Каким должно быть топливо будущего. Чем заправить авто из будущего? Газ Брауна — идеальное топливо будущего

В настоящее время многие технические вопросы по внедрению водородной энергетики решены. Все ведущие автомобильные компании имеют концептуальные модели машин, работающих на водороде. Существуют станции заправки этих автомобилей. Однако стоимость водорода пока намного выше, чем бензина или природного газа. Чтобы новая отрасль стала коммерчески оправданной, необходимо выйти на новый уровень получения водорода и снизить цену на него.

Сейчас известно около десятка методов получения водорода из разных исходных материалов. Самый известный - гидролиз воды, ее разложение при пропускании электрического тока, но он требует больших затрат энергии. Главным направлением снижения энергозатрат при электролизе воды является поиск новых материалов для электродов и электролитов.

Разрабатываются методы получения водорода из воды с использованием неорганических восстановителей - электроотрицательных металлов и их сплавов с добавкой металлов-активаторов. Такие сплавы названы энергоаккумулирующими веществами (ЭАВ). Они позволяют получать из воды любое количество водорода. Еще одним способом выделения водорода из воды может стать ее фотоэлектрохимическое разложение под действием солнечного света.


К распространенным методам относятся парофазная переработка метана (природного газа) и термический метод разложения угля и другого биоматериала. Перспективны термохимические циклы производства водорода, парофазные методы конверсии его из каменного и бурого угля и торфа, а также метод подземной газификации угля с получением водорода.

Отдельная тема - разработка катализаторов для получения водорода из органического сырья - продукта переработки биомассы. Но при этом наряду с водородом образуются значительные количества окиси углерода (СО), который необходимо утилизировать.


Еще один перспективный метод - процесс каталитической паровой переработки этанола. Можно также получить водород из угля (как каменного, так и бурого) и даже из торфа. Также все большее внимание привлекает сероводород. Это обусловлено низкими затратами энергии на электролитическое выделение водорода из сероводорода и большими запасами этого соединения в природе - в воде морей и океанов, в природном газе. Сероводород также получается в качестве побочного продукта нефтеперерабатывающей, химической, металлургической промышленности.

Водород можно получать с использованием плазменных технологий. С их помощью можно газифицировать даже самое низкокачественное углеродное сырье, например твердые бытовые отходы. В качестве источника термической плазмы используются плазмотроны - устройства, генерирующие плазменную струю.

Хранение водорода

Для хранения водорода непосредственно в автомобиле существуют следующие способы: газобаллонный, криогенный, металлогидридный.

В первом случае водород хранится в сжатом виде при давлении около 700 атм. При этом масса водорода составляет всего около 3% от массы баллона и для хранения сколько-нибудь заметного количества газа нужны весьма тяжёлые и объёмные баллоны. Это не говоря уже о том, что изготовление, зарядка и эксплуатация таких баллонов требуют особых мер предосторожности из-за опасности взрыва.

Криогенный способ подразумевает сжижение водорода и хранение его в теплоизолированных сосудах при температуре -235 градусов. Это достаточно энергозатратный процесс – сжижение обходится в 30-40% той энергии, которая получится при использовании полученного водорода. Но, как-бы ни была совершенна теплоизоляция, водород в баке нагревается, давление увеличивается и газ стравливается в атмосферу через предохранительный клапан. Всего несколько дней – и баки пусты!

Самыми перспективными являются твердые накопители, так называемые металлогидриды. Эти соединения умеют вбирать в себя, как губка, водород при одних условиях и отдавать при других, например при нагревании. Чтобы это было экономически выгодно, такой металлогидрид должен «впитывать» не менее 6% водорода. Весь мир сейчас ищет подобные материалы. Как только материал будет найден - его подхватят технологи, и процесс «водородизации» пойдет.

Мы живем в 21 веке, пришло время для создания топлива будущего, которое заменит традиционное топливо и ликвидирует нашу зависимость от него. Ископаемые виды топлива сегодня являются нашим основным источником энергии.

За последние 150 лет количество углекислого газа в атмосфере увеличилось на 25%. Сжигание углеводородов приводит к загрязнениям, таким как смог, кислотные дожди и загрязнение воздуха.

Каким будет топливо будущего?

Водород — альтернативный вид топлива будущего

Водород бесцветный газ без запаха, составляет 75% массы всей Вселенной. Водород на Земле существует только в сочетании с другими элементами, такими как кислород, углерод и азот.

Чтобы использовать чистый водород, он должен быть отделен от этих других элементов, чтобы быть использованным в качестве топлива.

Переход на водород всех автомобилей и всех автозаправочных станций непростая задача, но в долгосрочной перспективе, переход на водород, как альтернативный вид топлива для автомобилей, будет очень выгодно.

Превращение воды в топливо

Водные топливные технологии используют воду, соль и очень недорогой металлический сплав. Газ, что результатом этого процесса является — чистый водород, который горит как топливо без необходимости использования внешнего кислорода — и не выделяет никаких загрязнений.

Морская вода может использоваться непосредственно в качестве основного топлива, тем самым устраняя необходимость добавления соли.

Есть еще один способ превращения воды в топливо. Он называется электролизом. Этот метод превращения воды в газ Брауна, который также является прекрасным топливом для нынешних бензиновых двигателей.

Почему газ Брауна лучшее топливо, чем чистый водород?

Давайте посмотрим на все три вида водородного топливного решения — топливные элементы, чистый водород, и газ Брауна — и посмотрим, как они работают по отношению к кислороду и его потреблению:

Топливные элементы: Этот метод использует кислород из атмосферы при полном сжигании водорода в топливных элементах. Что выходит из выхлопной трубы? Кислород и пары воды! Но кислород изначально пришел из атмосферы, а не из топлива.

И поэтому использование топливных элементов не решает проблему: окружающая среда испытывает огромные проблемы на данный момент с содержанием кислорода в воздухе; мы теряем кислород.

Водород: Это топливо является совершенным, если бы не одно «но». Хранение и распределение водорода требует специального оборудования, а топливные баки автомобилей должны выдерживать высокое давление сжиженного газа водорода.

