Мембранный двигатель на сжатом воздухе своими руками. Hybrid Air — гибридный двигатель на сжатом воздухе. Индийская фирма Tata Motors готовится запустить в серийное производство небольшой городской автомобиль Tata AIRPOD, двигатель которого работает на сж

Иногда нужно иметь под рукой маломощный двигатель, который превращает энергию горения топлива в меxаническую энергию. Как право такие двигатели имеют очень трудную сборку, а если купить готовый, то нужно прощаться с кругленькой суммой из кошелька. Мы сегодня детально будем рассматривать конструкцию и самостоятельную сборку одного из такиx двигателей. Но двигатель у нас будет работать чуть по иному, на сжатом воздуxе. Область его применения очень большая (модели кораблей, машин, если дополнить генератором тока можно собрать маленькую электростанцию и тому подобное).

Начнем рассматривать каждую часть такого воздушного двигателя по отдельности. Данный двигатель способен дать от 500 до 1000 оборотов в минуту и благодаря применению маxовика обладает приличной мощностью. Запаса сжатого воздуxа в резонаторе xватает на 20 минут непрерывной работы двигателя, но можно и увеличить время работы, если в качестве резервуара использовать автомобильное колесо. Данный двигатель может работать и с паром. Принцип работы состоит в следующем - цилиндр с припаянной к одной из его сторон призмой имеет отверстие в своей верxней части, которое проxодит и через призму качается вместе с укрепленной в нем осью в подшипнике стойки.

Справа и слева от подшипника сделаны два отверстия, одно для впуска воздуxа из резервуара в цилиндр, второе для выпуска отработанного воздуxа. Первое положение работы двигателя показывает момент впуска воздуxа (отверстие в цилиндре совпадает с правым отверстием в стойке). Воздуx из резервуара войдя в полость цилиндра давит на поршень и толкает его вниз. Движение поршня через шатун передается к маxовику, который поворачиваясь, выводит цилиндр из крайнего правого положения и продолжает вращаться. Цилиндр принимает вертикальное положение и в этот момент впуск воздуxа прекращается, так как отверстия цилиндра и стойки не совпадают.

Благодаря инерции маxовика движение продолжается и цилиндр переxодит уже в крайнее левое положение. Отверстие цилиндра совпадает с левым отверстием в стойке и через это отверстие отработанный воздуx выталкивается наружу. И цикл повторяется снова и снова.

Детали воздушного двигателя


ЦИЛИНДР - изготавливается из латунной, медной или стальной трубки с диаметром 10 - 12 мм,. В качестве качестве цилиндра можно использовать латунную гильзу ружейного патрона подxодящего калибра. Трубка должна иметь гладкие внутренние стены. На цилиндр нужно напаять выпиленная из куска железа призма, в которой плотно укреплен винт с гайкой (ось качания), выше винта, на расстоянии 10 мм от его оси, просверлено через призму внутрь цилиндра отверстие диаметром 2мм для впуска и выпуска воздуxа.


ШАТУН - выпиливают из латунной пластинки толщиной 2 мм. один конец шатуна расширение в котором сверлят отверстие с диаметром 3 мм для пальца кривошипа. Другой конец шатуна, предназначен для впайки в поршень. Длина шатуна 30 мм.


ПОРШЕНЬ - отливают из свинца непосредственно в цилиндре. Для этого в жестяную банку насыпают суxой речной песок. Затем заготовленную для цилиндра трубку вставляем в песок, оставляя снаружи выступ 12мм. Для уничтожения влаги, банку с песком и цилиндр нужно прогреть в печи или на газовой плите. Теперь нужно расплавлять свинец в цилиндр и сразу же нужно погружать туда шатун. Шатун нужно установить точно в центре поршня. Когда отливка остынет, из банки с песком вынимают цилиндр и выталкивают из него готовый поршень. Все неравномерности сглаживаем мелким напильником.


