Как работает пульсирующий воздушно реактивный двигатель. Реактивный двигатель своими руками

ИМПУЛЬСНЫЙ РЕАКТИВНЫЙ ДВИГАТЕЛЬ. Предлагаю на суд читателей журнала "САМИЗДАТ" еще один возможный двигатель для космических аппаратов, успешно похороненный ВНИИГПЭ в конце 1980 года. Речь идёт о заявке N 2867253/06 на "СПОСОБ ПОЛУЧЕНИЯ ИМПУЛЬСНОЙ РЕАКТИВНОЙ ТЯГИ ПРИ ПОМОЩИ УДАРНЫХ ВОЛН". Изобретатели разных стран предлагали целый ряд способов для создания реактивных двигателей с импульсной реактивной тягой. В камерах сгорания и у буферных плит этих двигателей детонационно предлагалось сжигать разные виды топлива, вплоть до взрывов атомных бомб. Моё предложение позволяло создать, своего рода двигатель внутреннего сгорания с максимально возможным использованием кинетической энергии рабочего тела. Конечно, выхлопные газы предлагаемого двигателя мало походили бы на выхлоп автомобильного мотора. Не походили бы они и на мощные струи пламени, бьющие из сопел современных ракет. Чтобы читатель мог получить представление о предложенном мной способе получения импульсной реактивной тяги, и о отчаянной борьбе автора за своё, так и не рождённое детище, ниже приводится почти дословное описание и формула заявки, (но, увы, без чертежей), а также одно из возражений заявителя на очередное отказное решение ВНИИГПЭ. Мною даже это краткое описание, несмотря на то, что прошло уже около 30 лет, воспринимается, как детектив, в котором убийца-ВНИИГПЭ хладнокровно расправляется с еще не рождённым ребёнком.