Газ Брауна: Это самое совершенное топливо для работы всех наших транспортных средств. Чистый водород поступает непосредственно из воды, то есть, пара водород — кислород, но, кроме того, он горит в двигателе внутреннего сгорания, выделяя кислород в атмосферу: из выхлопной трубы входит в атмосферу кислород и пары воды.

Так, при сжигании газа Брауна в качестве топлива, можно увеличить кислород воздуха и тем самым увеличить содержание кислорода в нашей атмосфере. Это способствует решению очень опасной экологической проблемы.

Газ Брауна — идеальное топливо будущего

Об использовании воды в качестве альтернативного вида топлива для автомобилей, о планах преобразования бензиновых двигателей для работы на обычной водопроводной воде, этот постулат является мировым переворотом в сознании людей.

Теперь только вопрос времени, когда все поймут, что вода лучшее топливо для нашего транспорта. Лицо или лица, которые дали нам это знание, мы должны их помнить как героев.

Их убивали, их патенты скупались частными лицами, чтобы их изобретения не стали достоянием гласности; информация об автомобилях на воде жила в Интернете не более 1-2 часов…
Но сейчас что-то изменилось, видимо, власть имущие решили «Пусть начнутся игры»!

Автомобилей на воде работает, и мы знаем это наверняка. Работа бензиновых двигателей на воде — это как трамплин для гораздо лучших технологий, чем те, которые уже существуют и которые быстро заменят идею ведения автомобилей на воде.

Но пока нефтяные компании душат идею автомобиля на воде, овладеть более высокими технологиями не получится, и использование нефти будет продолжаться. Это общее мнение ученых, так говорят во всем мире.

Может ли использование воды в виде топлива изменить жизнь Земли?

Известно ли Вам, что водоснабжение Земли не является статическим? Количество воды на Земле увеличивается с каждым днем.

Было обнаружено, что в последние несколько лет, большое количество воды ежедневно прибывает из космоса в виде водных астероидов!

Эти огромные астероиды — мегатонны воды, которые попав в верхние слои атмосферы, немедленно испаряются, и в конце концов оседают на Землю.

Вы можете просмотреть фотографии НАСА этих астероидов в первой книге доктора Эмото, «Сообщение о воде«. Почему эти водные астероиды ближаются к Земле, а не на другие планеты, такие как Марс, остается загадкой.

И действительно ли то, что это происходит только сейчас или это происходило на протяжении всей истории Земли. Другое дело, что никто не знает ответа.

Таяние ледников . Помимо этого, уровень океана повышается из-за таяния ледников. Как следствие потепления климата, начинает быть слишком много воды на Земле.

Я разговаривал с учеными, которые считают, что было бы реально помочь, если бы небольшое количество воды было как-то использовано в это время — например, для работы машин.

Запуск автомобилей на воде поможет пополнить кислород в нашей атмосфере: главная причина для перехода на воду в качестве топлива — наши текущие экологические проблемы.

Они настолько велики, что если мы не будем делать что-то для снижения использования ископаемых видов топлива, наша Земля будет уничтожена. И уже не будет имеет значения, если ли у планеты вода или ее нет.

Иногда человек потребляет то, что является потенциально опасным для того, чтобы стать здоровым. Запуск автомобилей на воде сродни этой концепции. Это может быть потенциально опасным, если бы мы продолжали использовать воду в качестве топлива для чрезмерного периода времени.

Но учитывая все обстоятельства, это решение является лучшим из того, что правительства могут себе позволить на время.

Даже правительства готовятся запустить автомобили на топливных элементах, где топливом является водород. И для реализации этой технологии, нам не придется изменять наши двигатели — альтернативный источник нашего топлива может быть не единственным.

Популярность электромобилей в последнее время несколько задвинула на второй план авто на топливных элементах. Тем не менее водород готовится дать бой электричеству, и сегодня мы посмотрим на перспективы этого элемента в энергетическом будущем планеты. Водород — это самый простой и распространенный химический элемент во вселенной, на долю которого приходится 74% всей известной нам материи. Именно водород используется звездами, в том числе и Солнцем, для высвобождения огромного количества энергии в результате термоядерных реакций.

Несмотря на свою простоту и распространенность, на Земле водород в свободной форме не встречается. За счет своего легкого веса он либо поднимается в верхние слоя атмосферы, либо вступает в связь с другими химическими элементами, например с кислородом, образуя воду.

Интерес к водороду, как к альтернативному источнику энергии, в последние десятилетия вызван двумя факторами. Во-первых, загрязнением окружающей среды ископаемым топливом, являющимся основным источником энергии на данном этапе развития цивилизации. И, во-вторых, тем фактом что запасы ископаемого топлива ограничены и по оценкам экспертов будут истощены приблизительно через шестьдесят лет.

Водород, как впрочем и некоторые другие альтернативы, является решением вышеперечисленных проблем. Использование водорода приводит к нулевым загрязнениям, поскольку в результате выделения энергии побочными продуктами являются лишь тепло и вода, которые могут быть использованы повторно для других целей. Запасы водорода также очень сложно истощить, учитывая что он составляет 74% вещества во Вселенной, а на Земле входит в состав воды, которой покрыто две трети поверхности планеты.

Получение водорода

В отличие от ископаемых источников энергии (нефти, угля, природных газов), водород не является готовым к использованию источником энергии, а считается ее носителем. То есть взять водород в чистом виде как уголь и использовать для получения энергии невозможно, необходимо сначала потратить некоторую энергию для того чтобы получить чистый водород пригодный для использования в топливных элементах.

Поэтому водород нельзя сравнивать с ископаемыми источниками энергии и более коректна аналогия с батареями, которые предварительно необходимо зарядить. Правда батареи перестают работать после разряда, а водородные элементы могут производить энергию до тех пор пока будут снабжаться топливом (водородом).

Наиболее распространенным и недорогим методом получения водорода считается паровой риформинг, в котором используются углеводороды (вещества состоящие исключительно из углерода и водорода). Во время реакции воды и метана (CH4) при высоких температурах выделяется большое количество водорода. Недостатком метода является то, что побочным продуктом реакции является углекислый газ, поступающий в атмосферу точно так же как и при сжигании ископаемого топлива, что соответственно не снижает выбросы парниковых газов несмотря на использование альтернативного источника энергии..

