Б.М. Тишин. К вопросу уточнённого расчёта тормозного и остановочного пути транспортного средства при анализе дорожно-транспортных происшествий и производстве автотехнических экспертиз. Определение замедления тс По закону сохранения количества движения

Установившееся замедление , м/с 2 , рассчитывают по формуле

. (7.11)

=9,81*0,2=1,962 м/с 2 ;

=9,81*0,4= 3,942 м/с 2 ;

=9,81*0,6=5,886м/с 2 ;

=9,81*0,8=7,848 м/с 2 .

Результаты расчетов по формуле (7.10) сведены в таблицу 7.2

Таблица 7.2 – Зависимость остановочного пути и установившегося замедления от начальной скорости торможения и коэффициента сцепления

, км/ч

По данным таблицы 7.2 строим зависимость остановочного пути и установившегося замедления от начальной скорости торможения и коэффициента сцепления (рисунок 7.2).

7.9 Построение тормозной диаграммы атс

Тормозной диаграммой (рисунок 7.3)называется зависимость замедления и скорости движения АТС от времени.

7.9.1 Определение скорости и замедления на участке диаграммы, соответствующем времени запаздывания срабатывания привода

Для этого этапа ==const,= 0 м/с 2 .

В эксплуатации начальная скорость торможения = 40 км/ч для всех категорий АТС.

7.9.2 Определение скорости АТС на участке диаграммы, соответствующем времени нарастания замедления

Скорость
, м/с, соответствующую концу времени нарастания замедления, определяют по формуле

=11,11-0,5*9,81*0,7*0,1=10,76 м/с.

Промежуточные значения скорости на данном участке определяют по формуле (7.12), при этом
= 0; коэффициент сцепления для категории М 1
= 0,7.

7.9.3 Определение скорости и замедления на участке диаграммы, соответствующем времени установившегося замедления

Время установившегося замедления
, с, рассчитывают по формуле

, (7.13)

с.

Скорость
, м/с, на участке диаграммы, соответствующем времени установившегося замедления, определяют по формуле

, (7.14)

при
= 0
.

Величину установившегося замедления для рабочей тормозной системы автомобилей категории М 1 принимают
=7,0 м/с 2 .

8 Определение параметров управляемости АТС

Управляемость АТС – это его свойство сохранять в определенной дорожной обстановке заданное направление движения или изменять его в соответствии с воздействием водителя на рулевое управление.

8.1 Определение максимальных углов поворота управляемых колес

8.1.1 Определение максимального угла поворота наружного управляемого колеса

Максимальный угол поворота наружного управляемого колеса

, (8.1)

где R н1 min – радиус поворота наружного колеса.

Радиус поворота наружного колеса принимается равным соответствующему параметру прототипа –R н1 min = 6 м.

,

=25,65.

8.1.2 Определение максимального угла поворота внутреннего управляемого колеса

Максимальный угол поворота внутреннего управляемого колеса можно определить, приняв колею шкворней равной колее колес. Предварительно необходимо определить расстояние от мгновенного центра поворота до наружного заднего колеса.

Расстояние от мгновенного центра поворота до наружного заднего колеса
, м, рассчитывают по формуле

, (8.2)

.

Максимальный угол поворота внутреннего управляемого колеса
, град, можно определить из выражения

, (8.3)

,

=33,34.

8.1.3 Определение среднего максимального угла поворота управляемых колес

Средний максимальный угол поворота управляемых колес
, град, можно определить по формуле

, (8.4)

.

8.2 Определение минимальной ширины проезжей части

Минимальную ширину проезжей части
, м, рассчитывают по формуле

=5,6-(5,05-1,365)=1,915м.

8.3 Определение критической по условиям увода скорости движения

Критическую по условиям увода скорость движения
, м/с, рассчитывают по формуле

, (8.6)

где
,
– коэффициенты сопротивления уводу колес передней и задней оси соответственно, Н/град.

Коэффициент сопротивления уводу одного колеса
, Н/рад, ориентировочно определяют по эмпирической зависимости

где
– внутренний диаметр шины, м;
– ширина профиля шины, м;
– давление воздуха в шине, кПа.

К δ1 =(780(0,33+2*0,175)0,175(0,17+98) *2)/57.32=317,94, Н/град

К δ1 =(780(0,33+2*0,175)0,175(0,2+98)*2)/ 57.32=318,07,Н/град

.

Поворачиваемость проектируемого автомобиля – избыточная.

Для обеспечения безопасности движения должно выполняться условие

>
. (***)

Условие (***) не выполняется, так как при определении коэффициентов сопротивления уводу были учтены только параметры шин. В тоже время при определении критической по уводу скорости необходимо учитывать распределение массы автомобиля, конструкцию подвески и другие факторы.


Торможение, целью которого является максимально быстрая остановка, называется экстренным. При экстренном торможении считается, что силы сцепления используются полностью, то есть силы торможения достигают максимального значения одновременно на всех колесах, коэффициенты сцепления j х на всех колесах одинаковы и неизменны за весь период торможения.