СПОСОБ ПОЛУЧЕНИЯ ИМПУЛЬСНОЙ РЕАКИВНОЙ ТЯГИ

ПРИ ПОМОЩИ УДАРНЫХ ВОЛН. Изобретение относится к области реактивного двигателестроения и может быть использовано в космической, ракетной и авиационной технике. Известен способ получения постоянной или пульсирующей реактивной тяги путём преобразование различных видов энергии в кинетическую энергию движения непрерывной или пульсирующей струи рабочего тела, которое выбрасывают в окружающую среду в направлении противоположном направлению получаемой реактивной тяги. Для этого широко применяют химические источники энергии, одновременно являющиеся и рабочим телом. В этом случае преобразование источника энергии в кинетическую энергию движения непрерывной или пульсирующей струи рабочего тела в одной или нескольких камерах сгорания с критическим (уменьшенным) выходным отверстием, переходящим в расширяющееся коническое или профилированное сопло (смотри, например, В.Е. Алемасов: "Теория ракетных двигателей", стр. 32; М.В. Добровольский: "Жидкостные ракетные двигатели", стр. 5; В. Ф. Разумеев, Б. К. Ковалёв: "Основы проектирования ракет на твёрдом топливе", стр. 13). Наиболее распространённой характеристикой, отражающей экономичность получения реактивной тяги, служит удельная тяга, которую получают отношением тяги к секундному расходу топлива (смотри, например, В.Е. Алемасов: "Теория ракетных двигателей", стр. 40). Чем выше удельная тяга, тем меньше требуется топлива для получения одной и той же тяги. В реактивных двигателях, использующих известный способ получения реактивной тяги с применением жидких топлив, данная величина достигает значения более 3000 нхсек/кг, а с применением твёрдых топлив -- не превышает 2800 нхсек/кг (смотри М. В. Добровольский: "Жидкостные ракетные двигатели, стр.257; В. Ф. Разумеев, Б.К. Ковалёв: "Основы проектирования баллистических ракет на твёрдом топливе", стр. 55, таблица 33). Существующий способ получения реактивной тяги неэкономичен. Стартовая масса современных ракет, как космических, так и баллистических на 90% и более состоит из массы топлива. Поэтому любые способы получения реактивной тяги, увеличивающие удельную тягу, заслуживают внимания. Известен способ получения импульсной реактивной тяги при помощи ударных волн путём последовательных взрывов непосредственно в камере сгорания или около специальной буферной плиты. Способ с применением буферной плиты реализован, например, в США в экспериментальном устройстве, которое летало за счёт энергии ударных волн, получаемых при последовательных взрывах зарядов тринитротолуола. Устройство было разработано для экспериментальной проверки проекта "Орион". Указанный выше способ получения импульсной реактивной тяги не получил распространения, так как он оказался не экономичным. Усреднённая удельная тяга, согласно литературному источнику, не превышала 1100 нхсек/кг. Это объясняется тем, что более половина энергии взрывчатого вещества в данном случае сразу уходит вместе с ударными волнами, не участвуя в получении импульсной реактивной тяги. Кроме того, значительная часть энергии ударных волн, бьющих по буферной плите, тратилась на разрушение и на испарение аблирующего покрытия, пары которого предполагалось использовать в качестве дополнительного рабочего тела. К тому же буферная плита значительно уступает камерам сгорания с критическим сечением и с расширяющимся соплом. В случае создания ударных волн непосредственно в таких камерах, образуется пульсирующая тяга, принцип получения которой не отличается от принципа получения известной постоянной реактивной тяги. Кроме того, прямое воздействие ударных волн на стенки камеры сгорания или на буферную плиту требует их чрезмерного усиления и специальной защиты. (Смотри "Знание" N 6, 1976 год, стр. 49, серия космонавтика и астрономия). Целью данного изобретения является устранение указанных недостатков путём более полного использования энергии ударных волн и значительного уменьшения ударных нагрузок на стенки камеры сгорания. Поставленная цель достигается тем, что преобразование источника энергии и рабочего тела в последовательные ударные волны происходит в небольших детонационных камерах. Затем ударные волны продуктов горения тангенциально подаются в вихревую камеру вблизи от торцевой (передней) стенки и закручиваются с большой скоростью внутренней цилиндрической стенкой относительно оси этой камеры. Возникающие при этом колоссальные центробежные силы, усиливают сжатие ударной волны продуктов горения. Суммарное давление этих мощных сил передаётся и на торцевую (переднюю) стенку вихревой камеры. Под воздействием этого суммарного давления ударная волна продуктов горения разворачивается и по винтовой линии, с увеличивающимся шагом, устремляется в сторону сопла. Всё это повторяется при вводе в вихревую камеру каждой очередной ударной волны. Так образуется основная составляющая импульсной тяги. Для еще большего увеличения суммарного давления, образующего основную составляющую импульсной тяги, тангенциальный ввод ударной волны в вихревую камеру вводят под некоторым углом к её торцевой (передней) стенке. С целью получения дополнительной составляющей импульсной тяги в профилированном сопле также используют давление ударной волны продуктов сгорания, усиленное центробежными силами раскрутки. С целью более полного использования кинетической энергии раскрутки ударных волн, а также для устранения крутящего момента вихревой камеры относительно её оси, появляющегося в результате тангенциальной подачи, раскрученные ударные волны продуктов горения перед выходом из сопла подают на профилированные лопатки, которые направляют их по прямой линии вдоль оси вихревой камеры и сопла. Предлагаемый способ получения импульсной реактивной тяги при помощи закрученных ударных волн и центробежных сил раскрутки был проверен в предварительных экспериментах. В качестве рабочего тела в этих экспериментах служили ударные волны пороховых газов, получаемых при детонации 5 -- 6 г дымного промыслового пороха N 3. Порох помещался в трубке, заглушенной с одного конца. Внутренний диаметр трубки был 13 мм. Своим открытым концом она ввёртывалась в тангенциальное резьбовое отверстие в цилиндрической стенке вихревой камеры. Внутренняя полость вихревой камеры имела диаметр 60 мм и высоту 40 мм. На открытый торец вихревой камеры поочерёдно насаживались сменные сопловые насадки: коническая сужающаяся, коническая расширяющаяся и цилиндрическая с внутренним диаметром равным внутреннему диаметру вихревой камеры. Сопловые насадки были без профилированных лопаток на выходе. Вихревая камера, с одной из перечисленных выше сопловых насадок, устанавливалась на специальном динамометре сопловой насадкой вверх. Пределы измерения динамометра от 2 до 200 кг. Так как реактивный импульс был очень краток (около 0,001 сек), то фиксировался не сам реактивный импульс, а сила толчка от получившей движение суммарной массы вихревой камеры, сопловой насадки и подвижной части конструкции самого динамометра. Эта суммарная масса составляла около 5 кг. В зарядную трубку, выполнявшую в нашем эксперименте роль детонационной камеры, набивалось около 27 г пороха. После поджигания пороха с открытого конца трубки (со стороны внутренней полости вихревой камеры) сначала происходил равномерный спокойный процесс горения. Пороховые газы, тангенциально поступая во внутреннюю полость вихревой камеры, закручивались в ней и, вращаясь, со свистом выходили вверх через сопловую насадку. В этот момент динамометр не фиксировал никаких толчков, но пороховые газы, вращаясь с большой скоростью, воздействием центробежных сил давили на внутреннюю цилиндрическую стенку вихревой камеры и перекрывали себе вход в неё. В трубке, где продолжался процесс горения, возникали стоячие волны давления. Когда пороха в трубке оставалось не более 0,2 от первоначального количества, то есть 5 --6 г, происходила его детонация. Возникающая при этом ударная волна, через тангенциальное отверстие, преодолевая центробежное давление первичных пороховых газов, врывалась во внутреннюю полость вихревой камеры, закручивалась в ней, отражалась от передней стенки и, продолжая вращаться, по винтовой траектории с увеличивающимся шагом устремлялась в сопловую насадку, откуда вылетала наружу с резким и сильным звуком, подобным пушечному выстрелу. В момент отражения ударной волны от передней стенки вихревой камеры пружина динамометра фиксировала толчок, наибольшая величина которого (50 --60 кг) была при применении сопловой насадки с расширяющимся конусом. При контрольных сжиганиях 27 г пороха в зарядной трубке без вихревой камеры, а также в вихревой камере без зарядной трубки (тангенциальное отверстие заглушалось) с цилиндрической и с конической расширяющейся сопловой насадкой, ударная волна не возникала, так как в этот момент постоянная реактивная тяга была меньше предела чувствительности динамометра, и он её не фиксировал. При сжигании этого же количества пороха в вихревой камере с конической сужающейся сопловой насадкой (сужение 4: 1) фиксировалась постоянная реактивная тяга 8 --10 кг. Предлагаемый способ получения импульсной реактивной тяги, даже в описанном выше предварительном эксперименте, (с неэффективным промысловым порохом в качестве топлива, без профилированного сопла и без направляющих лопаток на выходе) позволяет получить усреднённую удельную тягу около 3300 нхсек/кг, что превышает значение данного параметра у лучших ракетных двигателей, работающих на жидком топливе. При сравнении же с приведённым прототипом предлагаемый способ позволяет также значительно уменьшить вес камеры сгорания и сопла, а, следовательно, и вес всего реактивного двигателя. Для полного и более точного выявления всех преимуществ предлагаемого способа получения импульсной реактивной тяги необходимо уточнение оптимальных соотношений между размерами камер детонации и вихревой камеры, необходимо уточнение оптимального угла между направлением тангенциальной подачи и передней стенкой вихревой камеры и т. д., то есть, необходимы дальнейшие эксперименты с выделением соответствующих средств и с привлечением разных специалистов. ФОРМУЛА ИЗОБРЕТЕНИЯ. 1. Способ получения импульсной реактивной тяги при помощи ударных волн, включающий применение вихревой камеры с расширяющимся профилированным соплом, преобразование источника энергии в кинетическую энергию движения рабочего тела, тангенциальную подачу рабочего тела в вихревую камеру, выброс рабочего тела в окружающую среду в направлении обратном направлению получаемой реактивной тяги, отличающийся тем, что с целью более полного использования энергии ударных волн, преобразование источника энергии и рабочего тела в последовательные ударные волны производят в одной или нескольких детонационных камерах, затем ударные волны посредством тангенциальной подачи закручивают в вихревой камере относительно её оси, отражают в закрученном виде от передней стенки и образуют тем самым импульсный перепад давления между передней стенкой камеры и соплом, который создаёт основную составляющую импульсной реактивной тяги в предлагаемом способе и направляет ударные волны по винтовой траектории с увеличивающимся шагом в сторону сопла. 2. Способ получения импульсной реактивной тяги при помощи ударных волн по п. 1 отличающийся тем, что с целью увеличения импульсного перепада давления между передней стенкой вихревой камеры и соплом, тангенциальную подачу ударных волн производят под некоторым углом в сторону передней стенки. 3. Способ получения импульсной реактивной тяги при помощи ударных волн по п. 1 отличающийся тем, что для получения дополнительной импульсной реактивной тяги, в вихревой камере и в расширяющемся профилированном сопле используют давление центробежных сил, возникающих от раскрутки ударных волн. 4. Способ получения импульсной реактивной тяги при помощи ударных волн по п. 1 отличающийся тем, что с целью полного использования кинетической энергии раскрутки ударных волн для получения дополнительной импульсной реактивной тяги, а также устранения крутящего момента вихревой камеры относительно её оси, возникающего при тангенциальной подаче, раскрученные ударные волны перед выходом из сопла подают на профилированные лопатки, которые направляют их по прямой линии вдоль общей оси вихревой камеры и сопла. В государственный комитет СССР по делам изобретений и открытий, ВНИИГПЭ. ВОЗРАЖЕНИЕ НА ОТКАЗНОЕ РЕШЕНИЕ ОТ 16.10.80 ПО ЗАЯВКЕ N 2867253/06 НА "СПОСОБ ПОЛУЧЕНИЯ ИМПУЛЬСНОЙ РЕАКТИВНОЙ ТЯГИ ПРИ ПОМОЩИ УДАРНЫХ ВОЛН". Изучив отказное решение от 16.10.80, заявитель пришёл к выводу, что экспертиза мотивирует свой отказ о выдаче авторского свидетельства на предлагаемый способ получения реактивной тяги отсутствием новизны (противопоставляется патент Великобритании N 296108, кл. F 11,1972), отсутствием расчёта тяги, отсутствием положительного эффекта по сравнению с известным способом получения реактивной тяги из-за возрастание потерь на трение при развороте рабочего тела и из-за снижения энергетических характеристик двигателя в результате применения твёрдого топлива. На вышеизложенное заявитель считает необходимым ответить следующее: 1. На отсутствие новизны экспертиза ссылается впервые и противоречит сама себе, так как в этом же отказном решении отмечается, что предложенный способ отличается от известных тем, что ударные волны закручиваются вдоль оси вихревой камеры.... На абсолютную же новизну заявитель и не претендует, что доказывается приведённым в заявке прототипом. (Смотри второй лист заявки). В противопоставленном британском патенте N 296108, кл. F 11, 1972, судя по приведённым данным самой экспертизы, продукты горения выбрасываются из камеры сгорания через сопло по прямому каналу, то есть закрутка ударных волн отсутствует. Следовательно, в указанном британском патенте способ получения реактивной тяги в принципе ничем не отличается от известного способа получения постоянной тяги и не может противопоставляться предлагаемому способу. 2. Экспертиза утверждает, что величину тяги в предлагаемом способе можно рассчитывать и ссылается при этом на книгу Г. Н. Абрамовича "Прикладная газовая динамика", Москва, Наука, 1969, стр. 109 -- 136. В указанном разделе прикладной газовой динамики даются методы расчёта прямых и косых скачков уплотнения во фронте ударной волны. Прямыми скачки уплотнения называются, если их фронт составляет прямой угол с направлением распространения. Если же фронт скачка уплотнения располагается под некоторым углом "а" к направлению распространения, то такие скачки называются косыми. Пересекая фронт косого скачка уплотнения, газовый поток меняет своё направление на некоторый угол "w". Величины углов "а" и "w" зависят в основном от числа Маха "М" и от формы обтекаемого тела (например, от величины угла клиновидного крыла самолёта), то есть "a" и "w" в каждом конкретном случае являются величинами постоянными. В предлагаемом способе получения реактивной тяги скачки уплотнения во фронте ударной волны, особенно в начальный период её пребывания в вихревой камере, когда воздействием на переднюю стенку создаётся импульс реактивной силы, являются переменными косыми скачками. То есть фронт ударной волны и газовые потоки в момент создания реактивного импульса тяги непрерывно меняют свои углы "a" и "w" по отношению и к цилиндрической, и к передней стенкам вихревой камеры. Кроме того, картина усложняется наличием мощных центробежных сил давления, которые в начальный момент воздействуют и на цилиндрическую, и на переднюю стенки. Следовательно, указанный экспертизой метод расчёта не годится для расчёта сил импульсной реактивной тяги в предлагаемом способе. Не исключено, что метод расчёта скачков уплотнения, приведённый в прикладной газовой динамике Г. Н. Абрамовича, послужит отправной базой для создания теории расчёта импульсных сил в предлагаемом способе, но, согласно положению об изобретениях, в обязанности заявителя разработка подобных теорий пока еще не входит, как не входит в обязанности заявителя и постройка действующего двигателя. 3. Утверждая о сравнительной неэффективности предлагаемого способа получения реактивной тяги, экспертиза игнорирует результаты, полученные заявителем в его предварительных экспериментах, а ведь данные результаты были получены с таким неэффективным топливом, как промысловый порох (смотри пятый лист заявки). Говоря о больших потерях на трение и на разворот рабочего тела экспертиза упускает из виду, что основная составляющая импульсной реактивной тяги в предлагаемом способе возникает почти сразу в тот момент, когда ударная волна врывается в вихревую камеру, потому что входное тангенциальное отверстие расположено около её передней стенки (смотри в заявке фиг. 2), то есть в этот момент время движения и путь скачков уплотнения сравнительно невелики. Следовательно, и потери на трение в предлагаемом способе не могут быть большими. Говоря же о потерях на разворот, экспертиза упускает из виду, что именно при развороте ударной волны, как относительно цилиндрической стенки, так и относительно передней стенки в направлении оси вихревой камеры появляются мощные центробежные силы, которые, суммируясь с давлением в скачках уплотнения, и создают тягу в предлагаемом способе. 4. Необходимо также отметить, что ни в формуле заявки, ни в её описании заявитель не ограничивает получение импульсной реактивной тяги только за счёт твёрдых топлив. Твёрдое топливо (порох) заявитель использовал только при проведении своих предварительных экспериментов. На основании всего вышеизложенного заявитель просит ВНИИГПЭ еще раз пересмотреть своё решение и направить материалы заявки на заключение в соответствующую организацию с предложение провести проверочные эксперименты и только после этого решать, принимать или отклонять предложенный способ получения импульсной реактивной тяги. ВНИМАНИЕ! Автор всем желающим за отдельную плату вышлет по электронной почте фотографии испытаний, описанной выше, экспериментальной установки импульсного реактивного двигателя. Заказ следует сделать по адресу: e-mail: [email protected]. При этом не забудьте сообщить свой электронный адрес. Фотографии будут высланы на ваш электронный адрес сразу, как только вы почтовым переводом вышлите 100 рублей Матвееву Николаю Ивановичу на Рыбинское отделение Сбербанка России N 1576, Сбербанка России АО N 1576/090, на лицевой счёт N 42306810477191417033/34. МАТВЕЕВ, 19.11.80