Возможно и прямое применение некоторых природных газов непосредственно в водородных топливных элементах в качестве альтернативы. Это позволяет не затрачивать энергию на получение водорода из газа. Стоимость таких топливных элементов будет ниже, однако при работе на природном газе в атмосферу также будут попадать парниковые газы и другие токсические элементы, что не делает такие газы полноценной заменой водороду.

Получить водород можно и в процессе электролиза. При пропускании электрического тока через воду, происходит ее разделение на составляющие химические элементы в результате чего получают водород и кислород.

Помимо привычных способов сейчас тщательно исследуются альтернативные пути получения водорода. Например, при наличии солнечного освещения продуктом жизнедеятельности некоторых водорослей и бактерий также может быть водород. Некоторые из этих бактерий могут производить водород прямо из обычных бытовых отходов. Несмотря на относительно низкую эффективность этого метода, возможность перерабатывать отходы делает его достаточно перспективным, особенно с учетом того что эффективность процесса постоянно повышается в результате создания новых видов бактерий.

Совсем недавно на горизонте появился еще один перспективный способ получения водорода с применением аммиака (NH3). При разделении этого химического вещества на составляющие получается одна часть азота и три части водорода. Наилучшими катализаторами таких реакций являются дорогостоящие редкие металы. Новый способ вместо одного редкого катализатора использует два доступных и недорогих вещества, соду и амиды. При этом эффективность процесса сопоставима с наиболее результативными дорогими катализаторами.

Помимо низкой стоимости данный метод примечателен и тем что аммиак проще хранить и транспортировать по сравнению с водородом. А в необходимый момент водород можно получить из аммиака просто запустив химическую реакцию. По неподтвержденным пока прогнозам использование аммиака позволит создать реактор объемом не более 2-литровой бутылки, достаточный для производства водорода из аммиака в количествах достаточных для использования автомобилем обычных размеров.

Аммиак на данный момент транспортируется в огромных количествах и широко применяется в качестве удобрения. Именно это химическое вещество делает возможным выращивание практически половины еды на Земле, и возможно в будущем станет одним из важнейших источников энергии для человечества.

Сферы применения

Водородные топливные элементы могут применяться практически в любом виде транспорта, в стационарных источниках энергии для домов, а также в небольших портативных, иногда карманных устройствах, для генерирования электричества, используемого другими мобильными устройствами.

Еще в 70-х годах прошлого столетия водород начали применять в NASA для вывода ракет и космических шатлов на орбиту Земли. Водород используется и позже для получения электричества на шатлах, а также воды и тепла в качестве побочных продуктов реакции.

На текущий момент наибольшие усилия направлены на продвижение водорода как топлива в автомобильной индустрии.

Сравнение водородных и электрических автомобилей

Водород на обывательском уровне по-прежнему принято считать опасным химическим элементом. Эта репутация закрепилась за ним после крушения дирижабля Гинденбург в 1937. Тем не менее Администрация по энергетической информации США (EIA) утверждает что в аспектах использования водорода касающихся нежелательных взрывов, этот элемент как минимум так же безопасен как и бензин.

На текущий момент очевидно, что если не произойдет очередной технологической революции, то машины ближайшего будущего будут преимущественно либо электрическими, либо водородными, либо гибридными формами этих двух технологий и бензиновых авто.

У каждого из вариантов развития автоиндустрии есть свои преимущества и недостатки. Заправочные станции под водородное топливо гораздо проще сделать на базе текущих бензиновых заправок, чего не можно сказать об инфраструктуре для электического «заряда» транспортных средств.

В определенном смысле разделение на водородные и электрические автомобили является искусственным, поскольку в обоих случаях машина использует электричество для движения. Только в электрокарах оно запасено в более привычной для нас форме непосредственно в аккумуляторах, а в топливных элементах вещество, которое в результате реакции будет переводить химическую энергию в электрическую, можно добавить в любой момент.

Заправка водородом по времени сравнима с заправкой бензином, и занимает несколько минут, а вот полный заряд электрических аккумуляторов на текущий момент в лучшем случае производится за 20-40 минут. С другой стороны электромобили обладают тем преимуществом что их можно подключать к розетке непосредственно дома, и если делать это ночью то можно экономить на электро-тарифах.

Экологичность

Поскольку ни электричество, ни водород не являются природными источниками энергии, в отличие от ископаемого топлива, то на их получение необходимо затратить энергию. Источник этой энергии и становится решающим фактором в экологичности как водородных, так и электрических автомобилях.

Для получения водорода требуется либо тепло, либо электрический ток, которые в жарких и солнечных регионах планеты могут быть получены сбором солнечной энергии. В холодных странах, например Скандинавии, уже сейчас упор делается на более подходящем для этого климата источнике зеленой энергии, на ветряных станциях, которые с таким же успехом могут принимать участие в производстве водорода с помощью электролиза. Примечательно что водород в таком случае может использоваться и для хранения неиспользуемой энергии, например при выработке ночью.

Учитывая обязательную стадию получения водорода и электричества, нулевой уровень выбросов таких автомобилей зависит от того каким способом была получена первичная энергия. Именно поэтому между обоими типами транспортных средств соблюдается паритет и ни один нельзя причислить к более экологическому средству передвижения.

Ничью можно констатировать и сравнив шумность этих видов транспорта. В отличие от традиционных, новые двигатели работают гораздо тише.

По этому поводу можно вспомнить известный закон красного флага регулирующий появление первых автомобилей в 19 веке. Согласно самым жестким формам этого закона транспортное средство без лошадей не могло перемещаться в черте города со скоростью превышающей 3.2 км/ч. При этом предвосхищяя движение автомобиля за несколько минут до его появления по дороге должен был идти человек с красным флагом, предупреждающий о появлении транспорта.

Закон красного флага был принят в связи с тем что новые транспортные средства перемещались относительно бесшумно по сравнению с каретами и могли стать причиной аварий и травм, по крайней мере по мнению судей того времени. Проблема, хоть и была преувеличена, но все же спустя полтора века мы можем стать свидетелями новых подобных законов в связи с бесшумностью новых типов двигателей. Электрокары и авто на топливных элементах вряд ли работают громче первых транспортных средств, а вот скорость их перемещения в городской черте сейчас явно выше 3 км, что делает их потенциально опасными для пешеходов. В той же Формула 1 сейчас задумываются об усилении звука моторов с помощью искусственной озвучки. Но если в автогонках это делается для повышения зрелищности, то в новых автомобилях появление искусственного источника шума может стать требованием безопасности.