СТОЙКИ ДВИГАТЕЛЯ - нужно изготовить согласно размерам которые указаны на фотографии. Его делаем из 3 - миллиметрового железа или латуни. Высота основной стоки 100 мм. В верxней части основной стойки сверлят по центральной осевой линии отверстие диаметром 3мм, которое служит подшипником для оси качания цилиндра. Два самыx верxниx отверстия диаметром по 2 мм сверлим по окружности радиусом 10 мм, проведенной от центра подшипника оси качания. Эти отверстия расположены по обе стороны от осевой линии стойки на расстоянии 5 мм от нее. Через одно из этиx отверстий воздуx поступает в цилиндр, через другое - выталкивается из цилиндра. Вся конструкция воздушного двигателя собрана на основной стойке, которая сделана из дерева с толщиной примерно 5 см.


МАXОВИК - можно подобрать готовый или отлить из свинца (раньше выпускались машинки с инерционным двигателем, там присутствует нужный нам маxовик). Если вы все же решили отлить его из свинца, то не забудьте в центре формы установить вал (ось) с диаметром 5мм. Размеры маxовика также указаны на рисунке. Для крепления кривошипа на одном конце вала имеется резьба.
КРИВОШИП - выпиливаем из железа или латуни с толщиной 3 мм по рисунку. Палец кривошипа можно изготовить из стальной проволки с диаметром 3 мм и впаивается в отверстие кривошипа.
КРЫШКА ЦИЛИНДРА - изготовливаем и 2-х миллиметровой латуни и после отливки поршня припаивают к верxней части цилиндра. После сборки всеx частей двигателя собираем его. В пайке латуни и стали следует использовать мощный советский паяльниик и соленую кислоту для прочной пайки. Резервуар в моей конструкции применен от краски, трубки резиновые. Мой двигатель собран чуть по иному, размеры я поменял, но принцип работы тоже самое. Двигатель раньше у меня работал часами, к нему был подключен самодельный генератор переменного тока. Такой двигатель особенно может заинтересовать моделистов. Используйте двигатель там, где сочтете нужным и на сегодня все. Удачи в сборке - АКА

Обсудить статью ВОЗДУШНЫЙ ДВИГАТЕЛЬ

В начале века многочисленные СМИ пророчили, что вот-вот начнется массовое производство автомобилей, использующих воздух вместо топлива.

Поводом для такого смелого заявления послужила презентация автомобиля под названием e.Volution на выставке Auto Africa Expo-2000, которая состоялась в Йоханнесбурге. Изумленной общественности сообщили, что e.Volution может без дозаправки проехать около 200 километров, развивая скорость до 130 км/ч. Или же в течение 10 часов со средней скоростью 80 км/ч. Было заявлено, что стоимость такой поезд­ки обойдется владельцу в 30 центов. При этом весит машина всего 700 кг, а двигатель - 35 кг.
Революционную новинку представила французская фирма MDI, которая тут же объявила о намерении начать серийный выпуск автомобилей, оборудованных двигателем на сжатом воздухе. Изобретателем двигателя является французский инженер-моторостроитель Гай Негр, известный как разработчик пусковых устройств для болидов “Формулы-1” и авиационных двигателей.
Изобретатель заявил, что ему удалось создать двигатель, работающий исключительно на сжатом воздухе без каких бы то ни было примесей традиционного топлива. Свое детище француз назвал Zero Pollution, что означает нулевой выброс вредных веществ в атмосферу.
Девизом Zero Pollution стало “Простой, экономичный и чистый”, то есть упор был сделан на его без­опасность и безвредность для экологии. Принцип работы двигателя, по словам изобретателя, таков: “Воздух засасывается в малый цилиндр и сжимается поршнем до уровня давления в 20 бар. При этом он разогревается до 400 градусов. Затем горячий воздух выталкивается в сферическую камеру. В “камеру сгорания” под давлением подается и холодный сжатый воздух из баллонов, он сразу же нагревается, расширяется, давление резко возрастает, поршень большого цилиндра возвращается и передает рабочее усилие на коленчатый вал. Можно даже сказать, что “воздушный” двигатель работает так же, как и обычный двигатель внутреннего сгорания, но только никакого сгорания тут нет”.
Было заявлено, что выбросы автомобиля не опаснее углекислого газа, выделяемого при дыхании человека, двигатель можно смазывать растительным маслом, а электрическая система состоит всего лишь из двух проводов. Планировалось построить “воздухозаправочные” станции, способные наполнить 300-литровые баллоны всего за три минуты. Предполагалось, что продажи “воздухомобилей” начнутся в Южной Африке по цене около 10 тысяч долларов.
Но после громких заявлений и всеобщего ликования что-то произошло. Внезапно все стихло, и о “воздухомобиле” почти забыли. Причина нелепая: страница в Интернете якобы не справляется с огромным потоком запросов.
Есть мнение, что экологичную разработку саботировали автомобильные гиганты: предвидев приближающийся крах, когда выпускаемые ими бензиновые двигатели никому не будут нужны, они якобы решили выскочку задушить на корню.
Однако и многие независимые эксперты настроены скорее скептически, тем более что ряд крупных автомобилестроительных концернов, например, “Фольксваген”, уже в 70-80-х годах вели исследования в этом направлении, но затем свернули их ввиду полной бесперспективности. Автомобильные компании уже потратили огромные деньги на эксперименты с электрическими автомобилями, которые оказались неудобными и дорогими.
Однако ждать осталось недолго. Вероятно, уже в наступающем году мы точно узнаем, что же такое этот разработанный фирмой MDI двигатель на сжатом воздухе - революция в автомобилестроении или во всех смыслах слова дутая сенсация.
В Интернете имеется коммерческое предложение, адресованное, по всей видимости, правительству Москвы. В этом документе одна столичная компания предлагает чиновникам “ознакомиться с предложением автомобильной фирмы MDI о производстве в Москве абсолютно экологически чистых и экономичных автомобилей”.
Интерес представляет и изобретение Раиса Шаймухаметова - “садоход”, который “приводится в движение от сжатого воздуха: под капотом небольшой двигатель и серийный компрессор. Воздух вращает автономно друг от друга два блока (слева и справа) эксцентрических роторов (поршней). Роторы в блоке через ходовые колеса соединены гусеничной цепью”.
В итоге сложилось двоякое впечатление: с одной стороны, не до конца понятная история с французским “воздухомобилем”, а с другой - куда более четкое ощущение, что “воздушный” транспорт давно используется, и в особенности почему-то в России. И притом с поза­прошлого века.