При таких допущениях процесс торможения может быть описан графиком зависимости j з = f(t) (рисунок 3.1), называемым тормозной диаграммой. Начало координат соответствует моменту обнаружения опасности. На диаграмму для лучшей иллюстративности наносят зависимость V = f(t) .

t рв - время, прошедшее от момента обнаружения опасности до начала торможения, называют временем реакции водителя. В зависимости от индивидуальных качеств, квалификации водителя, степени его утомления, дорожной обстановки и т. п. t рв может изменяться в пределах 0,2…1,5 с. При расчетах принимают среднее значение t рв = 0,8 с.

t с - время срабатывания тормозов, с:

Для дисковых тормозов с гидроприводом t с = 0,05…0,07 с;

Для барабанных тормозов с гидроприводом t с = 0,15…0,20 с;

Для барабанных тормозов с пневмоприводом t с = 0,2…0,4 с.

t н - время нарастания замедления, с:

Для легковых автомобилей t с = 0,05…0,07 с;

Для грузовых автомобилей с гидроприводом t н = 0,05…0,4 с;

Для грузовых автомобилей с пневмоприводом t н = 0,15…1,5 с;

Для автобусов t с = 0,2…1,3 с.

Максимальное замедление j з max при торможении достигается при достижении максимального усилия воздействия на тормозную педаль, поэтому считается, что сила торможения будет неизменной, а замедление также можно принять постоянным.

При экстренном торможении на горизонтальной дороге максимальное замедление по условиям сцепления можно определить по формуле:

j з max = j х ×g , м/с 2 . (3.1)

За время t н (время нарастания замедления) изменение замедления j з происходит пропорционально времени, то есть график j з = f(t н) - прямая линия.

t т – минимальное время торможения, с;

t р – время растормаживания (это время от начала отпускания тормозной педали до возникновения зазора между фрикционными элементами).

Построение тормозной диаграммы осуществляется в соответствии с выбранными масштабами времени t , скорости V и замедления j в прямоугольной системе координат, в соответствии с рисунком 3.1.

На участках t рв , t с скорость V остается равной V o – скорости в начале торможения; на участке t н величина скорости плавно снижается, а на участке t т изображается в виде прямой линии, так как замедление постоянное (V = V o - j з ×t , м/с).

  1. Евтюков С. А., Васильев Я. В. Расследование и экспертиза дорожно-транспортных происшествий / под общ. ред. С. А. Евтюкова. СПб.: ООО «Издательство ДНК», 2004. 288 с
  2. Евтюков С. А., Васильев Я. В. Экспертиза дорожно-транспортных происшествий: справочник. СПб.: ООО «Издательство ДНК», 2006. 536 с
  3. Евтюков С. А., Васильев Я. В. ДТП: Расследование, реконструкция и экспертиза. СПб.: ООО «Издательство ДНК», 2008. 390 с
  4. ГОСТ Р 51709-2001. Автотранспортные средства. Требования безопасности к техническому состоянию и методы проверки. М.: Изд-во стандартов, 2001. 27 с
  5. Литвинов А. С., Фаробин Я. Е. Автомобиль: Теория эксплуатационных свойств. М.: Машиностроение, 1986. 240 с
  6. Судебная автотехническая экспертиза: пособие для экспертов-автотехников, следователей и судей. Ч. II. Теоретические основы и методика экспериментального исследования при производстве автотехнической экспертизы / под ред. В. А. Иларионова. М.: ВНИИСЭ, 1980. 492 с
  7. Пучкин В. А. и др. Оценка дорожной ситуации, предшествовавшей ДТП // Организация и безопасность дорожного движения в крупных городах: сб. докл. 8-й междунар. конф. СПб., 2008. C. 359-363
  8. Об утверждении устава Федерального бюджетного учреждения российского федерального Центра судебной экспертизы при Министерстве юстиции Российской Федерации: Приказ Министерства юстиции Российской Федерации от 03.03.2014 № 49 (в ред. от 21.01.2016 № 10)
  9. Надеждин Е. Н., Смирнова Е. Е. Эконометрика: учеб. пособие / под ред. Е. Н. Надеждина. Тула: АНО ВПО «ИЭУ», 2011. 176 с
  10. Григорян В. Г. Применение в экспертной практике параметров торможения автотранспортных средств: метод. рекомендации для экспертов. М.: ВНИИСЭ, 1995
  11. Постановление Правительства Российской Федерации от 06.10.1994 № 1133 «О судебно-экспертных учреждениях системы Министерства юстиции Российской Федерации»
  12. Постановление Правительства Российской Федерации о Федеральной целевой программе «Повышение безопасности дорожного движения в 2013-2020 годах» от 30.10.2012 № 1995-р
  13. Никифоров В. В. Логистика. Транспорт и склад в цепи поставок: учеб. пособие. М.: ГроссМедиа, 2008. 192 с
  14. Щукин М. М. Сцепные устройства автомобилей и тягачей: Конструкция, теория, расчет. М.; Л.: Машиностроение, 1961. 211 с
  15. Пучкин В. А. Основы экспертного анализа дорожно-транспортных происшествий: База данных. Экспертная техника. Методы решений. Ростов н/Д: ИПО ПИ ЮФУ, 2010. 400 с
  16. Щербакова О. В. Обоснование математической модели процесса соударения с целью разработки методики повышения оценки точности определения скорости движения автопоезда в начале опрокидывания на криволинейных траекториях // Вестник гражданских инженеров. 2016. № 2 (55). С. 252-259
  17. Щербакова О. В. Анализ заключений автотехнических экспертиз по дорожно-транспортным происшествиям // Вестник гражданских инженеров. 2015. № 2 (49). С. 160-163

Б. М. Тишин ,

негосударственный судебный эксперт в области автотехнической экспертизы,

кандидат технических наук

(г. Санкт-Петербург)

Расстояния тормозного и остановочного пути, рассчитанные имеющимися в экспертной практике методами, основаны на допущении о равенстве скорости движения транспортного средства на всём протяжении процесса торможения. В работе предложена методика уточнённого расчёта расстояний тормозного и остановочного пути транспортных средств, учитывающая снижение скорости на всех этапах процесса торможения. Рассчитанные расстояния методом уточнения дают результат на 10÷20 % меньше, чем по методикам, имеющимся в распоряжении экспертов сегодня.