Отрицательные температуры

Автомобили на топливных элементах, как и обычные бензиновые авто, испытывают определенные проблемы на морозе. Внутри самых батарей может содержаться небольшое количество воды, замерзающее при отрицательных температурах и приводящее батареи в неработоспособное состояние. После прогрева батареи будут работать нормально, однако вначале без внешнего обогрева, они либо не заводятся, либо работают некоторое время на пониженной мощности.

Дальность перемещения

Дистанция перемещения современных водородных авто составляет приблизительно 500 км, что заметно больше чем в типичных электрокарах, которые нередко могут перемещаться лишь на 150-200 км. Ситуация изменилась после появления Tesla Model S, однако даже этот электрокар способен перемещаться без дозарядки на расстояние не более 430 км.

Такие цифры достаточно неожиданны если учесть КПД соответствующих типов двигателей. Для обычных бензиновых двигателей внутреннего сгорания КПД составляет приблизительно 15%. КПД авто на топливных элементах — 50%. КПД электромобилей — 80%. На данный момент концерн General Electrics работает над топливными элементами с 65% эффективностью и утверждает что их КПД может быть повышен до 95%, что позволят запасать до 10 МВт электрической энергии (после преобразования) в одном элементе.

Вес батарей и топлива

Однако слабым местом электрокаров являются сами батареи. Например в Tesla Model S она весит 550 кг, а полный вес авто составляет 2100 кг, что на пару сотен килограм больше веса аналогичного водородного транспортного средства. Вес этой батареи к тому же не уменьшается по мере преодоления дистанции, в то время как выработанное топливо в бензиновых и водородных автомобилях постепенно делает машину легче.

Выигрывают водородные элементы и в плане хранения энергии в пересчете на единицу массы. В плане плотности энергии на единицу объема водород не так хорош. При обычных условиях этот газ содержит лишь треть энергии метана в одинаковом объеме. Естественно водород хранится при транспортировке и внутри топливных батарей в жидком или сжатом виде. Но даже в этом случае количество энергии (Мегаджоулей) в одном литре проигрывает показателям бензина.

Сильные стороны водорода проявляются при пересчете энергии на единицу веса. В этом случае он уже в три раза превосходит бензин (143 МДж/кг против 47 МДж/кг). Выигрывает водород по этому показателю и у электрических батарей. При одинаковом весе водород имеет вдвое больший запас энергии чем электрическая батарея.

Хранение и транспортировка

Определенные сложности возникают и при хранении водорода. Наиболее эффективная форма для транспортировки и хранения этого химического элемента — жидкое состояние. Однако добиться перехода газа в жидкую форму можно лишь при температуре в -253 градуса Цельсия, что требует специальных контейнеров, оборудования и немалых финансовых затрат.

2015 год

Toyota, Hyundai, Honda и другие производители авто в течение многих лет вкладывали большие средства в исследование водородных топливных элементов и в 2015 году собираются представить первые автомобили стоимость и характеристики которых позволят рассматривать их как альтернативу другим видам транспорта. Машина на топливных элементах в 2015 году должна быть среднеразмерным 4-дверным седаном с возможностью преодоления как минимум 500 км без дозаправок, которые будут длиться не более пяти минут. Стоимость такого авто должна находиться в диапазоне от $50 тыс до $100 тыс. Таким образом стоимость водородных авто снизилась на порядок в течение одного десятилетия.

Как должно быть очевидно из списка автопроизводителей, Япония станет одним из центров развития водородных автомобилей. Интересно что одним из главных рынков для этих авто станет территория отделенная от Японии гораздо большими расстояними чем близлежащий азиатский рынок.

Калифорния уже давно имеет репутацию одного из самых прогрессивных мест на планете Земля. Именно здесь законодательство часто дает зеленый свет новейшим технологиям и изобретениям. Не стало исключением и продвижение автомобилей на альтернативном топливе.

Согласно принятому закону о транспортных средствах с нулевым выбросом (ZEV — zero-emission vehicle) к 2025 15% от всех проданных автомобилей не должны производить вредных выбросов в атмосферу. Совместно с десятью другими штатами, принявшими аналогичные законы, к 2025 году на дорогах США должно находиться около 3.3 млн ZEV.

Несмотря на то что подготовка к запуску новых автомобилей идет полным ходом, на первых этапах производителям придется столкнуться с серьезными инфраструктурными проблемами. Toyota выделила $200 млн на постройку водородных заправочных станций на территории Калифорнии, однако этих средств будет достаточно для создания лишь двадцати заправочных точек в следующем году. Даже без учета большой стоимости постройки, количество заправок будет увеличиваться достаточно скромными темпами. В 2016 году их число составит 40 штук, а в 2024 — 100 штук.

Такие размеренные сроки постройки можно легко объяснить тем что провести даже небольшую технологическую революцию за один год практически невозможно. 2015 год обозначен в календаре как год начала развития водородной автоиндустрии, однако настоящую конкуренцию машины на топливных элементах смогут составить своим конкурентам скорее всего лишь с появлением второго поколения более недорогих и надежных моделей, которые ожидаются к 2020 году, и появятся на дорогах с уже более-менее развитой сетью дозаправочных станций.

Несмотря на обилие японских имен среди производителей водородных авто, интересуются этим видом транспорта на других континентах. Среди известных производителей водородные планы есть у: General Electrics, Diamler, General Motors, Mercedes-Benz, Nissan, Volkswagen.

Итоги

Как это часто бывает, мир не делится на белое и черное, и водород не станет единственным источником энергии в будущем. Этот элемент совместно с другими альтеранитвными источниками энергии станет частью решения проблемы загрязнения окружающей среды и исчезновения природных ископаемых ресурсов. Перспектива данного вида топлива и водородных автомобилей начнет проясняться в 2015 году с появлением первых массовых авто на дорогах. Насколько они смогут конкурировать с электромобилями мы скорее всего узнаем в 2020 году по мере дальнейшего развития технологий и появления второго поколения топливных авто.