Пульсирующий воздушно-реактивный двигатель - Вариант Воздушно-реактивного двигателя . В ПуВРД используется камера сгорания с входными клапанами и длинное цилиндрическое выходное сопло . Горючее и воздух подаются периодически.

Цикл работы ПуВРД состоит из следующих фаз:

  • Клапаны открываются и в камеру сгорания поступает воздух и топливо, образуется воздушно-топливная смесь.
  • Смесь поджигается с помощью искры свечи зажигания . Образовавшееся избыточное давление закрывает клапан.
  • Горячие продукты сгорания выходят через сопло создавая реактивную тягу и технический вакуум в камере сгорания.

История

Первые патенты на пульсирующий воздушно-реактивный двигатель (ПуВРД) были получены (независимо друг от друга) в 60-х годах XIX века Шарлем де Луврье (Франция) и Николаем Афанасьевичем Телешовым (Россия) . Немецкие конструкторы, ещё накануне Второй мировой войны проводившие широкий поиск альтернатив поршневым авиационным двигателям, не обошли вниманием и это изобретение, долгое время остававшееся невостребованным. Наиболее известным летательным аппаратом (и единственным серийным) c ПуВРД Argus As-014 производства фирмы Argus-Werken, явился немецкий самолёт-снаряд Фау-1 . Главный конструктор Фау-1 Роберт Люссер выбрал для него ПуВРД не ради эффективности (поршневые авиационные двигатели той эпохи обладали лучшими характеристиками), а, главным образом, из-за простоты конструкции и, как следствие, малых трудозатрат на изготовление, что было оправдано при массовом производстве одноразовых снарядов, серийно выпущенных за неполный год (с июня 1944 по март 1945) в количестве свыше 10 000 единиц.

После войны исследования в области пульсирующих воздушно-реактивных двигателей продолжились во Франции (компания SNECMA) и в США (Pratt & Whitney , General Electric), Результаты этих разработок заинтересовали США и СССР. Был разработан ряд опытных и экспериментальных образцов. Первоначально основная проблема ракет «воздух-поверхность» заключалась в несовершенстве инерциальной системы наведения, точность которой считалась хорошей, если ракета с дальности в 150 километров попадала в квадрат со сторонами 3 километра. Это привело к тому, что с боезарядом на основе обычного взрывчатого вещества данные ракеты имели низкую эффективность, а ядерные заряды в то же время имели ещё слишком большую массу (несколько тонн). Пульсирующий воздушно-реактивный двигатель обладает большим удельным импульсом по сравнению с ракетными двигателями, но уступает по этому показателю турбореактивным двигателям. Существенным ограничением является также то, что этот двигатель требует разгона до рабочей скорости 100 м/с и его использование ограничено скоростью порядка 250 м/с. Когда появились компактные ядерные заряды, уже была отработана конструкция более эффективных турбореактивных двигателей. Поэтому пульсирующие воздушно-реактивные двигатели не получили широкого распространения.

Конструктивно, ПуВРД представляет собой цилиндрическую камеру сгорания с длинным цилиндрическим соплом меньшего диаметра . Передняя часть камеры соединена со входным диффузором, через который воздух поступает в камеру.

Между диффузором и камерой сгорания установлен воздушный клапан, работающий под воздействием разницы давлений в камере и на выходе диффузора: когда давление в диффузоре превышает давление в камере клапан открывается и пропускает воздух в камеру; при обратном соотношении давлений он закрывается.

Схема пульсирующего воздушно-реактивного двигателя (ПуВРД): 1 - воздух; 2 - горючее; 3 - клапанная решётка; за ней - камера сгорания; 4 - выходное (реактивное) сопло.

Клапан может иметь различную конструкцию: в двигателе Argus As-014 ракеты Фау-1 он имел форму и действовал наподобие оконных жалюзи и состоял из наклёпанных на раму гибких прямоугольных клапанных пластинкок из пружинной стали; в малых двигателях он выглядит как пластина в форме цветка с радиально расположенными клапанными пластинками в виде нескольких тонких, упругих металлических лепестков, прижатых к основанию клапана в закрытом положении и отгибающихся от основания под действием давления в диффузоре, превышающего давление в камере. Первая конструкция намного совершеннее - оказывает минимальное сопротивление потоку воздуха, но гораздо сложнее в производстве.