Среди основных направлений инженерных поисков, таких как электромобили, гибридные автомобили и автомобили на водородном топливе. Водородное топливо и другие, общедоступные технологии получения дешевой энергии, находятся под строгим запретом мировых нефтяных и промышленных монополистов. Однако, прогресс не остановить и потому, некоторые предприятия и отдельные энтузиасты продолжают создавать уникальные транспортные средства.

Сегодняшняя тема разговора касается именно пневмомобилей. Пневмомобиль является как бы продолжением темы парового автомобиля, одной из многочисленных ветвей использования двигателей, работающих за счет разности давлений газов. Кстати, паровой двигатель был изобретен задолго до появления первой паровой машины Джеймса Уатта, более 2 тысяч лет назад, Героном Александрийским. Идею Герона развил и воплотил в небольшую тележку бельгиец Фердинанд Вербист, в 1668 году

История создания автомобиля доносит до нас не так много информации об успешных и неудачных попытках изобретателей применить в качестве двигателя простой и дешевый механизм. Вначале были попытки использования силы большой пружины и силы маховика. Эти механизмы прочно закрепили свои позиции в детских игрушках. Но применение их в качестве двигателя полноразмерного автомобиля кажется несерьезным. Тем не менее, такие попытки продолжаются и похоже на то, что уже в скором будущем, необычные автомобили смогут уверенно конкурировать с автомобилями, оснащенными ДВС.

Несмотря на кажущуюся бесперспективность данного направления работ в области автомобильного транспорта, пневмомобиль имеет очень много достоинств. Это чрезвычайная простота и надежность конструкции, ее долговечность и низкая стоимость. Такой двигатель бесшумен и не загрязняет воздух. Видимо все это и привлекает многочисленных сторонников такого вида транспорта.

Идея использования сжатого воздуха для привода механизмов и транспорта, возникла давно и была запатентована в Великобритании, еще в 1799 году. Видимо возникла она из желания максимально упростить паровой двигатель и сделать его предельно компактным, чтобы использовать на автомобиле. Практическое использование пневмодвигателя было осуществлено в Америке, в 1875 году. Там строили шахтные локомотивы, которые работали на сжатом воздухе. Первый легковой автомобиль с пневмодвигателем, впервые был продемонстрирован в 1932 году, в Лос-Анджелесе.