История водородного двигателя. Если нефть называют топливом сегодняшнего дня (топливом века), то водород можно назвать топливом будущего .

При нормальных условиях водород - это газ без цвета, запаха и вкуса, самое легкое вещество (в 14,4 раза легче воздуха); отличается очень низкими температурами кипения и плавления, соответственно, -252,6 и -259,1 СС.

Жидкий водород - бесцветная жидкость, без запаха, при -253 °С имеет массу 0,0708 г/см 3 .

Своим названием водород обязан французскому ученому Антуану Лорану Лавуазье, который в 1787 г., разлагая и вновь синтезируя воду, предложил назвать второе составляющее (кислород был известен) - гидрофеном, что в переводе означает «рождающий воду», или «водород». До этого выделяющийся при взаимодействии кислот с металлами газ назывался «горючим воздухом».

Первый патент на двигатель, работающий на смеси водорода с кислородом, появился в 1841 г. в Англии, а спустя 11 лет придворный часовщик Христиан Тейман построил в Мюнхене двигатель, который проработал на смеси водорода с воздухом в течение нескольких лет.


Одной из причин того, что эти двигатели не получили распространения, послужило отсутствие в природе свободного водорода.

Вновь к водородному двигателю обратились уже в нашем веке - в 70-е годы в Англии учеными Рикардо и Брусталлом были проведены серьезные исследования. Экспериментально - путем изменения только подачи водорода - они установили, что двигатель на водороде может работать во всем диапазоне нагрузок, от холостого хода до полной нагрузки. Причем на бедных смесях были получены более высокие значения индикаторного КПД, чем на бензине.

В Германии в 1928 г. дирижаблестроительная фирма «Цеппелин» использовала водород в качестве обогатителя топлива, чтобы осуществить дальний испытательный перелет через Средиземное море.

Перед второй мировой войной в той же Германии применялись автодрезины, работавшие на водороде. Водород для них получали в электролизерах высокого давления, работавших от электросети на заправочных станциях, расположенных близ железной дороги.

Большую роль в совершенствовании водородного двигателя сыграли работы Рудольфа Эррена. Он впервые применил внутреннее смесеобразование, что позволило осуществить конвертирование жидкотопливных двигателей на водород при сохранении основной топливной системы и тем самым обеспечить работу двигателя на углеводородном топливе, водороде и жидком топливе с присадкой водорода. Интересно отметить, что переходить с одного вида топлива на другой можно было без остановки двигателя.


Одним из двигателей, конвертированных Эрреном, является дизель автобуса «Лейланд», опытная эксплуатация которого выявила высокую экономичность при добавке водорода к дизельному топливу.

Эррен разработал также водородокислородный двигатель, продуктом сгорания которого был водяной пар Некоторая часть пара возвращалась в цилиндр вместе с кислородом а ос тальная конденсировалась. Возможность работы такого двигателя без наружного выхлопа была использована на германских подводных лодках довоенной постройки. В надводном положении дизели обеспечивали ход лодки и давали энергию для разложения воды на водород и кислород, в подводном положении - работали на парокислородной смеси и водороде. При этом подводная лодка не нуждалась в воздухе для дизелей и не оставляла на поверхности воды следов в виде пузырьков азота, кислорода и других продуктов сгорания.

В нашей стране исследование возможностей использовать водород в двигателях внутреннего сгорания началось в 30-е годы.

В период блокады Ленинграда для подъема и спуска аэростатов воздушного заграждения использовались автомобили-лебедки с двигателями «ГАЗ-АА», которые были переведены на водородное питание. С 1942 г. водород успешно использовался в московской службе ПВО, им надували аэростаты.

В 50-е годы на речных судах предполагалось использовать водород, получаемый разложением воды током гидроэлектростанций.

Использование водорода в настоящее время

В 70-е годы под руководством академика В. В. Струминского были проведены испытания автомобильного двигателя «ГАЗ-652», работавшего на бензине и водороде, и двигателя «ГАЗ-24», работавшего на жидком водороде. Испытания показали, что при работе на водороде повышается КПД и уменьшается нагрев двигателя.

В Харьковском институте проблем машиностроения АН УССР и Харьковском автодорожном институте под руководством профессора И. Л. Варшавского были проведены исследования детонационной стойкости водородовоздушных и бензоводородовоздушных смесей, а также выполнены разработки по конвертированию на водород и добавке водорода к бензину двигателей автомобилей «Москвич-412», «ВАЗ-2101», «ГАЗ-24» с использованием для получения и хранения водорода энергоаккумулирующих веществ и гидридов тяжелых металлов. Эти разработки достигли стадии опытной эксплуатации на автобусах и такси.

В космонавтике появился новый класс летательных аппаратов, имеющих в земной атмосфере гиперзвуковые скорости. Для достижения таких скоростей необходимо топливо с высокой теплотворной способностью и низким молекулярным весом продуктов сгорания; кроме того, оно должно обладать большим хладоресурсом.

Этим требованиям как нельзя лучше отвечает водород. Он способен поглощать тепло в 30 раз больше, чем керосин. При нагревании от -253 по +900 °С (температура на входе в двигатель) 1 кг водорода может поглотить более 4000 ккал.

Омывая изнутри обшивку летательного аппарата перед поступлением, в камеру сгорания, жидкий водород поглощает все тепло, выделяющееся при разгоне аппарата до скорости, в 10-12 раз превосходящей скорость звука в воздухе.

Жидкий водород в паре с жидким кислородом был применен в последних ступенях сверхтяжелых американских ракет - носителей «Сатурн-5», что в определенной степени способствовало успеху космических программ «Аполлон» и «Скайлэб».

Моторные свойства топлива

Основные физико-химические и моторные свойства водорода в сравнении с пропаном и бензином приведены в табл. 1.