Ключевые слова: методика расчёта; тормозной путь; остановочный путь; равенство скоростей; снижение скорости; погрешность результатов; замедление; время движения.

Т 47

ББК 67.52

УДК 343.983.25

ГРНТИ 10.85.31

Код ВАК 12.00.12

To the question of the refined calculation of the braking and stopping distance of the vehicle in the analysis of road accidents and the production of auto-technical examinations

B. M. Tishin,

non-state forensic expert in the field of autotechnical expertise

(city Sankt-Peterburg)

The distances of the braking and stopping tracks, calculated by the methods available in expert practice, are based on the assumption that the speed of the vehicle is equal throughout the braking process. In the work the technique of the refined calculation of distances of a brake and stopping way of vehicles, taking into account speed reduction at all stages of process of braking is offered. Calculated distances by the refinement method give a result of 10 ÷ 20 % less than the methods available to experts today.

Keywords : calculation technique; braking distances; stopping way; equality of speeds; reduction in speed; error in results; slowing down; driving time.

_____________________________________

Наиболее объективным показателем, по которому можно судить о скорости движения перед торможением, являются следы, оставленные шинами транспортного средства на дорожном покрытии.

Скорость движения транспортного средства перед торможением в экспертной практике рассчитывают по формуле:

Здесь:

Установившееся замедление при торможении транспортного средства;

Нормативное время нарастания замедления;

- длина замеренного следа торможения до остановки транспортного средства.

В данной формуле учитывается то обстоятельство, что при нажатии на педаль тормоза происходит постепенное нарастание замедления, и поэтому в формуле учитывается изменение скорости за время нарастания замедления как средняя величина при начальном замедлении «0» и конечном - «».

Однако изменение скорости движения в процессе торможения происходит не только за время нарастания замедления, но и за время срабатывания тормозного привода и за время движения транспортного средства, когда водитель принимает решение о необходимости торможения, прекращает подачу топлива и переносит ногу с педали подачи топлива на педаль тормоза. В это время транспортное средство двигается под действием силы инерции, преодолевая сопротивление движению транспортного средства в зависимости от условий движения и сопротивление принудительному прокручиванию коленчатого вала двигателя от колёс через трансмиссию, если не выключена передача на коробке переключения передач (КПП), так как обороты коленчатого вала резко уменьшаются после прекращения подачи топлива, а колёса продолжают вращение какое-то время, практически, с прежней скоростью.

В настоящее время наличие в системе тормозов устройства антиблокировки колёс (АБС), не позволяет колёсам блокироваться при интенсивном (экстренном) торможении. Поэтому следов торможения, как таковых, на дорожном покрытии не остаётся. Это положение закреплено в ГОСТ Р 51709-2001 п. 4.1.16: «АТС, оборудованные антиблокировочными тормозными системами (АБС), при торможениях в снаряжённом состоянии, (с учётом массы водителя), с начальной скоростью, не менее 40 км /час , должны двигаться в пределах коридора движения без видимых следов увода и заноса, а их колёса не должны оставлять следов юза на дорожном покрытии до момента отключения АБС при достижении скорости движения, соответствующей порогу отключения АБС (не более 15 км /час ). Функционирование сигнализаторов АБС должно соответствовать её исправному состоянию».

Это же обстоятельство не позволяет устанавливать скорость транспортного средства перед торможением по приведённой формуле, учитывающей изменение скорости за время нарастания замедления.

Поэтому скорость движения перед торможением устанавливается следствием, судом, экспертами другими методами, когда и изменение скорости за время нарастания замедления не учитывается.

Согласно ГОСТ Р 51709-2001 , под тормозным путём понимается расстояние, пройденное АТС от начала до конца торможения.

Тормозная диаграмма, приведённая в ГОСТ Р 51709-2001 в приложении «Б» изображена на рис. 1.

Рис. 1. Тормозная диаграмма: время запаздывания тормозной системы; время нарастания замедления; время торможения с установившимся замедлением; время срабатывания тормозной системы; установившееся замедление АТС; Н и К - начало и конец торможения соответственно.

Начало торможения - это момент времени, в который транспортное средство получает сигнал о необходимости осуществить торможение. Обозначено точкой «Н» в приложении «Б».

Конец торможения - это момент времени, в который исчезло искусственное сопротивление движению АТС или оно остановилось. Обозначено точкой «К» в приложении «Б».