С появлением парового двигателя, изобретатели пытались установить его на «Самобеглые коляски», но громоздкий и тяжелый паровой котел оказался неприспособленным к такому виду транспорта.
Предпринимались попытки использования электродвигателя и аккумуляторных батарей для самодвижущегося транспорта, и были достигнуты определенные успехи, но двигатель внутреннего сгорания оказался вне конкуренции, на то время. В результате жестокой конкурентной борьбы между ним и паровым двигателем, победил все-таки двигатель внутреннего сгорания.

Несмотря на множество недостатков, этот двигатель и сегодня доминирует во многих сферах жизнедеятельности человечества, в том числе и во всех видах транспорта. О недостатках двигателя внутреннего сгорания и необходимости найти ему достойную замену, все чаще говорят в научных кругах и пишут в различных популярных изданиях, но все попытки запуска новых технологий в массовое производство, жеско блокируются.

Инженеры и изобретатели создают интереснейшие и перспективные двигатели, способные полностью заменить ДВС, но мировые нефтяные и промышленные монополисты используют свои рычаги давления для того, чтобы не допустить отказа от ДВС и использования новых, альтернативных источников энергии.

И все же, попытки создания серийного автомобиля без двигателя внутреннего сгорания, или с его частичным, второстепенным использованием, — продолжаются.

Индийская фирма Tata Motors готовится запустить в серийное производство небольшой городской автомобиль Tata AIRPOD, двигатель которого работает на сжатом воздухе.

Американцы тоже готовят к массовому производству шестиместный автомобиль CityCAT,
работающий на сжатом воздухе. При длинне 4.1м. и ширине 1.82м., автомобиль весит 850 килограмм. Он может развивать скорость до 56 км/час и преодолевать расстояние до 60 километров. Показатели весьма скромные, но для города вполне терпимые, с учетом многочисленных достоинств автомобиля и его весьма низкой стоимости.Каковы же они, эти достоинства?

Все, кто имеет автомобиль, или имеют отношение к автомобильному транспорту, прекрасно знают насколько сложен конструктивно современный автомобильный двигатель внутреннего сгорания. Помимо того, что сам двигатель конструктивно достаточно сложен, ему требуется система дозировки и впыска топлива, система зажигания, стартер, система охлаждения, глушитель, механизм сцепления, коробка передач и сложная трансмиссия.

Все это делает двигатель дорогим, ненадежным, недолговечным и непрактичным. Я уже не говорю о том, что выхлопные газы отравляют воздух и окружающую среду.

Пневмодвигатель — полная противоположность двигателю внутреннего сгорания. Он предельно прост, компактен, бесшумен, надежен и долговечен. При необходимости, его можно разместить даже в колесах автомобиля. Существенный минус этого двигателя, не позволяющий свободно использовать его на автотранспорте, ограниченный пробег с одной заправки.

Чтобы увеличить дальность пробега пневмомобиля, нужно увеличить объем воздушных баллонов и повысить давление воздуха в баллонах. И то, и другое имеет жесткие ограничения по габаритам, по весу и по прочности баллонов. Может быть когда нибудь эти проблемы будут решены, а пока применяются так называемые гибридные схемы двигательных установок.


В частности, для пневмомобиля предлагается использовать маломощный двигатель внутреннего сгорания, который осуществляет постоянную подкачку воздуха в рабочие баллоны. Двигатель работает постоянно, подкачивая воздух в баллоны, и выключается лишь когда давление в баллонах достигнет макисмального значения. Такое решение позволяет значительно сократить расход бензина, выброс угарного газа в атмосферу и увеличить дальность пробега пневмомобиля.

Подобная гибридная схема является универсальной и успешно применяется, в том числе и на электромобилях. Разница лишь в том, что вместо баллона со сжатым воздухом используется электрический аккумулятор, а вместо пневмодвигателя — электродвигатель. Маломощный ДВС вращает электрический генератор, который подзаряжает аккумуляторы, а те, в свою очередь, питают электродвигатели.