Гибкие прямоугольные клапанные пластинки

В передней части камеры имеются одна или несколько топливных форсунок, которые впрыскивают топливо в камеру, пока давление наддува в топливном баке превышает давление в камере; при превышении давлением в камере давления наддува, обратный клапан в топливном тракте перекрывает подачу топлива. Примитивные маломощные конструкции нередко работают без впрыска топлива, подобно поршневому карбюраторному двигателю. Для пуска двигателя в этом случае обычно используют внешний источник сжатого воздуха.

Для инициирования процесса горения в камере устанавливается свеча зажигания, которая создаёт высокочастотную серию электрических разрядов, и топливная смесь воспламеняется, как только концентрация горючего в ней достигает некоторого, достаточного для возгорания, уровня. Когда оболочка камеры сгорания достаточно прогревается (обычно, через несколько секунд после начала работы большого двигателя, или через доли секунды - малого; без охлаждения потоком воздуха, стальные стенки камеры сгорания быстро нагреваются докрасна), электрозажигание вовсе становится ненужным: топливная смесь воспламененяется от горячих стенок камеры.

При работе, ПуВРД издаёт очень характерный трещащий или жужжащий звук, обусловленный как раз пульсациями в его работе.

Схема работы ПуВРД

Цикл работы ПуВРД иллюстрируется рисунком справа:

  • 1. Воздушный клапан открыт, воздух поступает в камеру сгорания, форсунка впрыскивает горючее, и в камере образуется топливная смесь.
  • 2. Топливная смесь воспламеняется и сгорает, давление в камере сгорания резко возрастает и закрывает воздушный клапан и обратный клапан в топливном тракте. Продукты сгорания, расширяясь, истекают из сопла, создавая реактивную тягу .
  • 3. Давление в камере уравнивается с атмосферным, под напором воздуха в диффузоре воздушный клапан открывается и воздух начинает поступать в камеру, топливный клапан тоже открывается, двигатель переходит к фазе 1.

Кажущееся сходство ПуВРД и ПВРД (возможно, возникающее из-за сходства аббревиатур названий) - ошибочно. В действительности ПуВРД имеет глубокие, принципиальные отличия от ПВРД или ТРД.

  • Во-первых, наличие у ПуВРД воздушного клапана, очевидным назначением которого является предотвращение обратного движения рабочего тела вперёд по ходу движения аппарата (что свело бы на нет реактивную тягу). В ПВРД (как и в ТРД) этот клапан не нужен, поскольку обратному движению рабочего тела в тракте двигателя препятствует «барьер» давления на входе в камеру сгорания, созданный в ходе сжатия рабочего тела. В ПуВРД начальное сжатие слишком мало, а необходимое для совершения работы повышение давления в камере сгорания достигается благодаря нагреву рабочего тела (при сжигании горючего) в постоянном объёме , ограниченном стенками камеры, клапаном, и инерцией газового столба в длинном сопле двигателя. Поэтому ПуВРД с точки зрения термодинамики тепловых двигателей относится к иной категории, нежели ПВРД или ТРД - его работа описывается циклом Хамфри (Humphrey) , в то время как работа ПВРД и ТРД описывается циклом Брайтона .
  • Во-вторых, пульсирующий, прерывистый характер работы ПуВРД, также вносит существенные различия в механизм его функционирования, в сравнении с ВРД непрерывного действия. Для объяснения работы ПуВРД недостаточно рассматривать только газодинамические и термодинамические процессы, происходящие в нём. Двигатель работает в режиме автоколебаний , которые синхронизируют по времени работу всех его элементов. На частоту этих автоколебаний оказывают влияние инерционные характеристики всех частей ПуВРД, в том числе инерция газового столба в длинном сопле двигателя, и время распространения по нему акустической волны. Увеличение длины сопла приводит к снижению частоты пульсаций и наоборот. При определённой длине сопла достигается резонансная частота, при которой автколебания становятся устойчивыми, а амплитуда колебаний каждого элемента - максимальной. При разработке двигателя эта длина подбирается экспериментально в ходе испытаний и доводки.

Иногда говорят, что функционирование ПуВРД при нулевой скорости движения аппарата невозможно - это ошибочное представление, во всяком случае, оно не может быть распространено на все двигатели этого типа. Большинство ПуВРД (в отличие от ПВРД) может работать, «стоя на месте» (без набегающего потока воздуха), хотя тяга, развиваемая им в этом режиме, минимальна (и обычно недостаточна для старта приводимого им в движение аппарата без посторонней помощи - поэтому, например, V-1 запускали с паровой катапульты, при этом ПуВРД начинал устойчиво работать ещё до пуска ).

Функционирование двигателя в этом случае объясняется следующим образом. Когда давление в камере после очередного импульса снижается до атмосферного, движение газа в сопле по инерции продолжается, и это приводит к понижению давления в камере до уровня ниже атмосферного. Когда воздушный клапан открывается под воздействием атмосферного давления (на что тоже требуется некоторое время), в камере уже создано достаточное разрежение, чтобы двигатель мог «вдохнуть свежего воздуха» в количестве, необходимом для продолжения следующего цикла. Ракетные двигатели помимо тяги характеризуются удельным импульсом , являющимся показателем степени совершенства или качества двигателя. Этот показатель является также мерой экономичности двигателя. В приведённой ниже диаграмме в графической форме представлены верхние значения этого показателя для разных типов реактивных двигателей, в зависимости от скорости полёта, выраженной в форме числа Маха , что позволяет видеть область применимости каждого типа двигателей.

ПуВРД - Пульсирующий воздушно-реактивный двигатель, ТРД - Турбореактивный двигатель , ПВРД - Прямоточный воздушно-реактивный двигатель , ГПВРД - Гиперзвуковой прямоточный воздушно-реактивный двигатель Двигатели характеризуют рядом параметров:

  • удельная тяга - отношение создаваемой двигателем тяги к массовому расходу топлива;
  • удельная тяга по весу - отношение тяги двигателя к весу двигателя.

В отличие от ракетных двигателей, тяга которых не зависит от скорости движения ракеты, тяга воздушно-реактивных двигателей (ВРД) сильно зависит от параметров полета - высоты и скорости. Пока не удалось создать универсальный ВРД, поэтому эти двигатели рассчитываются под определенный диапазон рабочих высот и скоростей. Как правило, разгон ВРД до рабочего диапазона скоростей осуществляется самим носителем либо стартовым ускорителем.

Другие пульсирующие ВРД

Бесклапанный ПуВРД

В литературе встречается описание двигателей, подобных ПуВРД.

  • Бесклапанные ПуВРД , иначе - U-образные ПуВРД. В этих двигателях отсутствуют механические воздушные клапаны, а чтобы обратное движение рабочего тела не приводило к уменьшению тяги, тракт двигателя выполняется в форме латинской буквы «U», концы которой обращены назад по ходу движения аппарата, при этом истечение реактивной струи происходит сразу из обоих концов тракта. Поступление свежего воздуха в камеру сгорания осуществляется за счёт волны разрежения, возникающей после импульса и «вентилирующей» камеру, а изощрённая форма тракта служит для наилучшего выполнения этой функции. Отсутствие клапанов позволяет избавиться от характерного недостатка клапанного ПуВРД - их низкой долговечности (на самолёте-снаряде Фау-1 клапана прогорали приблизительно после получаса полёта, чего вполне хватало для выполнения его боевых задач, но абсолютно неприемлемо для аппарата многоразового использования).

Детонационный ПуВРД

Область применения ПуВРД

ПуВРД характеризуется как шумный и неэкономный , зато простой и дешёвый . Высокий уровень шума и вибрации вытекает из самого пульсирующего режима его работы. О неэкономном характере использования топлива свидетельствует обширный факел, «бьющий» из сопла ПуВРД - следствие неполного сгорания топлива в камере.