В приложении «Г» (ГОСТ Р 51709-2001) указано, что допускается вычисление тормозного пути в метрах, для начальной скорости торможения по результатам проверок показателей замедления АТС при торможении по формуле (приложение «Д»):


где: - начальная скорость торможения АТС, км /час ;

Время запаздывания тормозной системы, с ;

Время нарастания замедления, с ;

Установившееся замедление, м /с 2 ;

В приложении «Д» первое слагаемое выражения тормозного пути приравнивается к выражению, в котором «А» - коэффициент, характеризующий время срабатывания тормозной системы.


В этом же приложении даётся таблица значений коэффициента «А», и нормативного установившегося замедления для различных категорий АТС.

Данный способ расчёта применяется при пересчётах нормативов тормозного пути.

Таблица Д. 1

АТС

Исходные данные для расчета норматива тормозного пути АТС в снаряженном состоянии:

А

м /с 2

Пассажирские и грузопассажирские автомобили

М1

0,10

5,8

М2, М3

0,10

5,0

Легковые автомобили с прицепом прицприприцепом

M 1

0,10

5,8

Грузовые автомобили

N 1 , N2, N3

0,15

5,0

Грузовые автомобили с прицепом (полуприцепом)

N 1 , N2, N3

0,18

5,0

Исходя из нормативных значений коэффициента «А», для АТС категорий М1, М2, М3, расстояние тормозного пути увеличивается на 10 % от величины начальной скорости. Для АТС категорий N1, N2, N3 без прицепа - на 15 % от величины начальной скорости. Для АТС категорий N1; N2; N3 с прицепом или полуприцепом - на 18 % величины начальной скорости.

Начальная скорость подставляется в км /час .

В практике анализа ДТП или при производстве автотехнических экспертиз для определения эффективности торможения принимается не тормозной путь, обусловленный техническими параметрами автотранспортного средства, а остановочный путь АТС, обусловленный как техническими параметрами транспортного средства, так и психофизиологическими возможностями водителя.

По определению, данному профессором С. А. Евтюковым - остановочный путь - это расстояние, необходимое водителю для остановки транспортного средства с помощью торможения при начальной скорости торможения при движении в конкретных дорожных условиях. Остановочный путь складывается из расстояния, проходимого транспортным средством за время реакции водителя на опасность, запаздывания тормозного привода и нарастания замедления при экстренном торможении, а также расстояния, проходимого транспортным средством с установившемся замедлением вплоть до полной его остановки.

Как видно из определений тормозного и остановочного пути, они отличаются друг от друга на расстояние, которое проходит транспортное средство за время реакции усреднённого водителя.

В экспертной практике остановочный путь рассчитывается, исходя из нормативов времени реакции усреднённого водителя, по видам дорожно-транспортных ситуаций, нормативного времени запаздывания тормозного привода и нарастания замедления по категориям транспортных средств и видам тормозных приводов.


где: - время реакции водителя, выбираемое экспертом по таблицам дифференцированных значений времени реакции водителя, в соответствии с метеорологическими и дорожными условиями .

- нормативно-технические значения параметров торможения, принимаемые экспертом по таблицам экспериментально расчётных значений параметров торможения автотранспортных средств в экспертной практике .

Как для расчёта тормозного пути по формуле, приведённой в ГОСТ, так и для расчёта остановочного пути по формуле, применяемой в практике экспертных расчётов, сделаны допущения: начальная скорость движения транспортного средства перед торможением принимается равной скорости и при нажатии на педаль тормоза и при начале движения в заторможенном состоянии с установившемся замедлением. То есть условно принимается, что на всём протяжении процесса торможения до момента возникновения установившегося замедления, скорость движения транспортного средства остаётся постоянной.

На самом деле, в процессе торможения постоянно происходит снижение скорости как при движении за время реакции водителя, так и при движении за время срабатывания тормозной системы. При расчёте тормозного и остановочного пути в приведённых формулах применяются параметры, учитывающие расстояния, которые проходит транспортное средство на этапах торможения, но не учитывается, что эти расстояния транспортное средство проходит с постоянно уменьшающейся скоростью.

При движении транспортного средства во время реакции водителя оно под действием силы инерции проходит расстояние , преодолевая силу сопротивления качению по фактическому дорожному покрытию, и, если при нажатии на педаль тормоза не происходит выключения передачи КПП, то и преодолевая силу сопротивления движению от прокручивания коленчатого вала двигателя через трансмиссию.

Сила сопротивления качению транспортного средства в общем случае определяется произведением коэффициента сопротивления качению на фактическом покрытии дороги на силу тяжести транспортного средства:

При движении на горизонтальном участке пути или когда уклоном - подъёмом можно пренебречь,

Сопротивление движению транспортного средства, возникающее от прокручивания коленчатого вала двигателя, очень сложно рассчитать аналитически, поэтому в практике теории движения автомобилей силу сопротивления движению, возникающую от прокручивания вала двигателя через трансмиссию, рассчитывают по эмпирической формуле Ю. А. Кременца :


где - рабочий объём двигателя (литраж), в литрах;

Скорость движения транспортного средства перед торможением в км /час .

Сила тяжести транспортного средства, кг .

Если движение осуществляется не на прямой передаче, то в числитель вводится передаточное число КПП передачи.

Сложность учёта этих параметров заключается в том, что для каждого конкретного случая необходимо вычислять свои значения замедления, возникающего при преодолении сопротивлений движению. Однако это же и повышает точность произведённых расчётов остановочного и тормозного пути.