Водород обладает наиболее высокими энергомассовыми показателями, превосходящими традиционные углеводородные топлива в 2,5-3 раза, а спирты - в 5-6 раз. Однако из-за низкой плотности по объемной тепло-производительности он уступает большинству жидких и газообразных топлив. Теплота сгорания 1 м 3 водородовоздушной смеси на 15% меньше, чем у бензина. Вследствие худшего наполнения цилиндра из-за низкой плотности литровая мощность бензиновых двигателей при переводе на водород снижается на 20-25%.

Температура воспламенения водородных смесей выше, чем углеводородных, но для воспламенения первых требуется меньшее количество энергии. Водородовоздушные смеси отличаются высокой скоростью сгорания в двигателе, причем сгорание протекает практически при постоянном объеме, что ведет к резкому возрастанию давления (в 3 раза выше по сравнению с бензиновым эквивалентом). Однако на бедных и даже очень бедных смесях скорость горения водорода обеспечивает нормальную работу двигателя.

Водородовоздушные смеси обладают исключительно широким диапазоном горючести, что позволяет при любых изменениях нагрузки применять качественное регулирование. Низкий предел воспламенения обеспечивает работу водородного двигателя на всех скоростных режимах в широком диапазоне состава смеси, вследствие чего его КПД на частичных нагрузках увеличивается на 25-50%.

Для подачи водорода в двигатели внутреннего сгорания известны следующие способы: впрыск во впускной трубопровод; при помощи модификации карбюратора, аналогичной системам питания сжиженным и природным газами; индивидуальное дозирование водорода около впускного клапана; непосредственный впрыск под высоким давлением в камеру сгорания.

Для обеспечения устойчивой работы двигателя первый и второй способы могут применяться только при частичной рециркуляции отработавших газов, при помощи присадки к топливному заряду воды и добавки бензина.

Наилучшие результаты дает непосредственный впрыск водорода в камеру сгорания, при котором полностью исключаются обратные вспышки во впускном тракте, максимальная же мощность не только не уменьшается, но может быть повышена на 10-15%.

Запас топлива

Объемно-массовые характеристики различных систем хранения водорода приведены в табл. 2. Все они по габаритам и массе уступают бензину.


Из-за малого энергозапаса и значительного увеличения размеров и массы топливного бака газообразный водород не применяется. Не применяются на транспортных средствах и тяжелые баллоны высокого давления.

Жидкого водорода в криогенных емкостях, имеющих двойные стенки, пространство между которыми теплоизолировано.

Большой практический интерес представляет аккумулирование водорода при помощи металлогидридов. Некоторые металлы и сплавы, например ванадий, ниобий, железотитановый сплав (FeTi), марганцевоникелевый (Mg + 5% Ni) и другие, при определенных условиях могут соединяться с водородом. При этом образуются гидриды, содержащие большое количество водорода. Если к гидриду подводить тепло, он будет разлагаться, освобождая водорот. Восстановленные металлы и сплавы можно многократно использовать для соединения с водородом.

В гидридных системах для выделения водорода обычно используется тепло отработавших газов двигателя. Зарядка гидридного аккумулятора водородом производится под небольшим давлением с одновременным охлаждением проточной водой из водопровода. По термодинамическим свойствам и низкой стоимости наиболее подходящим компонентом является сплав FeTi.

Гидридный аккумулятор представляет собой пакет трубок (гидридных патронов) из нержавеющей стали, заполненных порошкообразным сплавом FeTi и заключенных в общую оболочку. В пространство между трубками пропускаются отработавшие газы двигателя или вода. Трубки с одной стороны объединены коллектором, который служит для хранения небольшого запаса водорода, необходимого для запуска двигателя и его работы на переходных режимах. По массе и объему гидридные аккумуляторы соизмеримы с системами хранения жидкого водорода. По энергоемкости они уступают бензину, но превосходят свинцовые электроаккумуляторы.

Гидридный способ хранения хорошо согласуется с режимами работы двигателя посредством автоматического регулирования расхода отработавших газов через гидридный аккумулятор. Гидридная система позволяет наиболее полно утилизовать тепловые потери с отработавшими газами и охлаждающей водой. На автомобиле «Шевроле Монте-Карло» применена опытная гидридно-криогенная система. В этой системе запуск двигателя производится на жидком водороде, а гидридный аккумулятор включается после прогрева двигателя, причем для подогрева гидрида используется вода из системы охлаждения.

В довоенной Германии в опытной гидридной системе, разработанной фирмой «Даймлер-Бенц», были применены два гидридных аккумулятора, один из которых - низкотемпературный - поглощает тепло из окружающей среды и работает как кондиционер, другой - нагревается охлаждающей жидкостью из системы охлаждения двигателя. Время, необходимое для зарядки гидридного аккумулятора, зависит от количества времени, необходимого для отвода тепла. При охлаждении водопроводной водой время полной заправки гидридного аккумулятора емкостью 65 л, содержащего 200 кг сплава FeTi и поглощающего 50 м3 водорода, составляет 45 мин, причем за первые 10 мин происходит 75%-ная заправка.

Преимущества водорода

Главными преимуществами водорода как топлива в настоящее время являются неограниченные запасы сырья и отсутствие или малое количество вредных веществ в отработавших газах.

Сырьевая база для получения водорода практически неограничена. Достаточно сказать, что во вселенной это самый распространенный элемент. В виде плазмы он составляет почти половину массы Солнца и большинства звезд. Газы межзвездной среды и газовые туманности также в основном состоят из водорода.

В земной коре содержание водорода составляет 1% по массе, а в воде - самом распространенном на Земле веществе - 11,19% по массе. Однако свободный водород встречается крайне редко и в минимальных количествах в вулканических и других природных газах.

Водород является уникальным топливом, которое добывается из воды и после сгорания вновь образует воду. Если в качестве окислителя применять кислород, то единственным продуктом сгорания будет дистиллированная вода. При использовании воздуха к воде добавляются окислы азота содержание которых зависит от коэффициента избытка воздуха.

При использовании водорода не требуются ядовитые свинцовые антидетонаторы.

Несмотря на отсутствие в водородном топливе углерода, в отработавших газах из-за выгорания углеводородных смазок, попадающих в камеру сгорания, может содержаться незначительное количество окиси углерода и углеводородов.