Сравнение ПуВРД с другими авиационными двигателями позволяет довольно точно определить область его применимости.

ПуВРД во много раз дешевле в производстве, чем газотурбинный или поршневой ДВС , поэтому при одноразовом применении он выигрывает экономически у них (разумеется, при условии, что он «справляется» с их работой). При длительной эксплуатации аппарата многоразового использования, ПуВРД проигрывает экономически этим же двигателям из-за расточительного расхода топлива.

Клапанные, так же, как и бесклапанные, ПуВРД имеют распространение в любительской авиации и авиамоделировании, благодаря простоте и дешевизне.

благодаря простоте и дешевизне, маленькие двигатели этого типа стали очень популярны среди авиамоделистов, и в любительской авиации, и появились коммерческие фирмы, производящие на продажу для этих целей ПуВРД и клапаны к ним (быстроизнашивающаяся запчасть).

Примечания

Литература

Видео

Паровая машина Двигатель Стирлинга Пневматический двигатель
По виду рабочего тела
Газовые Газотурбинная установка Газотурбинная электростанция Газотурбинные двигатели‎
Паровые Парогазовая установка Конденсационная турбина
Гидравлические турбины‎ Пропеллерная турбина Гидротрансформатор
По конструктивным особенностям Осевая (аксиальная) турбина Центробежная турбина (радиальная,

Опытно-конструкторское бюро имени Люльки разработало, изготовило и испытало опытный образец пульсирующего резонаторного детонационного двигателя с двухстадийным сжиганием керосиновоздушной смеси. Как сообщает ИТАР-ТАСС, средняя измеренная тяга двигателя составила около ста килограммов, а длительность непрерывной работы ─ более десяти минут. До конца текущего года ОКБ намерено изготовить и испытать полноразмерный пульсирующий детонационный двигатель.

По словам главного конструктора ОКБ имени Люльки Александра Тарасова, в ходе испытаний моделировались режимы работы, характерные для турбореактивного и прямоточного двигателей. Измеренные величины удельной тяги и удельного расхода топлива оказались на 30-50 процентов лучше, чем у обычных воздушно-реактивных двигателей. В ходе экспериментов производилось многократное включение и выключение нового двигателя, а также регулирование тяги.



На основе проведенных исследований, полученных при испытании данных, а также схемно-конструкторского анализа ОКБ имени Люльки намерено предложить разработку целого семейства пульсирующих детонационных авиационных двигателей. В частности, могут быть созданы двигатели с коротким ресурсом работы для беспилотных летательных аппаратов и ракет и самолетные двигатели с крейсерским сверхзвуковым режимом полета.

В перспективе на основе новых технологий могут быть созданы двигатели для ракетно-космических систем и комбинированных силовых установок самолетов, способных выполнять полеты в атмосфере и за ее пределами.

По оценке конструкторского бюро, новые двигатели позволят увеличить тяговооруженность самолетов в 1,5-2 раза. Кроме того, при использовании таких силовых установок дальность полета или масса авиационных средств поражения могут увеличиться на 30-50 процентов. При этом удельный вес новых двигателей будет в 1,5-2 раза меньше аналогичного показателя обычных реактивных силовых установок.

О том, что в России ведутся работы по созданию пульсирующего детонационного двигателя, сообщалось в марте 2011 года. Об этом заявил тогда Илья Федоров, управляющий директор научно-производственного объединения «Сатурн», в состав которого входит ОКБ имени Люльки. О каком именно типе детонационного двигателя шла речь, Федоров не уточнил.

В настоящее время известны три вида пульсирующих двигателей ─ клапанные, бесклапанные и детонационные. Принцип работы этих силовых установок заключается в периодической подаче в камеру сгорания топлива и окислителя, где происходит воспламенение топливной смеси и истечение продуктов сгорания из сопла с образованием реактивной тяги. Отличие от обычных реактивных двигателей заключается в детонационном горении топливной смеси, при котором фронт горения распространяется быстрее скорости звука.

Пульсирующий воздушно-реактивный двигатель был изобретен еще в конце XIX века шведским инженером Мартином Вибергом. Пульсирующий двигатель считается простым и дешевым в изготовлении, однако из-за особенностей горения топлива ─ малонадежным. Впервые новый тип двигателя был использован серийно во время Второй мировой войны на немецких крылатых ракетах Фау-1. На них устанавливался двигатель Argus As-014 компании Argus-Werken.

В настоящее время несколько крупных оборонных фирм мира занимаются исследованиями в области создания высокоэффективных пульсирующих реактивных двигателей. В частности, работы ведут французская компания SNECMA и американские General Electric и Pratt & Whitney. В 2012 году Научно-исследовательская лаборатория ВМС США объявила о намерении разработать спиновый детонационный двигатель, который должен будет заменить на кораблях обычные газотурбинные силовые установки.

Научно-исследовательская лаборатория (NRL) ВМС США намерена разработать ротационный, или спиновый, детонационный двигатель (Rotating Detonation Engine, RDE), который в перспективе сможет заменить на кораблях обычные газотурбинные силовые установки. Как сообщает NRL, новые двигатели позволят военным снизить потребление топлива, одновременно повысив энергетическую отдачу силовых установок.

В настоящее время ВМС США используют 430 газотурбинных двигателей (ГТД) на 129 кораблях. Ежегодно они потребляют топлива на два миллиарда долларов. По оценке NRL, благодаря RDE военные смогут экономить на топливе до 400 миллионов долларов в год. RDE смогут вырабатывать на десять процентов больше энергии, чем обычные ГТД. Прототип RDE уже создан, однако когда такие двигатели начнут поступать на флот, пока неизвестно.

В основу RDE легли наработки NRL, полученные при создании пульсирующего детонационного двигателя (Pulse Detonation Engine, PDE). Работа таких силовых установок основана на устойчивом детонационном горении топливной смеси.

Спиновые детонационные двигатели отличаются от пульсирующих тем, что детонационное горение топливной смеси в них происходит непрерывно ─ фронт горения перемещается в кольцевой камере сгорания, в которой топливная смесь постоянно обновляется.

Изобретение относится к области электрических реактивных двигателей (ЭРД) импульсного действия, использующих преимущественно способ создания реактивной тяги с помощью электронной детонации (патент РФ №2129594, з. №96117878 от 12.09.1996 г. МПК F03H 1/00).

Известен импульсный плазменный реактивный двигатель торцевого типа на твердом рабочем теле тефлон (аналог фторопласта) (патент РФ №2146776, з. №98109266 от 14.05.1998 г., МПК F03H 1/00) с преобладающим электронно-детонационным типом разряда (Ю.Н. Вершинин «Электронно-тепловые и детонационные процессы при электрическом пробое твердых диэлектриков», Уральское отделение РАН, Екатеринбург, 2000 г.). В этих условиях реализуется выход преимущественно ионного компонента в продуктах истечения при перекрытии разрядом разрядного промежутка и ее последующей нейтрализации на завершающей дуговой фазе разряда. Такой ЭРД, названный по типу основного разряда как электронно-детонационный ракетный двигатель (ЭДРД), позволяет получать на рабочем теле тефлон более высокие удельные параметры. Однако в таком ЭРД при наработке ресурса зафиксированы неустойчивости разрядных процессов по поверхности рабочего тела в виде дрейфующих плазменных жгутов. Указанное явление ведет к интенсивному местному уносу рабочего тела из данных зон, что приводит к снижению ресурсных характеристик ЭРД ввиду неравномерности выработки рабочего тела в разрядном промежутке и низкого уровня стабильности выходных характеристик. Кроме того, в силу конструктивной специфики систем хранения и подачи для твердофазного рабочего тела, сформованного преимущественно в виде шашек цилиндрического типа, запасы его на борту ограничены габаритными возможностями электрической реактивной двигательной установки, и ресурс таких двигателей по суммарному импульсу тяги оказывается недостаточным для многих полетных задач.