Замедление транспортного средства при преодолении сопротивления движению определяется по общей формуле замедления:

где - суммарное значение коэффициента сопротивления движению.

В частности, оно включает в себя коэффициент сопротивления качению и условный коэффициент сопротивления от прокручивания вала двигателя через трансмиссию - .

Коэффициент рассчитывается по общей формуле - сила сопротивления, поделённая на силу тяжести транспортного средства.

Замедление транспортного средства, возникающее при движении за время реакции водителя:

За время реакции водителя происходит снижение скорости движения:

м/c

В момент начала реагирования на опасность скорость движения транспортного средства , а в момент нажатия на педаль тормоза -

М/с

Следовательно, всё время движения транспортного средства за время реакции водителя следует рассматривать, как движение со средней скоростью:


Исходя из представленного расчёта, к моменту начала срабатывания тормозной системы скорость транспортного средства будет не

м /с

При движении транспортного средства за время срабатывания тормозной системы (, конец движения осуществляется со скоростью:

м /с

Движение транспортного средства за время срабатывания тормозной системы осуществляется со средней скоростью:


Снижение скорости за время срабатывания тормозной системы

Таким образом, к моменту появления установившегося замедления скорость транспортного средства равна

Именно эту скорость следует подставлять в слагаемое, определяющее расстояние перемещения транспортного средства за время движения с установившимся замедлением до остановки или до заданного значения.

Предложенная методика учёта снижения скорости позволяет предложить другой вариант расчёта остановочного и тормозного пути:


Несмотря на громоздкость предложенных выражений, они несложны в вычислениях, так как здесь приведены общие выводы. При последовательном решении значений средних скоростей по начальным и конечным скоростям, процесс вычислений упрощается.

Рассмотрим какое-либо конкретное событие торможения легкового транспортного средства категории , при времени реакции водителя на опасность, равном 1 с , времени запаздывания тормозного привода равным 0,1 с , времени нарастания замедления, возникающего на сухом асфальтовом покрытии 0,35 с , при установившемся замедлении 6,8 м /с 2 . Рабочий объём двигателя 2 л , фактическая масса транспортного средства 1500 кг , начальная скорость движения транспортного средства перед торможением 90 км /час (25 м /с ). Установившееся замедление принято без учёта влияния системы АБС.

Замедление в процессе движения транспортного средства за время реакции равно:

м/с 2

где - коэффициент сопротивления качению на сухом горизонтальном асфальте - 0,018 .

Условный коэффициент сопротивления прокручиванию коленчатого вала двигателя через трансмиссию:


Замедление транспортного средства за время реакции водителя:

При движении за время реакции водителя происходит снижение скорости движения:

Средняя скорость движения за время реакции водителя:

Скорость в конце времени реакции:

Установившееся замедление за время срабатывания тормозной системы:

Снижение скорости за время срабатывания тормозной системы:

Средняя скорость движения за время срабатывания тормозной системы.

Скорость движения в конце времени срабатывания тормозной системы:

Именно эта скорость и должна подставляться в слагаемое, определяющее расстояние движение транспортного средства в режиме торможения с установившимся замедлением.

Рассчитаем расстояние тормозного пути по формулам, принимаемым в ГОСТ и по предложенной методике:

По методике ГОСТ Р 51709-2001, приложение «Д»:

По методике, допускаемой приложением «Г», ГОСТ Р 51709-2001:



Что составляет, соответственно, 19,8 и 16,6 % от величины тормозного пути, определённого по ГОСТ Р 51709-2001.


По принятой в экспертной практике методике расчёта расстояния остановочного пути:

По предложенной методике уточнённого расчёта:


Что составляет 11,6 % от величины тормозного пути, рассчитанного по принятой методике:


Предлагаемая методика позволяет учитывать влияние конкретной модели транспортного средства и при дифференцированном расчёте тормозного и остановочного пути уменьшить погрешность расчёта. Это позволяет принимать категорический вывод о наличии или отсутствии технической возможности предотвращений дорожно-транспортных происшествий на более обоснованных расчётах, а не на усреднённых нормативных параметрах и допущении о равенстве скорости движения в процессе всего процесса торможения до момента возникновения установившегося замедления.

Применяемые в экспертной практике формулы расчёта тормозного и остановочного пути дают завышенный результат, превышающий 10 %, по сравнению с предлагаемой методикой уточнённого расчёта. При расчёте тормозных и остановочных путей транспортных средств категорий N 1 , N 2 , N 3 по предлагаемой методике разность результатов по сравнению с применяемыми методиками будет увеличиваться, так как растёт значение коэффициента «А».

Литература:

1. Евтюков С.А., Васильев Я. В. Экспертиза ДТП: Справочник. - СПб.: ДНК, 2006.

2. Применение дифференцированных значений времени реакции водителя в экспертной практике: Методические рекомендации ВНИИСЭ. - М., 1987.

3. Использование в экспертной практике экстремально-расчетных значений параметров торможения АТС: Методические рекомендации ВНИИСЭ. - М., 1986.

4. Боровский Б. Е. Безопасность движения автомобильного транспорта. - Л.: Лениздат, 1984.

ПРИМЕР №1.