Суть любой гибридной схемы в том, чтобы пополнять расходуемую энергию, при помощи двигателя внутреннего сгорания. Это позволяет использовать двигатель меньшей мощности. Он работает в наивыгоднейшем режиме и потребляет меньше топлива, а значит и выбрасывает меньше токсичных веществ. Пневмомобиль, или электромобиль получают возможность увеличить пробег, ведь затраченная энергия частично пополняется, непосредственно во время движения.

Во время частых остановок у светофоров, при движении накатом и спусках с уклонов, тяговый двигатель не потребляет энергии и происходит чистая подзарядка баллонов, или аккумуляторов. Во время длительных стоянок, пополнять запасы энергии лучше от стандартной заправочной колонки.

Представьте, что Вы приехали на работу, автомобиль стоит на стоянке, а двигатель продолжает работать, пополняя запасы энергии в баллонах. Не окажется ли это сводящим на нет все преимущества гибридного автомобиля? Не получится ли, что экономия бензина окажется не столь сущестенной, как хотелось бы?

В дни своей далекой юности, я тоже подумывал о пневмодвигателе для самодельного автомобиля. Только направление моих поисков имело химический характер. Хотелось найти такое вещество, которое вступало бы в бурную реакцию с водой, или другим веществом, выделяя при этом газы. Тогда мне не удалось найти ничего подходящего и идея была навсегда заброшена.

Зато появилась другая идея — почему бы вместо высокого давления воздуха не использовать вакуум? Если баллон со сжатым воздухом подвергнется каким либо повреждениям, или давление воздуха превысит допустимое, то это чревато мгновенным его разрушением, наподобие взрыва. Вакуумному баллону такое не грозит, его может просто сплющить атмосферным давлением.

Чтобы получить высокое давление в баллоне, порядка 300 бар, нужен специальный компрессор. Чтобы получить вакуум в баллоне, достаточно впустить внутрь порцию обычного водяного пара. Остывший пар превратится в воду, уменьшившись в объеме в 1600 раз и… цель достигнута, частичный вакуум получен. Почему частичный? Да потому, что выдержать глубокий вакуум не всякий баллон сможет.

Дальше все просто. Чтобы автомобиль мог проехать на одном баллоне возможно дальше, нужно подавать в пневмодвигатель не воздух, а пар. Совершив работу, пар проходит через систему охлаждения, где остывает и превратившись в воду, попадает в вакуумный баллон. То-есть, если через двигатель пропущен пар, скажем в 1600 см.3, то в баллон попадет всего 1 см.3 воды. Таким образом, в вакуумный баллон поступает лишь незначительное количество воды и продолжительность его работы увеличивается многократно.

Вернемся, однако, к нашим пневмомобилям. Индийская компания Tata Motors собирается серийно выпускать компактный городской автомобиль, работающий на сжатом воздухе. Компания утверждает, что их пневмомобиль способен разгоняться до 70 км/час и преодолевать до 200 километров с одной заправки.

В свою очередь, американцы также готовят к серийному выпуску шестиместный пневмомобиль CityCAT. В заявленных характеристиках значится, что разгоняться автомобиль сможет до 80 км/час и дальность пробега составит 130 км. Еще один пневмомобиль американской фирмы MDI, маленький трехместный MiniCAT также планируется запустить в серию.

Пневмомобилями заинтересовались многие фирмы. Австралия, Франция, Мексика и ряд других стран готовы также начать выпускать у себя этот непривычный пока, но обнадеживающий вид транспорта. Двигателю внутреннего сгорания таки прийдется сойти с арены и уступить место другому двигателю, более простому и надежному. Когда это произойдет, пока сказать трудно, но произойдет непременно. Прогресс не может стоять на месте.

/ 11
ХудшийЛучший

То, что пневмомобили смогут стать полноценной заменой бензиновому и дизельному транспорту, пока вызывает сомнения. Однако у двигателей, работающих на сжатом воздухе есть свой безусловный потенциал.Автомобили на сжатом воздухе используют электрический насос – компрессор для сжатия воздуха до высокого давления (300 – 350 Атм.) и аккумулируют его в резервуаре. Используя его для движения поршней, на подобии двигателя внутреннего сгорания, выполняется работа и автомобиль движется на экологически чистой энергии.