Известен импульсный плазменный электрический реактивный двигатель (патент РФ №2319039, з. №2005102848 от 04.02.2005 г., МПК F03H 1/00) линейного типа, состоящий из анода и катода с разрядным промежутком в виде рабочей поверхности из диэлектрика, покрытого пленкой жидкого или гелеобразного рабочего тела. При этом в зоне между анодом и катодом с возможностью возвратно-поступательного движения помещен подвижный источник подачи жидкого или гелеобразного рабочего тела, содержащий пористо-капиллярный эластичный фитиль, начальный участок которого контактирует с жидким рабочим телом, находящимся в топливном баке.

Учитывая космические условия эксплуатации, в качестве рабочего тела применяют жидко фазный диэлектрик с низким значением давления насыщенных паров, например вакуумное масло или синтетические жидкости, а рабочую поверхность разрядного промежутка выполняют из смачиваемого рабочим телом диэлектрического материала, например керамики или капролона.

Такой двигатель имеет более высокие характеристики по ресурсу включений и удобству эксплуатации, чем аналог (патент РФ №2146776, з. №98109266 от 14.05.1998 г, МПК F03H 1/00) однако основные удельные характеристики близки друг к другу.

Задачей предлагаемого изобретения является создание электронно-детонационного двигателя линейного типа с повышенными удельными характеристиками и кпд.

Задача решается в электрическом реактивном двигателе линейного типа, состоящем из анода и катода, подключенных к генератору высоковольтных импульсов, с разрядным промежутком между ними, заполненным жидким рабочим телом в виде пленки, путем выполнения анода и катода в виде магнитопроводов, подключенных к источнику магнитного поля с ориентацией магнитных силовых линий вдоль разрядного промежутка, причем источник магнитного поля электрически разобщен с электродами анод и катод путем выполнения магнитопроводов из материала с высоким электрическим сопротивлением, например из феррита.

В этой конструкции исключается электрическое шунтирование разрядного промежутка анод-катод что, в свою очередь, позволяет максимально удобно организовать магнитные силовые линии вдоль разрядного промежутка.

Наличие магнитных силовых линий вдоль разрядного промежутка импульсного ЭРД на основе электронно-детонационного типа разряда организует движение электронов рабочего тела не по прямым траекториям (по кратчайшему пути), а по винтовым траекториям (А.И. Морозов «Введение в плазмодинамику» Физматлит, Москва, 2006 год), что ведет к дополнительному увеличению актов ионизации атомов рабочего тела. Как следствие, это приведет к увеличению тяги и кпд импульсного ЭРД.

Заявляемое изобретение поясняется чертежом. На приведенной фигуре показана конструктивная схема предлагаемого ЭРД. Основным его элементом является разрядный промежуток 1, содержащий систему из двух встречно-расположенных электродов, 2 - анод и 3 - катод, выполненных из магнитомягкого материала. Поступление рабочего тела в межэлектродный промежуток происходит методом его смачивания через пористо-капиллярный эластичный фитиль (смачиватель) 4, установленный, например, на подвижной каретке 5. Периодическое перемещение каретки 5 вдоль разрядного промежутка 1 осуществляется с помощью электропривода 6. Магнитное поле создаваемое постоянным магнитом или электромагнитом 7, через ферритовые магнитопроводы 8 поступает к электродам 2 и 3, выполненным из магнитомягкого материала, замыкаясь через разрядный промежуток 1 системой магнитных силовых линий.

ЭРД такого типа работает следующим образом. Перед началом импульсной работы ЭРД, система управления подает электрическую команду длительностью несколько секунд на электропривод 6 смачивателя 4 для нанесения жидкофазной пленки на рабочую поверхность 1 в межэлектродной зоне 2 (анод) - 3 (катод). Система подачи жидкого рабочего тела от бака к смачивателю условно не показана, так как является составной частью электрической реактивной двигательной установки. В случае использования в качестве источника магнитного поля 7 электромагнита, на его обмотку подается электрический потенциал постоянного тока или импульсного, синхронизированного с подачей высоковольтных импульсов на электроды 2 и 3 (анод, катод) ЭРД.

При подаче высоковольтных импульсов напряжения на электроды 2 и 3, по поверхности жидкой пленки распространяется разряд, генерирующий ионную (электронно-детонационный тип разряда), а затем плазменную (дуговую) составляющие разряда, создающие реактивный импульс тяги. При этом электроны, перемещаясь вдоль силовых магнитных линий разрядного промежутка по винтовой траектории, резко интенсифицируют процесс соударения с нейтральными атомами жидкого рабочего тела каждой из вышеупомянутых стадий разряда, что ведет к увеличению ионного компонента продуктов истечения, а это, в свою очередь, приводит к увеличению кпд и тяги двигателя, т.к. существенно возрастает процент высокоскоростных ионов по отношению к общей массе ионного и плазменного компонентов.

Импульсный электрический реактивный двигатель линейного типа, состоящий из анода и катода, подключенных к генератору высоковольтных импульсов, с разрядным промежутком между ними, заполненным жидким рабочим телом в виде пленки, отличающийся тем, что анод и катод являются магнитопроводами, подключенными к источнику магнитного поля с ориентацией магнитных силовых линий вдоль разрядного промежутка, причем источник магнитного поля электрически разобщен с электродами анод и катод путем выполнения магнитопроводов из материала с высоким электрическим сопротивлением, например из феррита.

Похожие патенты:

Изобретение относится к космической технике, в частности к электрореактивным двигателям и двигательным установкам (ЭРД и ЭРДУ), созданным на базе ускорителей с замкнутым дрейфом электронов, называемых стационарными плазменными холловскими двигателями, и может быть использовано для повышения эффективности и стабильности характеристик при эксплуатации ЭРД и ЭРДУ.

Изобретение относится к области электроракетных двигателей. В модели стационарного плазменного двигателя (СПД), содержащей кольцевую диэлектрическую разрядную камеру, с расположенным внутри нее кольцевым анодом-газораспределителем, магнитную систему и катод, внутри его разрядной камеры установлен дополнительный газораспределитель, выполненный в виде кольца, пристыкованного через изолятор к аноду-газораспределителю. В указанном кольце выполнены соосные глухие отверстия, равномерно расположенные по азимуту, каждое из которых закрыто крышкой, имеющей сквозное калиброванное отверстие. Каждое из глухих отверстий с крышкой образует емкость, наполненную кристаллическим йодом, причем дополнительный газораспределитель установлен внутри разрядной камеры так, что его калиброванные отверстия обращены к аноду-газораспределителю. Технический результат - возможность определения принципиальной возможности работы СПД на рабочем теле - йод - при минимальных доработках самого двигателя и исключении специальной системы подачи йода и нагревателей тракта подачи, что значительно сокращает средства и время, необходимые для первого этапа исследования работоспособности и характеристик стационарного плазменного двигателя на кристаллическом йоде. 2 ил.

Изобретение относится к электроракетному двигателю с замкнутым дрейфом электронов. Электроракетный двигатель с замкнутым дрейфом электронов содержит основной кольцевой ионизационный и ускорительный канал, по меньшей мере, один полый катод, кольцеобразный анод, трубку с коллектором для питания анода ионизируемым газом, и магнитную цепь для создания магнитного поля в основном кольцевом канале. Основной кольцевой канал образован вокруг оси ЭРД. Анод концентричен указанному основному кольцевому каналу. Магнитная цепь содержит, по меньшей мере, один аксиальный магнитопровод, окруженный первой катушкой и внутренним тыльным полюсным наконечником, образующим тело вращения, и несколько наружных магнитопроводов, окруженных наружными катушками. Указанная магнитная цепь дополнительно содержит по существу радиальный, наружный, первый полюсный наконечник, образующий вогнутую внутреннюю периферическую поверхность, и по существу радиальный, внутренний, второй полюсный наконечник, образующий выпуклую наружную периферическую поверхность. Указанные периферические поверхности представляют собой соответственным образом откорректированные профили. Эти профили отличаются от круговых цилиндрических поверхностей с целью образования между ними зазора переменной ширины. Максимальная величина зазора имеет место на участках, совпадающих с местоположением наружных катушек. Минимальная величина зазора имеет место на участках, расположенных между указанными наружными катушками, так чтобы создавалось равномерное радиальное магнитное поле. Техническим результатом является создание ЭРД высокой мощности с замкнутым дрейфом электронов, в котором одновременно реализовано хорошее охлаждение основного кольцевого канала, в указанном канале получено равномерное радиальное магнитное поле, и минимизирована длина провода, необходимого для обмоток, и минимизирована масса обмоток. 7 з.п. ф-лы, 8 ил.