Установить замедление и скорость автомобиля перед началом торможения на сухом асфальтобетонном покрытии, если длина следов торможения всех колес составляет 10 м, время нарастания замедления 0,35 с, установившееся замедление 6,8 м/с 2 , база автомобиля 2,5 м, коэффициент сцепления – 0,7.

РЕШЕНИЕ:

В сложившейся дорожно-транспортной ситуации в соответствии с зафиксированным следом скорость автомобиля перед началом торможения составляла примерно 40,7 км/ч:

j = g*φ = 9,81*0,70 = 6,8 м/с 2

В формуле обозначены:

t 3 = 0,35 с -- время нарастания замедления.

j = 6,8 м/с 2 -- установившееся замедление.

Sю = 10 м -- длина зафиксированного следа торможения.

L = 2,5 м -- база автомобиля.

ПРИМЕР №2.

Установить остановочный путь автомобиля ВАЗ-2115 на сухом асфальтобетонном покрытии, если: время реакции водителя 0,8 с; время запаздывания срабатывания тормозного привода 0,1 с; время нарастания замедления 0,35 с; установившееся замедление 6,8 м/с 2 ; скорость движения автомобиля ВАЗ-2115 - 60 км/ч, коэффициент сцепления – 0,7.

РЕШЕНИЕ:

В сложившейся дорожно-транспортной ситуации остановочный путь автомобиля ВАЗ-2115 составляет примерно 38 м:

В формуле обозначены:

t 1 = 0,8 с -- время реакции водителя;

t 3 = 0,35 с -- время нарастания замедления;

j = 6,8 м/с 2 -- установившееся замедление;

V = 60 км/ч -- скорость движения автомобиля ВАЗ-2115.

ПРИМЕР №3.

Определить остановочное время автомобиля ВАЗ-2114 на мокром асфальтобетонном покрытии, если: время реакции водителя 1,2 с; время запаздывания срабатывания тормозного привода 0,1 с; время нарастания замедления 0,25 с; установившееся замедление 4,9 м/с 2 ; скорость движения автомобиля ВАЗ-2114 50 км/ч.

РЕШЕНИЕ:

В сложившейся дорожно-транспортной ситуации остановочное время автомобиля ВАЗ-2115 составляет 4,26 с:

В формуле обозначены:

t 1 = 1,2 с -- время реакции водителя.

t 3 = 0,25 с -- время нарастания замедления.

V = 50 км/ч -- скорость движения автомобиля ВАЗ-2114.

j = 4,9 м/с 2 -- замедление автомобиля ВАЗ-2114.

ПРИМЕР №4.

Определить безопасную дистанцию между движущимся впереди со скоростью автомобилем ВАЗ-2106 и автомобилем КАМАЗ, движущимся с той же скоростью. Для расчета принять следующие условия: включение стоп-сигнала от тормозной педали; время реакции водителя при выборе безопасной дистанции – 1,2 с; время запаздывания срабатывания тормозного привода автомобиля КамАЗ – 0,2 с; время нарастания замедления автомобиля КамАЗ – 0,6 с; замедление автомобиля КамАЗ – 6,2 м/с 2 ; замедление автомобиля ВАЗ – 6,8 м/с 2 ; время запаздывания срабатывания тормозного привода автомобиля ВАЗ – 0,1 с; время нарастания замедления автомобиля ВАЗ – 0,35 с.

РЕШЕНИЕ:

В сложившейся дорожно-транспортной ситуации безопасная дистанция между автомобилями составляет 26 м:

В формуле обозначены:

t 1 = 1,2 с -- время реакции водителя при выборе безопасной дистанции.

t 22 = 0,2 с -- время запаздывания срабатывания тормозного привода автомобиля КамАЗ.

t 32 = 0,6 с -- время нарастания замедления автомобиля КамАЗ.

V = 60 км/ч -- скорость движения автомобилей.

j 2 = 6,2 м/с 2 -- замедление автомобиля КамАЗ.

j 1 = 6,8 м/с 2 -- замедление автомобиля ВАЗ.

t 21 = 0,1 с -- время запаздывания срабатывания тормозного привода автомобиля ВАЗ.

t 31 = 0,35 с -- время нарастания замедления автомобиля ВАЗ.

ПРИМЕР №5.

Определить безопасный интервал между движущимися в попутном направлении автомобилями ВАЗ-2115 и КамАЗ. Скорость автомобиля ВАЗ-2115 – 60 км/ч, скорость автомобиля КамАЗ – 90 км/ч.

РЕШЕНИЕ:

В сложившейся дорожной ситуации при попутном движении транспортных средств безопасный боковой интервал составляет 1,5 м:

В формуле обозначены:

V 1 = 60 км/ч - скорость движения автомобиля ВАЗ-2115.

V 2 = 90 км/ч - скорость движения автомобиля КамАЗ.

ПРИМЕР №6.

Определить безопасную скорость автомобиля ВАЗ-2110 по условиям видимости, если видимость в направлении движения составляет 30 метров, время реакции водителя при ориентировании в направлении движения – 1,2 с; время запаздывания срабатывания тормозного привода – 0,1 с; время нарастания замедления – 0,25 с; установившееся замедление – 4,9 м/с 2 .