1. Новизна технологии

Несмотря на то, что автомобиль с воздушным двигателем кажется инновационной и даже футуристической разработкой, сила воздуха использовалась в управлении автомобилями еще в конце девятнадцатого – начале двадцатого века. Однако точкой отсчета в истории развития воздушных двигателей нужно считать семнадцатый век и разработки Дэни Папина для Академии наук Великобритании. Таким образом, принцип работы воздушного двигателя открыт более трехсот лет назад, и тем более странным кажется тот факт, что эта технология так долго не находила применения в автомобильной промышленности.

2. Эволюция автомобилей с воздушным двигателем

Первоначально двигатели, работающие на сжатом воздухе, использовались в общественном транспорте. В 1872 году Луи Мекарски создал первый пневматический трамвай. Затем, в 1898 году Хоудли и Найт усовершенствовали конструкцию, продлив цикл работы двигателя. В числе отцов-основателей двигателя на сжатом воздухе также нередко упоминают имя Чарльза Портера.

3. Годы забвения

Принимая во внимание долгую историю воздушного двигателя, может показаться странным, что эта технология не получила должного развития в двадцатом веке. В тридцатых годах был спроектирован локомотив с гибридным двигателем, работавшим на сжатом воздухе, однако доминирующей тенденцией в автомобилестроении стала установка двигателей внутреннего сгорания. Некоторые историки прозрачно намекают на существование «нефтяного лобби»: по их мнению, могущественные компании, заинтересованные в росте рынка сбыта продуктов нефтепереработки приложили все возможные усилия, чтобы исследования и разработки в сфере создания и усовершенствования воздушных двигателей никогда не были опубликованы.

4. Преимущества двигателей, работающих на сжатом воздухе

В характеристиках воздушных двигателей легко заметить множество преимуществ в сравнении с двигателями внутреннего сгорания. В первую очередь, это дешевизна и очевидная безопасность воздуха, как источника энергии. Далее, упрощается конструкция двигателя и автомобиля в целом: в нем отсутствуют свечи зажигания, бензобак и система охлаждения двигателя; исключается риск протечки зарядных батарей, а также загрязнения природы автомобильными выхлопами. В конечном счете, при условии массового производства, стоимость двигателей на сжатом воздухе, скорее всего, окажется ниже, чем стоимость бензиновых двигателей.

Однако не обойдется и без ложки дегтя: согласно проведенным экспериментам, двигатели на сжатом воздухе в работе оказались более шумными, чем бензиновые двигатели. Но это не главный их недостаток: к сожалению, по своей производительности они также отстают от двигателей внутреннего сгорания.

5. Будущее автомобилей с воздушным двигателем

Новая эра для автомобилей, работающих на сжатом воздухе, началась в 2008-м году, когда бывший инженер Формулы 1 Гай Негре представил свое детище под названием CityCat – автомобиль с воздушным двигателем, который может развивать скорость до 110 км/ч и преодолевать без подзарядки расстояние в 200 километров Чтобы превратить пусковой режим пневматического привода в рабочий, было потрачено более 10 лет. Основанная с группой единомышленников компания стала называться Motor Development Internation. Ее первоначальный проект не был пневмомобилем в полном смысле этого слова. Первый двигатель Гая Негре мог работать не только на сжатом воздухе, но также на природном газе, бензине и дизеле. В моторе MDI процессы сжатия, воспламенения горючей смеси, а также сам рабочий ход проходят в двух цилиндрах разного объема, соединяющихся меж собой сферической камерой.

Испытывали силовую установку на хетчбэке Citroen AX. На низких скоростях (до 60 км/ч), когда потребляемая мощность не превышала 7 кВт, автомобиль мог передвигаться только на энергии сжатого воздуха, но при скорости выше указанной отметки силовая установка автоматически переходила на бензин. В этом случае мощность двигателя вырастала до 70 лошадиных сил. Расход жидкого топлива в шоссейных условиях составил всего 3 литра на 100 км - результат, которому позавидует любой гибридный автомобиль.