Изобретение относится к области плазменных двигателей. Устройство содержит, по меньшей мере: один главный кольцевой канал (21) ионизации и ускорения, при этом кольцевой канал (21) имеет открытый конец, анод (26), находящийся внутри канала (21), катод (30), находящийся снаружи канала на его выходе, магнитную цепь (4) для создания магнитного поля в части кольцевого канала (21). Магнитная цепь содержит, по меньшей мере, кольцевую внутреннюю стенку (22), кольцевую наружную стенку (23) и дно (8), соединяющее внутреннюю (22) и наружную (23) стенки и образующее выходную часть магнитной цепи (4), при этом магнитная цепь (4) выполнена с возможностью создания на выходе кольцевого канала (21) магнитного поля, не зависящего от азимута. Технический результат - повышение вероятности ионизирующих столкновений между электронами и атомами инертного газа. 3 н. и 12 з.п. ф-лы, 6 ил.

Изобретение относится к плазменной технике и к плазменным технологиям и может использоваться в импульсных плазменных ускорителях, применяемых, в частности, в качестве электроракетных двигателей. Катод (1) и анод (2) эрозионного импульсного плазменного ускорителя (ЭИПУ) имеют плоскую форму. Между разрядными электродами (1 и 2) установлены две диэлектрические шашки (4), выполненные из абляционного материала. Торцевой изолятор (6) установлен между разрядными электродами в области размещения диэлектрических шашек (4). Устройство (9) инициирования электрического разряда подключено к электродам (8). Емкостный накопитель энергии (3) системы электропитания подключен через токоподводы к разрядным электродам (1 и 2). Разрядный канал ЭИПУ образован поверхностями разрядных электродов (1 и 2), торцевого изолятора (б) и торцевых частей диэлектрических шашек (4). Разрядный канал выполнен с двумя взаимно перпендикулярными срединными плоскостями. Разрядные электроды (1 и 2) установлены симметрично относительно первой срединной плоскости. Диэлектрические шашки (4) установлены симметрично относительно второй срединной плоскости. Касательная к поверхности торцевого изолятора (6), обращенной к разрядному каналу, направлена под углом от 87° до 45° относительно первой срединной плоскости разрядного канала. В торцевом изоляторе (6) выполнено углубление (7) с прямоугольным поперечным сечением. В углублении (7) со стороны катода (1) расположены электроды (8). Касательная к фронтальной поверхности углубления (7) направлена под углом от 87° до 45° относительно первой срединной плоскости разрядного канала. Углубление (7) вдоль поверхности торцевого изолятора (6) имеет форму трапеции. Большее основание трапеции расположено у поверхности анода (2). Меньшее основание трапеции расположено у поверхности катода (1). На поверхности торцевого изолятора (6) выполнены три прямолинейные канавки, ориентированные параллельно поверхностям разрядных электродов (1 и 2). Технический результат заключается в увеличении ресурса, повышении надежности, тяговой эффективности, эффективности использования рабочего вещества и стабильности тяговых характеристик ЭИПУ за счет равномерного испарения рабочего вещества с рабочей поверхности диэлектрических шашек. 8 з.п. ф-лы, 3 ил.

Изобретение относится к космической технике, к классу электрореактивных двигателей и предназначено для управления движением космических аппаратов малой (до 5 Н) тягой. Циклотронный плазменный двигатель содержит корпус плазменного ускорителя, соленоиды (катушки индуктивности), электрическую цепь с катодами-компенсаторами. При этом содержится автономный источник ионов, разделитель потоков электронов и ионов. Плазменный ускоритель представляет собой асинхронный циклотрон. Циклотрон разделен вдоль на дуанты двумя соосными парами параллельных сеток с зазорами. Дуанты создают однородные, равные и постоянные ускоряющие электрические поля взаимно противоположного направления векторов напряженности. Циклотрон имеет по числу основных направлений создания тяги выходные каналы плазменного ускорителя - основные переходники-ферромагнетики с катушками индуктивности. Выходные прямые газовые диэлектрические каналы двигателя соединены с основными переходниками через пропускные электроклапаны. Эти каналы соединены между собой переходниками-ферромагнетиками с катушками индуктивности. Техническим результатом является увеличение удельного импульса тяги с сохранением и возможным уменьшением массогабаритных характеристик двигательных установок на космических аппаратах при относительно невысокой мощности энергопотребления. 2 з.п. ф-лы, 2 ил.

Изобретение относится к пучковым технологиям и может быть использовано для компенсации (нейтрализации) пространственного заряда пучка положительных ионов электроракетных двигателей, в частности, для применения в двигательных установках микро- и наноспутников. Способ нейтрализации объемного заряда ионного потока электроракетной двигательной установки путем эмиссии электронов множественными автоэмиссионными источниками. Источники расположены вокруг каждого из электроракетных двигателей указанной установки. Управление токами эмиссии отдельных автоэмиссионных источников или групп указанных множественных автоэмиссионных источников производят независимо друг от друга. Техническим результатом является снижение расхода рабочего тела ЭРД, в том числе многорежимного ЭРД или многодвигательной установки, обеспечение минимального времени выхода на рабочий режим нейтрализации и быстрого переключения электронного тока согласовано с режимом работы такого ЭРД, оптимизирование транспорта электронов в область нейтрализации с тем, чтобы уменьшить расходимость ионного пучка или отклонения его, изменяя таким образом направление ионной тяги. 5 з.п. ф-лы.

Изобретение относится к реактивным средствам перемещения преимущественно в свободном космическом пространстве. Предлагаемое средство перемещения содержит корпус (1), полезную нагрузку (2), систему управления и не менее одной кольцевой системы сверхпроводящих фокусирующе-отклоняющих магнитов (3). Каждый магнит (3) прикреплен к корпусу (1) силовым элементом (4). Предпочтительно использовать две описанных кольцевых системы, расположенных в параллельных плоскостях («друг над другом»). Каждая кольцевая система предназначена для длительного хранения циркулирующего в ней потока (5) высокоэнергичных электрически заряженных частиц (релятивистских протонов). Потоки в кольцевых системах взаимно противоположны и вводятся в эти системы перед полетом (на орбите старта). К выходу одного из магнитов (3) «верхней» кольцевой системы прикреплено устройство (6) для выведения части потока (7) во внешнее космическое пространство. Аналогично производится выведение части потока (9) через устройство (8) одного из магнитов «нижней» кольцевой системы. Потоки (7) и (9) создают реактивную тягу. Устройства (6) и (8) могут быть выполнены в виде отклоняющей магнитной системы, нейтрализатора электрического заряда потока или ондулятора. Техническим результатом изобретения является увеличение энергоотдачи рабочего тела, создающего тягу. 1 н. и 3 з.п. ф-лы, 2 ил.