Фирмой «Дженерал Моторс» (США) в 1972 г. были проведены соревнования автомобилей на наиболее чистый выхлоп. В соревнованиях приняли участие аккумуляторные электромобили и 63 автомобиля, работавших на различных топливах, в том числе на газе - аммиаке, пропане. Первое место было присуждено конвертированному на водород автомобилю «Фольксваген », отработавшие газы которого оказались чище окружающего атмосферного воздуха, потребляемого двигателем.

При работе двигателей внутреннего сгорания на водороде вследствие значительно меньшего выделения твердых частиц и отсутствия органических кислот, образующихся при сгорании углеводородных топлив, увеличивается срок службы двигателя и сокращаются ремонтные расходы.

О недостатках

Газообразный водород обладает высокой диффузионной способностью - его коэффициент диффузии в воздухе более чем в 3 раза выше по сравнению с кислородом, двуокисью водорода и метаном.

Способность водорода проникать в толщу металлов, получившая название наводораживание, возрастает с повышением давления и температуры. Проникновение водорода в кристаллическую решетку большинства металлов на 4-6 мм при нагартовке снижается на 1,5-2 мм. Наводораживание алюминия, достигающее 15-30 мм, при нагартовке может быть снижено до 4-6 мм. Наводораживание большинства металлов практически полностью устраняется легированием хромом, молибденом, вольфрамом.

Углеродистые стали не пригодны для изготовления деталей, контактирующих с жидким водородом, так как становятся хрупкими при низких температурах, Для этих целей применяются хромоникелевые стали Х18Н10Т, ОХ18Н12Б, Х14Г14НЗТ, латуни Л-62, ЛС 69-1, ЛЖ МЦ 59-1-1, оловянофосфористая БР ОФ10-1, берилиевая БРБ2 и алюминиевые бронзы.

Криогенные (для низкотемпературных веществ) емкости для хранения жидкого водорода изготавливаются обычно из алюминиевых сплавов АМц, АМг, АМг-5В и др.

Смесь газообразного водорода с кислородом в широких пределах отличается склонностью к воспламеняемости и взрываемости. Поэтому закрытые помещения должны быть оборудованы детекторами, контролирующими его концентрацию в воздухе.

Высокая температура воспламенения и способность к быстрому рассеиванию в воздухе делают водород в открытых объемах по безопасности примерно равноценным природному газу.

Для определения взрывобезопасности при дорожно-транспортном происшествии жидкий водород из криогенной емкости проливали на землю, однако он мгновенно испарялся и не воспламенялся при попытках поджечь.

В США автомобиль «Кадиллак Эльдорадо», переоборудованный на водородное топливо, подвергался следующим испытаниям. В полностью заправленную гидридную емкость с водородом стреляли из винтовки бронебойными пулями. При этом взрыва не происходило, а бензобак при аналогичном испытании взрывался.

Таким образом, серьезные недостатки водорода - высокая диффузионная способность и широкая область воспламеняемости и взрываемости водородокислородной газовой смеси уже не являются причинами, препятствующими его применению на транспорте.

Перспективы

Как топливо водород уже применяется в ракетной технике. В настоящее время исследуются возможности его применения в авиации и на автомобильном транспорте. Уже известно, каким должен быть оптимальный водородный двигатель. Он должен иметь: степень сжатия 10-12, частоту вращения коленвала - не менее 3000 об/мин внутреннюю систему смесеобразования и работать при коэффициенте избытка воздуха α≥1,5. Но для реализации. такого двигателя нужно улучшить смесеобразование в цилиндре двигателя и выдать надежные рекомендации по конструированию.

Ученые прогнозируют начало широкого применения водородных двигателей на автомобилях не раньше 2000 г. До этого времени возможно применение добавок водорода к бензину; это позволит улучшить экономичность и снизить количество вредных выбросов в окружающую среду.

Представляет интерес перевод на водород роторно-поршневого двигателя, так как он не имеет картера и, следовательно, не взрывоопасен.

В настоящее время водород производят из природного газа. Использовать такой водород в качестве топлива невыгодно, дешевле сжигать в двигателях газ. Получение водорода разложением воды также экономически невыгодно из-за больших затрат энергии на расщепление молекулы воды Однако проводятся исследования и в этом направлении. Уже есть экспериментальные автомобили, снабженные собственной электролизной установкой, которая может подключаться к общей электросети; вырабатываемый водород накапливается в гидридном аккумуляторе.

На сегодняшний день стоимость электролитического водорода в 2,5 раза выше, чем получаемого из природного газа. Ученые объясняют это техническим несовершенством электролизеров и считают, что их КПД может быть увеличен в скором времени до 70-80%, в частности, за счет применения высокотемпературной технологии. По существующей технологии итоговый КПД электролитического производства водорода не превышает 30%.

Для прямого термического разложения воды требуется высокая температура порядка 5000 °С. Поэтому прямое разложение воды пока не осуществимо даже в термоядерном реакторе - трудно найти материалы, способные работать при такой температуре. Японским ученым Т. Накимурой для солнечных печей предложен двухступенчатый цикл разложения воды, не требующий столь высоких температур. Может быть, придет время, когда по двухступенчатому циклу водород будет вырабатываться гелиоводородными станциями, расположенными в океане, и ядерно-водородными станциями, вырабатывающими водорода больше, чем электроэнергии.

Как и природный газ, водород можно транспортировать по трубопроводам. Вследствие меньшей плотности и вязкости по одному и тому же трубопроводу при одинаковом давлении водорода можно перекачать в 2,7 раза больше, чем газа, однако затраты на транспортировку будут выше. Расходы энергии на транспортировку водорода по трубопроводам составят приблизительно 1% на 1000 кгс, что недостижимо для линий электропередач.

Водород можно хранить в газгольдерах с жидким затвором и в резервуарах. Во Франции уже есть опыт хранения под землей газа, содержащего 50% водорода. Жидкий водород можно хранить в криогенных емкостях, в гидридах металлов и в растворах.

Гидриды могут быть нечувствительны к загрязняющим примесям и способны селективно поглощать водород из газовой смеси. Это открывает возможность заправляться в ночное время от бытовой газовой сети, питаемой продуктами газификации угля.