РЕШЕНИЕ:

В сложившейся дорожно-транспортной ситуации безопасная скорость автомобиля ВАЗ-2110 по условию видимости в направлении движения составляет 41,5 км/ч:

В формулах обозначены:

t 1 = 1,2 с -- время реакции водителя при ориентировании в направлении движения;

t 2 = 0,1 с -- время запаздывания срабатывания тормозного привода;

t 3 = 0,25 с -- время нарастания замедления;

jа = 4,9 м/с 2 -- установившееся замедление;

Sв = 30 м -- расстояние видимости в направлении движения.

ПРИМЕР №7.

Установить критическую скорость движения автомобиля ВАЗ-2110 на повороте по условию поперечного скольжения, если радиус поворота составляет 50 м, коэффициент поперечного сцепления - 0,60; угол поперечного уклона дороги - 10 °

РЕШЕНИЕ:

В сложившейся дорожной ситуации критическая скорость движения автомобиля ВАЗ-2110 на повороте по условию поперечного скольжения составляет 74,3 км/ч:

В формуле обозначены:

R = 50 м -- радиус поворота.

ф У = 0,60 -- коэффициент поперечного сцепления.

b = 10 ° -- угол поперечного уклона дороги.

ПРИМЕР №8

Определить критическую скорость движения автомобиля ВАЗ-2121 на повороте радиусом 50 м по условию опрокидывания, если высота центра тяжести автомобиля – 0,59 м, колея автомобиля ВАЗ-2121 – 1,43 м, коэффициент поперечного крена подрессоренной массы – 0,85.

РЕШЕНИЕ:

В сложившейся дорожной ситуации критическая скорость движения автомобиля ВАЗ-2121 на повороте по условию опрокидывания составляет 74,6 км/ч:

В формуле обозначены:

R = 50 м -- радиус поворота.

hц = 0,59 м -- высота центра тяжести.

В = 1,43 м -- колея автомобиля ВАЗ-2121.

q = 0,85 -- коэффициент поперечного крена подрессоренной массы.

ПРИМЕР №9

Определить тормозной путь автомобиля ГАЗ-3102 в условиях гололеда при скорости движения 60 км/ч. Загрузка автомобиля 50%, время запаздывания срабатывания тормозного привода – 0,1 с; время нарастания замедления – 0,05 с; коэффициент сцепления – 0,3.

РЕШЕНИЕ:

В сложившейся дорожно-транспортной ситуации тормозной путь автомобиля ГАЗ-3102 составляет примерно 50 м:

В формуле обозначены:

t 2 = 0,1 с -- время запаздывания срабатывания тормозного привода;

t 3 = 0,05 с -- время нарастания замедления;

j = 2,9 м/с 2 -- установившееся замедление;

V = 60 км/ч -- скорость движения автомобиля ГАЗ-3102.

ПРИМЕР №10

Определить время торможения автомобиля ВАЗ-2107 при скорости 60 км/ч. Дорожные и технические условия: укатанный снег, время запаздывания срабатывания тормозного привода – 0,1 с, время нарастания замедления – 0,15 с, коэффициент сцепления – 0,3.

РЕШЕНИЕ:

В сложившейся дорожно-транспортной ситуации время торможения автомобиля ВАЗ-2107 составляет 5,92 с:

В формуле обозначены:

t 2 = 0,1 с -- время запаздывания срабатывания тормозного привода.

t 3 = 0,15 с -- время нарастания замедления.

V = 60 км/ч -- скорость движения автомобиля ВАЗ-2107.

j = 2,9 м/с 2 -- замедление автомобиля ВАЗ-2107.

ПРИМЕР №11

Определить перемещение автомобиля КамАЗ-5410 в заторможенном состоянии при скорости 60 км/ч. Дорожные и технические условия: загрузка – 50%, мокрый асфальтобетон, коэффициент сцепления – 0,5.

РЕШЕНИЕ:

В сложившейся дорожно-транспортной ситуации перемещение автомобиля КамАЗ-5410 в заторможенном состоянии составляет примерно 28 м:

j = g*φ = 9,81*0,50 = 4,9 м/с 2

В формуле обозначены:

j = 4,9 м/с 2 -- установившееся замедление;

V = 60 км/ч -- скорость движения автомобиля КамАЗ-5410.

ПРИМЕР №12

На дороге шириной 4,5 м произошло встречное столкновение двух автомобилей - грузового ЗИЛ130-76 и легкового ГАЗ-3110 "Волга", Как установлено следствием, скорость грузо­вого автомобиля была примерно 15 м/с, легкового - 25 м/с.

При осмотре места ДТП зафиксированы тормозные следы. Задними шинами грузового автомобиля оставлен след юза длиной 16 м, задними шинами легкового автомобиля - 22 м. В результате следственного эксперимента установлено, что в момент, когда каждый из водителей имел техническую возможность обнаружить встречный автомобиль и оценить дорожную обстановку как опасную, расстояние между автомобилями было около 200 м. При этом грузовой автомобиль находился от места столкновения на удалении примерно 80 м, а легковой - 120 м.

Установить наличие технической возможности пред­отвратить столкновение автомобилей у каждого из водителей.