Группа изобретений относится к области электрореактивных двигателей, а именно к классу плазменных ускорителей (холловских, ионных), использующих в своем составе катоды. При необходимости оно может быть использовано также в смежных областях техники, например, при проведении испытаний катодов для источников плазмы или катодов для сильноточных плазменных двигателей. Способ ускоренных испытаний катодов плазменных двигателей включает проведение автономных огневых испытаний катода, осуществление многократных включений катода, измерение его базовых параметров деградации, проведение испытаний в форсированном режиме работы катода. Испытания разбивают на этапы. При выполнении каждого этапа производят форсирование одного из факторов деградации катода при одновременном воздействии на катод всех остальных факторов деградации в эксплуатационном режиме. Форсирование каждого из факторов деградации осуществляют по меньшей мере один раз. Техническим результатом группы изобретения является осуществление комплексного учета воздействия всех базовых факторов деградации катода при проведении ускоренных ресурсных испытаний, существенное сокращение времени проведения ресурсных испытаний катода и обеспечение возможности исследования воздействия каждого фактора деградации на ресурсные характеристики катода. 2 н. и 5 з.п. ф-лы, 4 ил.

Изобретение относится к области электрореактивных двигателей, а именно, к широкому классу плазменных ускорителей (холловских, ионных, магнитоплазмодинамических и др.), использующих в своем составе катоды. Технический результат-повышение ресурса и надежности работы катода при больших токах разряда путем выравнивания температур эмитирующих электроны элементов и обеспечения равномерности распределения рабочего тела по этим элементам. Катод плазменного ускорителя по первому варианту содержит полые эмитирующие электроны элементы, трубопровод с каналами для подачи рабочего тела к полым эмитирующим электроны элементам, единый теплопровод, охватывающий с внешней стороны каждый из полых эмитирующих электроны элементов, выполненных в виде тела вращения. Материал теплопровода имеет коэффициент теплопроводности не ниже коэффициента теплопроводности материала этих элементов. Каждый из полых эмитирующих электроны элементов присоединен к отдельному каналу трубопровода, а в каждом канале со стороны подачи рабочего тела установлен дроссель, причем поперечные сечения отверстий дросселей выполнены одинаковыми.Во втором варианте изобретения единый теплопровод охватывает и с внешней стороны по всей длине образующей и по выходному торцу каждый из полых эмитирующих электроны элементов, выполненных в виде тела вращения. В выходном торце единого теплопровода выполнены отверстия, оси которых совпадают с осями полых эмитирующих электроны элементов, причем проходные сечения отверстий в едином теплопроводе не больше проходных сечений отверстий в полых эмитирующих электроны элементах.2 н.п. и 2 з.п.ф-лы, 2 ил.

Изобретение относится к плазменному маневровому реактивному двигателю на основе эффекта Холла, используемому для перемещения спутников с помощью электричества. Плазменный реактивный двигатель на основе эффекта Холла содержит основной кольцевой канал ионизации и ускорения. Канал имеет открытый выходной конец. Двигатель также содержит, по меньшей мере, один катод, кольцевой анод, трубопровод с распределителем для подачи способного к ионизации газа в основной кольцевой канал и магнитную цепь для создания магнитного поля в основном кольцевом канале. Анод концентричен основному кольцевому каналу. Основной кольцевой канал содержит расположенные вблизи открытого выходного конца участок внутренней кольцевой стенки и участок наружной кольцевой стенки. Каждый из указанных участков содержит пакет расположенных рядом друг с другом проводящих или полупроводящих колец в виде пластин. Пластины разделены тонкими слоями изолирующего материала. Техническим результатом является устранение указанных в описании недостатков и, в частности, повышение долговечности плазменных реактивных двигателей на основе эффекта Холла при сохранении высокого уровня их энергетической эффективности. 9 н.п. ф-лы, 5 ил.

Изобретение относится к электрореактивным двигателям, использующим электронно-детонационный тип разряда. Двигатель состоит из анода и катода с разрядным промежутком между ними, заполненным жидким рабочим телом в виде пленки. Электроды анод и катод выполнены из магнитомягкого материала, а источник магнитного поля электрически изолирован от электродов магнитопроводами типа феррит. Изобретение позволяет повысить удельные характеристики и кпд двигателя. 1 ил.

Схема ПуВРД представлена на рис.3.16.

Рис.3.16.Схема пульсирующего воздушно-реактивного двигателя:

    диффузор,2- клапанное устройство; 3- форсунки; 4 – камера сгорания;5 – сопло; 6- выхлопная труба.

Топливо впрыскивается через форсунки 3, образуя топливную смесь с воздухом, сжатым в диффузоре 1.

Воспламенение топливной смеси производится в камере сгорания 4, от электрической свечи. Горение топливной смеси, впрыскиваемой в определенных количествах, длится сотые доли секунды. Как только давления в камере сгорания становится больше давления воздуха перед клапанным устройством, происходит закрытие пластинчатых клапанов. При достаточно большом объеме сопла 5 и выхлопной трубы 6, установленной специально для увеличения объема, создается подпор газов, находящихся в камере сгорания. За время сгорания топлива изменение количества газов в объеме за камерой сгорания пренебрежимо мало, поэтому считают, что горение идет при постоянном объеме.

После сгорания порции топлива давление в камере сгорания понижается так, что клапаны 2 открываются и впускают новую порцию воздуха из диффузора.

На рис.3.17. представлен идеальный термодинамический цикл пульсирующего ВРД.

П
роцессы цикла:

1-2 – сжатие воздуха в диффузоре;

2-3 – изохорный подвод теплоты в камере сгорания;

3-4 – адиабатное расширение газов в сопле;

4-1 – изобарное охлаждение продуктов сгорания в атмосфере при с отводом теплоты .

Рис.3.17. Цикл ПуВРД.

Как следует из рис.3.17 , цикл ПуВРД не отличается от цикла ГТУ с изохорным подводом теплоты. Тогда по аналогии с (3.8.) можно сразу записать формулу для термического КПД ПуВРД

(3.20.)

Степень добавочного повышения давления в камере сгорания;

– степень повышения давления в диффузоре.

Таким образом, у пульсирующего ВРД термический КПД больше, чем у ПВРД за счет большей среднеинтегральной температуры теплоподвода.

Усложнение конструкции ПуВРД повлекло за собой увеличение его массы по сравнению с ПВРД.

3.5.3. Компрессорные турбореактивные двигатели (трд)

Эти двигатели получили наибольшее распространение в авиации. В ТРД происходит двухступенчатое сжатие воздуха (в диффузоре и в компрессоре) и двухступенчатое расширение продуктов сгорания топливной смеси (в газовой турбине и в сопле).

Принципиальная схема ТРД представлена на рис 3.18.

Рис.3.18. Принципиальная схема ТРД и характер изменения параметров рабочего тела в газо-воздушном тракте:

1-диффузор;2-осевой компрессор;3- камера сгорания; 4- газовая турбина; 5- сопло.

Давления набегающего потока воздуха сначала повышается в диффузоре 1, а затем в компрессоре 2. Привод компрессора осуществляется от газовой турбины 4. Топливо подается в камеру сгорания 3, где вместе с воздухом образует топливную смесь и сгорает при постоянном давлении. Продукты сгорания сначала расширяются на лопатках газовой турбины 4, а затем в сопле. Истечение газов из сопла с большей скоростью создает силу тяги, движущую самолет.

Идеальный термодинамический цикл ТРД аналогичен циклу ПВРД, но дополняется процессами в компрессоре и турбине (рис.3.19).

Рис.3.19. Идеальный цикл ТРД в P - V диаграмме

Процессы цикла:

1-2 – адиабатное сжатие воздуха в диффузоре;

2-3 - адиабатное сжатие воздуха в компрессоре;

3-4 – изобарный подвод теплоты от сгорания топливной смеси в камере сгорания;

4-5 – адиабатное расширение продуктов сгорания на лопатках турбины;

5-6 – адиабатное расширение продуктов сгорания в сопле;

6-1 – охлаждение продуктов сгорания в атмосфере при постоянном давлении с отдачей теплоты .

Термический КПД определяется по формуле (3.19):

(3.21.)

– результирующая степень повышения давления воздуха в диффузоре и компрессоре.

Благодаря более высокой, чем у ПВРД степени сжатия ТРД имеет более высокий термический КПД. Без каких-либо стартовых ускорителей ТРД развивает необходимую силу тяги уже на старте.