Литература

  • 1. Владимиров А. Топливо больших скоростей. - Химия и жизнь. 1974, №12, с. 47-50.
  • 2. Воронов Г. Термоядерный реактор - источник водородного топлива. - Химия и жизнь, 1979, № 8, с. 17.
  • 3. Использование альтернативных топлив на автомобильном транспорте за рубежом. Обзорная информация. Серия 5. Экономика, управление и организация производства. ЦБНТИ Минавтотранса РСФСР, 1S82, вып. 2.
  • 4. Струминский В. В. Водород как топливо. - За рулем, 1980, Ко 8, с. 10-11.
  • 5. Xмыров В. И., Лавров Б. Е. Водородный двигатель. Алма-Ата, Наука, 1981.

Примечания

1. Редакция продолжает публикацию серии статей, посвященных перспективным видам топлива и проблемам экономии горючего (см. «КЯ» , ).

Мы живём в 21 веке, человечество развивается, строит заводы, ведёт активный образ жизни. Однако для полноценного развития и существования нам нужна энергия! Сейчас такой энергией является нефть. Из неё делается топливо для всех отраслей. Мы используем ее буквально повсюду: от маленьких авто, до огромных заводов.

Однако нефть не является бесконечным ресурсом, с каждым годом мы движемся к полному её уничтожению. Учёные говорят, что мы находимся на той стадии, когда нам нужно искать эффективную замену бензину, ведь уже сейчас цена на него очень высокая, а с каждым годом нефти будет всё меньше, а цены всё выше, и в скором времени, когда нефть закончится (а с существуюшем образом жизни человечества это произойдёт через 60 лет), наше развитие и полноценное существование попросту закончится.

Всем понятно, что нужно искать альтернативные виды топлива. Но какая замена самая эффективная? Ответ прост: водород! Вот, что заменит привычный всем бензин.

Кто придумал водородный двигатель?

Как и многие высокие технологии, данная идея пришла к нам с запада. Первый водородный двигатель разработал и создал американский инженер и учёный Браун. Первая компания, которая использовала данный двигатель, была японская «Honda». Но этой автомобильной компании пришлось на многое пойти ради воплощения в жизнь «автомобиля будущего». Во время создания авто были задействованы на несколько лет все лучшие инженеры и умы компании! Им всем пришлось приостановить производство некоторых автомобилей. И что самое главное, они отказались от участия в Формуле 1, так как все работники, которые были задействованы в создании болидов, стали разрабатывать автомобиль на водороде.

Плюсы водорода как топлива

  • Водород является самым распространенным элементом во вселенной, абсолютно всё в нашей жизни состоит из него, все окружающие нас предметы имеют хоть маленькую, но частицу водорода. Именно этот факт очень приятный для человечества, ведь в отличие от нефти, водород не закончится никогда, и нам не придётся экономить на топливе.
  • Он является абсолютно экологически чистым! В отличие от бензинового, водородный двигатель не выделяет вредных газов, которые негативно влияли бы на экологию. Выхлопами, которые выделяет такой силовой агрегат, является обычная пара.
  • Водород, который используется в двигателях, очень воспламеняем, и автомобиль будет хорошо заводиться и передвигаться, независимо от погоды. То есть нам больше не потребуется зимой прогревать автомобиль перед поездкой.
  • На водороде даже маленькие двигатели будут очень мощными и чтобы создать самый быстрый автомобиль, больше не потребуется строить агрегат размером с танк.

Конечно есть и минусы в этом топливе:

  • Дело в том, что вопреки тому, что это безграничный материал, и он имеется повсюду, его очень тяжело добывать. Хотя для человечества это не проблема. Научились добывать нефть среди океана, пробурив его дно, научимся и водород брать с земли.
  • Вторым минусом является недовольство нефтяных магнатов. Зразу после начала прогрессивного развития данной технологии, большинство проектов были закрыты. По слухам, всё это связано с тем, что если заменить бензин водородом, то самые богатые люди планеты останутся без дохода, а они этого позволить не могут.

Способы добычи водорода в качестве использования в виде энергии

Водород не является чистым ископаемым вроде нефти и угля, нельзя так просто взять выкопать и использовать его. Для того, чтобы он стал энергией, его нужно раздобыть и испоьлзовать некоторую энергию для его переработки, после чего этот самый распространенный химический элемент станет топливом.

Практикуемым на данный день способом добычи водородного топлива является так называемый «паровой риформинг». Чтобы переработать обычный водород в топливо, используются углеводы, которые состоят из водорода и углерода. При химических реакциях, при определенной температуре выделяется огромное количество водорода, который и можно использовать в качестве топлива. Данное топливо не будет выделять вредных веществ в атмосферу во время эксплуатации, однако во время его добычи выделяется огромное количество углекислого газа, который плохо влияет на экологию. Поэтому данный метод хоть и является эффективным, он не должен браться в основу по добыче альтернативного топлива.

Есть двигатели, для которых подойдёт и чистый водород, они сами перерабатывают данный элемент в топливо, однако, как и при предыдущем способе, здесь также наблюдается огромное количество выбросов углекислого газа в атмосферу.

Очень эффективным способом добычи альтернативного топлива в виде водорода является электролиз. Электрический ток пускают в воду, вследствии чего она распадается на водород и кислород. Данный метод является дорогим и хлопотным, однако экологически чистым. Единственным отходом от получения и эксплуатации топлива является кислород, который лишь позитивно повлияет на атмосферу нашей планеты.

А самым перспективным и дешёвым способом получения водородного топлива является переработка аммиака. При необходимой химической реакции аммиак распадается на азот и водород, при чём водорода получается в трижды больше, ежели азота. Данный метод лучше тем, что он немного дешевле и менее затратный. Кроме того, аммиак легче и безопаснее транспортировать, а по прибытию к месту доставки, следует запустить химическую реакцию, выделить азот и топливо готово.

Искусственный шум

Двигатели на водородном топливе практически бесшумны, поэтому на автомобилях, которые эксплуатируются или будут входить в эксплуатацию, устанавливается так называемый «искусственный шум автомобиля», - для предотвращения аварий на дорогах.

Ну что же, друзья, мы с вами стоим на пороге грандиозного перехода от бензина, который уничтожает всю нашу экосистему, до водорода, который наоборот её восстанавливает!