колес на неровностях грунта и гасит все силы направленные на опрокидывание адаптера, которые могут возникнуть при работе мотоблока на поле. На чертеже поворотного шарнира для мотоблока с ломающейся рамой изображены:
1- стальной палец (прут диаметром 60 мм); 2- водило тележки адаптера (труба 60 мм); 3- четыре 208 шариковых подшипника; 4- корпус вертикальноустановленных подшипников поворотного шарнира (изготавливается из кругляка диаметром 100 мм); 5- верхний двойной кронштейн сцепки ломающегося мотоблока (два швеллера №5); 6- корпус верхнего горизонтального подшипника (кругляк диаметром 100 мм); 7- верхняя полуось шарнира (прут диаметром 50 мм приваренный к корпусу вертикально установленных подшипников); 8 и 11- две упорные шайбы (толщина 3мм); 9- гайка с резьбой М28; 10- фиксирующий шплинт поворотного шарнира; 12- нижняя полуось шарнирного узла ломающейся рамы мотоблока (прут диаметром 50 мм); 13- корпус нижнего горизонтального подшипника (кругляк диаметром 100 мм); 14- нижняя дуга сцепки мотоблока (труба 30 мм); 15- соединительная стяжка сцепки мотоблока с ломающейся рамой, соединяющая верхний двойной кронштейн с нижней дугой (две металлические полосы толщиной 3 мм)
Установка такого поворотного шарнира на надежно сочленит раму мотоблока с рамой адаптера, оставив возможность их свободного проворачивания друг относительно друга в вертикальной и горизонтальной плоскостях