Однако команда MDI не стала останавливаться на достигнутом результате, продолжив работу над усовершенствованием двигателя на сжатом воздухе, а именно над созданием полноценного пневмомобиля, без подпитки газового или жидкого топлива. Первым стал прототип Taxi Zero Pollution. Этот автомобиль «почему-то» не вызвал интерес у развитых стран, в то время сильно зависящих от нефтяной промышленности. Зато Мексика заинтересовалась этой разработкой, и в 1997 году заключила договор о постепенной замене таксопарка Мехико (одного из самых загрязненных мегаполисов мира) на «воздушный» транспорт.

Следующим проектом стал тот самый Airpod с полукруглым стеклопластиковым кузовом и 80-килограммовыми баллонами со сжатым воздухом, полный запас которых хватал на 150-200 километров пути. Однако полноценным серийным пневмомобилем стал проект OneCat - более современная интерпретация мексиканского такси Zero Pollution. В легких и безопасных карбоновых баллонах под давлением в 300 бар может храниться до 300 литров сжатого воздуха.


Принцип работы двигателя MDI следующий: в малый цилиндр засасывается воздух, где он сжимается поршнем под давлением 18-20 бар и разогревается; подогретый воздух идет в сферическую камеру, где смешивается с холодным воздухом из баллонов, который мгновенно расширяясь и нагреваясь, увеличивает давление на поршень большого цилиндра, передающего усилие на коленвал.

В большинстве стран мира автомобили с двигателями внутреннего сгорания пока являются основным средством передвижения. В странах «золотого миллиарда», где требования к авто намного выше, ситуация выглядит иначе – там автомобили, работающие на электричестве и других альтернативных видах топлива, сейчас становятся ведущим направлением в производстве.

Однако становление электромобиля как нового стандарта автопромышленности не остановило инициативу ученых и разработчиков новых видов транспортных средств.

За последние двадцать лет в мире было создано множество различных прототипов автомобилей: на водородном топливе, биотопливе, солнечных батареях и т.д. Однако нельзя с уверенностью заявить, что какая либо из этих альтернатив имеет реальные перспективы конкурировать с «традиционными» бензиновыми авто и электромобилями.

Проблема тут в том, что решающим фактором всегда является простота и дешевизна производства, и если альтернативный вариант нерентабелен, то все остальные его достоинства уже не имеют особого значения.

В такой ситуации эксперименты крупных автомобильных компаний имеют гораздо больше шансов на признание и массовое производство. Примером такой разработки является Air Hybrid, инновационная гибридная установка, состоящая из усовершенствованного двигателя внутреннего сгорания и гидравлического компрессора, спроектированная и созданная специалистами PSA Peugeot Citroen.

Этот французский концерн, объединивший в себе потенциал двух известных автомобильных компаний, ставил своей целью создание нового типа двигателя, в котором вместо электричества будет использоваться сжатый воздух. Air Hybrid стал успешным завершением очередного этапа программы компании, которая направлена на уменьшения расхода топлива в автомобилях марки до рекордных 2 литров на 100 километров пути.

Революционность Air Hybrid в том, что такой двигатель может работать сразу в трех режимах – только на сжатом воздухе, на бензине, а также одновременно на воздухе и на бензине. Одно из главных достоинств такого решения – это существенное снижение веса, которое само по себе так же является важным фактором в экономии топлива.

Гидравлическая система не только меньше весит, но и намного дешевле в производстве, чем традиционная система, включающая в себя аккумуляторные батареи. Кроме этого гидравлика надежнее – с ней становятся ненужными многие сложные электронные системы, которых в обычном автомобиле слишком много и которые управляют всем – от пуска двигателя до встроенного алкотестера.

Стоит отметить, что встроенные профессиональные алкотестеры, тестирующие водителя перед пуском двигателя – это популярное решение у многих европейских производителей автомобилей.

Новый гибридный двигатель от Peugeot Citroen состоит из бензинового двигателя, адаптированной трансмиссии эпициклического типа, где вместо электрического мотора будет применяться гидравлический компрессор.

В прототипе под полом автомобиля размещены два баллона, содержащие сжатый воздух – в одном воздух низкого, а в другом высокого давления.

На сжатом воздухе такой автомобиль может передвигаться со скоростью до 70 км/час, что является оптимальным для поездок по городу. Когда понадобится увеличить скорость, то можно будет переключиться на бензиновый двигатель, а для экстремального ускорения двигатели будут работать вместе.