Для исследования приняты:

для автомобиля ЗИЛ-130-76:

для автомобиля ГАЗ-3110:

РЕШЕНИЕ:

1. Остановочный путь автомобилей:

грузового

Легкового

2. Условие возможности предотвращения столкновения присвоевременном реагировании водителей на препятствие:

Проверяем это условие:

Условие выполняется, следовательно, если бы оба водителя правильно оценили создавшуюся дорожную обстановку и одновре­менно приняли правильное решение, то столкновения удалось бы избежать. После остановки автомобилей между ними оставалось бы расстояние S = 200 - 142 = 58 м.

3.Скорость автомобилей в момент начала полного тор­можения:

грузового

легкового

4. Путь, пройденный автомобилями придвижении юзом (пол­номторможении):

грузового

легкового

5. Перемещение автомобилей от места столкновения в затор­моженном состоянии при отсутствии столкновения:

грузового

легкового

6.Условие возможности предотвращения столкновения у водителей автомобилей в создавшейся обстановке: для грузового автомобиля

Условие не выполняется. Следовательно, водитель автомобиля ЗИЛ-130-76 даже при своевременном реагировании на появление автомобиля ГАЗ-3110 не имел технической возможности предот­вратить столкновение.

для легкового автомобиля

Условие выполняется. Следовательно, водитель автомобиля ГАЗ-3110 при своевременном реагировании на появление автомо­биля ЗИЛ-130-76 имел техническую возможность предотвратить столкновение.

Вывод. Оба водителя несвоевременно реагировали на появ­ление опасности и оба затормозили с некоторым опозданием. (S" y д = 80 м > S" o = 49,5 м: S" y д = 120 м > S" o = 92,5 м). Однако только водитель легкового автомобиля ГАЗ-3110 в создавшейся обста­новке располагал возможностью предотвратить столкновение.

ПРИМЕР 13

Автобусом ЛАЗ-697Н, двигавшимся со скоростью 15 м/с, был сбит пешеход, шедший со скоростью 1,5 м/с. Удар пешеходу нанесен передней частью автобуса. Пешеход успел пройти по полосе движения автобуса 1,5 м. Полное перемещение пешехода 7,0 м. Ширина проезжей части в зоне ДТП равна 9,0 м. Определить возможность предотвращения наезда на пешехода путем объезда пешехода или экстренного торможения.

Для исследования приняты:

РЕШЕНИЕ:

Проверим возможность предотвращения наезда на пешехода путем объезда пешехода спереди и сзади, а также экстренного торможения.

1. Минимальный безопасный интервал при объезде пешехода

2. Ширина динамического коридора

3. Коэффициент маневра

4. Условие возможности выполнения маневра с учетом дорож­ной обстановки при объезде пешехода:

сзади

спереди

Объезд пешехода возможен лишь сзади (со стороны спины).

5. Поперечное смещение автобуса, необходимое для объезда пешехода со стороны спины:

6. Фактически необходимое продольное перемещение автобуса для его смещения в сторону на 2,0 м

7. Удаление автомобиля от места наезда на пешехода в момент возникновения опасной ситуации

6. Условие безопасного объезда пешехода:

Условие выполняется, Следовательно, водитель автобуса имел техническую возможность предотвратить наезд на пешехода путем его объезда со стороны спины.

7. Длина остановочного пуши автобуса

Так как S уд =70 м > S o = 37, б м, безопасность перехода пеше­хода можно было также обеспечить путем экстренного тормо­жения автобуса.

Вывод.Водитель автобуса имел техническую возможность предотвратить наезд на пешехода:

а) путем объезда пешехода со стороны спины (при неизменной скорости движения автобуса);

б) путем экстренного торможения с момента начала движения пешехода по проезжей части.

ПРИМЕР 14.

Автомобиль марки ЗИЛ-4331 в результате повреждения шины переднего левого колеса внезапно выехал на левую сторону проезжей части дороги, где произошло ло­бовое столкновение со встречным автомобилем марки ГАЗ-3110. Водители обоих автомобилей во избежание столкновения при­меняли торможение.

На разрешение эксперта поставлен вопрос: имели ли они техническую возможность предотвратить столкновение путем торможения.

Исходные данные:

- проезжая часть - асфальтированная, мокрая, горизон­тального профиля;

- расстояние от места столкновения до начала поворота автомобиля ЗИЛ-164 влево - S = 56 м;

- длина следа торможения от задних колес автомобиля ГАЗ-3110 - = 22,5 м;

- длина следа торможения автомобиля ЗИЛ-4331 до удара - = 10,8 м;

- длина следа торможения автомобиля ЗИЛ-4331 после удара до полной остановки - = 3 м;

- скорость движения автомобиля ЗИЛ-4331 перед проис­шествием –V 2 = 50 км/ч, скорость движения автомобиля ГАЗ-3110 не установлена.

Эксперт принял следующие значения технических величин, необходимых для расчетов:

- замедление автомобилей при экстренном торможении - j = 4м/с 2 ;

- время реакции водителей – t 1 = 0,8 с;

- время запаздывания срабатывания тормозного привода автомобиля ГАЗ-3110 – t 2-1 = 0,1 с, автомобиля ЗИЛ-4331 – t 2-2 = 0,3 с;

- время нарастания замедления автомобиля ГАЗ-3110 - t 3-1 = 0,2 с, автомобиля ЗИЛ-4331 t 3-2 = 0,6 с;

- вес автомобиля ГАЗ-3110 – G 1 = 1,9 т, вес автомобиля ЗИЛ-4331 – G 2 = 8,5 т.